The 2023 MDPI Annual Report has
been released!
 
14 pages, 1375 KiB  
Article
Human Consumption of Non-Native Species in a Circular Economy: Determination of Persistent Organic Pollutants in the Invasive Signal Crayfish from a Baltic Coastal River and Its Assessment for Consumption
by Aldona Dobrzycka-Krahel, Michał E. Skóra and Marika Malek
Sustainability 2024, 16(9), 3532; https://doi.org/10.3390/su16093532 (registering DOI) - 24 Apr 2024
Abstract
A circular economy aims at decoupling value creation from waste generation and resource use. The signal crayfish Pacifastacus leniusculus is kept worldwide in aquaculture and after escaping into the wild, may further be used for human consumption rather than eradicated and used for [...] Read more.
A circular economy aims at decoupling value creation from waste generation and resource use. The signal crayfish Pacifastacus leniusculus is kept worldwide in aquaculture and after escaping into the wild, may further be used for human consumption rather than eradicated and used for purposes such as fertilizing fields. The level of contamination by two groups of persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), in non-native signal crayfish from a Baltic coastal river, was measured in two locations (under anthropogenic pressure and semi-natural pressure) to understand whether its consumption might be a threat to human health. Concentrations of indicators and total compounds of POPs in the edible parts of crayfish (muscular tissue of crayfish) with potential human health risks were determined. The levels of concentrations of POPs meet the requirements of Regulations (EU) No. 836/2011 and No. 1259/2011 for the consumption of crustaceans. Our results also indicate no significant public health risk caused by consumption of the signal crayfish (hazard quotients (HQ) < 1). The results show that the bioaccumulation of POPs depends on the species’ traits and environment. Full article
(This article belongs to the Special Issue Circular Economy in Agricultural, Fisheries, and Foods)
Show Figures

Figure 1

14 pages, 6723 KiB  
Technical Note
Effects of Ice-Microstructure-Based Inherent Optical Properties Parameterization in the CICE Model
by Yiming Zhang and Jiping Liu
Remote Sens. 2024, 16(9), 1494; https://doi.org/10.3390/rs16091494 (registering DOI) - 24 Apr 2024
Abstract
The constant inherent optical properties (IOPs) for sea ice currently applied in sea ice models do not realistically represent the dividing of shortwave radiative fluxes in sea ice and the ocean below it. Here we implement a parameterization of variable IOPs based on [...] Read more.
The constant inherent optical properties (IOPs) for sea ice currently applied in sea ice models do not realistically represent the dividing of shortwave radiative fluxes in sea ice and the ocean below it. Here we implement a parameterization of variable IOPs based on ice microstructures in the Los Alamos sea ice model, version 6.0 (CICE6) and investigate its effects on the simulation of the dividing of shortwave radiation and sea ice in the Arctic. Our sensitivity experiments indicate that variable IOP parameterization results in strong seasonal variation for the IOP parameters, typically reaching the seasonal maximum in the boreal summer. With such large differences, variable IOP parameterization leads to increased absorbed solar radiation at the surface and in the interior of Arctic sea ice relative to constant IOPs, up to ~3 W/m2, but decreased solar radiation penetrating into the ocean, up to ~5–6 W/m2. The changes in the dividing of shortwave fluxes in sea ice and the ocean below it induced by the variable IOPs have significant influence on Arctic sea ice thickness by modulating surface and bottom melting and frazil ice formation (increasing surface melting by ~16% and reducing bottom melting by ~11% in summer). Full article
(This article belongs to the Special Issue Remote Sensing of Polar Sea Ice)
Show Figures

Figure 1

17 pages, 6537 KiB  
Article
Precipitation Changes on the Northern Slope of the Kunlun Mountains in the Past 42 Years
by Zhenhua Xia, Yaning Chen, Xueqi Zhang, Zhi Li, Gonghuan Fang, Chengang Zhu, Yupeng Li, Jinglong Li, Qianqian Xia and Qixiang Liang
Water 2024, 16(9), 1203; https://doi.org/10.3390/w16091203 (registering DOI) - 24 Apr 2024
Abstract
The precipitation on the northern slope of the Kunlun Mountains significantly impacts the green economy of the Tarim Basin’s southern edge. Observations have noted an expansion of the surface water area in this region, though the reasons for this are not yet fully [...] Read more.
The precipitation on the northern slope of the Kunlun Mountains significantly impacts the green economy of the Tarim Basin’s southern edge. Observations have noted an expansion of the surface water area in this region, though the reasons for this are not yet fully understood. Due to limited instrumental data, this study leverages field measurements from the third Xinjiang comprehensive expedition and multiple gridded datasets. Through trend analysis and a geographical detector model, it examines the precipitation’s decadal, interannual, and seasonal variations across key areas (Hotan River Basin, Keriya River Basin, Qarqan River Basin, and Kumukuli Basin), identifying factors behind the spatial and temporal distribution of regional precipitation. The findings reveal the following: (1) An increase in annual precipitation across the region from 187.41 mm in the 1980s to 221.23 mm in the early 21st century, at a rate of 10.21 mm/decade, with the most significant rise in the eastern Kunlun-Kumukuli Basin. (2) Precipitation exhibits clear seasonal and spatial patterns, predominantly occurring in spring and summer, accounting for 90.27% of the annual total, with a general decrease from the mountains towards downstream areas. (3) Rising average annual temperatures contribute to an unstable atmospheric structure and increased water-holding capacity, facilitating precipitation. Significant influences on precipitation changes include the North Atlantic Oscillation and solar flux, explaining 43.98% and 31.21% of the variation, respectively. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

14 pages, 321 KiB  
Article
Music Therapy Assessment for Older Adults: Descriptive Mixed-Methods Study
by Amy Clements-Cortés
Behav. Sci. 2024, 14(5), 354; https://doi.org/10.3390/bs14050354 (registering DOI) - 23 Apr 2024
Abstract
Background: The purpose of this inquiry was to test the new ‘Music Therapy Assessment for Older Adults’ (MTAOA) tool in Canada and the United States, and to establish its content and predictive utility. Methods: A pilot study using an explanatory descriptive methods design [...] Read more.
Background: The purpose of this inquiry was to test the new ‘Music Therapy Assessment for Older Adults’ (MTAOA) tool in Canada and the United States, and to establish its content and predictive utility. Methods: A pilot study using an explanatory descriptive methods design was chosen; n = 18 music therapists completed an online survey about their experiences in administering the assessment and 50% (n = 9) were invited for a follow-up interview. Results: The results indicated that the MTAOA was a beneficial assessment tool that contained relevant domains (89%) to develop a music therapy treatment plan; 89% of music therapists also noted they would continue to use and recommend the MTAOA. The data produced beneficial information that were used to revise the assessment form to ensure inclusive language and reduce any potential inherent or unconscious biases. Conclusions: Future research is needed to assess the utility of the revised MTAOA in other global regions where music therapists work with older adults. Full article
(This article belongs to the Special Issue Innovations in Music Based Interventions for Psychological Wellbeing)
19 pages, 7216 KiB  
Article
In Silico Design of Potential Small-Molecule Antibiotic Adjuvants against Salmonella typhimurium Ortho Acetyl Sulphydrylase Synthase to Address Antimicrobial Resistance
by Oluwadunni F. Elebiju, Gbolahan O. Oduselu, Temitope A. Ogunnupebi, Olayinka O. Ajani and Ezekiel Adebiyi
Pharmaceuticals 2024, 17(5), 543; https://doi.org/10.3390/ph17050543 - 23 Apr 2024
Abstract
The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm [...] Read more.
The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyridoxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from the PubChem database were carried out using AutoDock vina, while a post-screening analysis was carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs 118614633, 135715279, and 155773276, possessing binding affinities of −9.1, −8.9, and −8.8 kcal/mol, respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to 187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the lowest binding energy (−9.3 kcal/mol) and performed better than its parent compound 155773276. Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a synergistic effect and consequently increases the binding energy. The stability of the best hit and optimized compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and SASA plots generated from a molecular dynamics simulation. The MD simulation results were also used to monitor how the introduction of new functional groups of optimized compounds contributes to the stability of ligands at the target active site. The improved binding affinity of these compounds compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good inhibitors of StOASS, and hence, possible antimicrobial adjuvants. Full article
(This article belongs to the Special Issue New Perspectives on Chemoinformatics and Drug Design)
Show Figures

Figure 1

17 pages, 5113 KiB  
Article
The Impact of Normobaric Hypoxia and Intermittent Hypoxic Training on Cardiac Biomarkers in Endurance Athletes: A Pilot Study
by Jakub Goliniewski, Miłosz Czuba, Kamila Płoszczyca, Małgorzata Chalimoniuk, Robert Gajda, Adam Niemaszyk, Katarzyna Kaczmarczyk and Józef Langfort
Int. J. Mol. Sci. 2024, 25(9), 4584; https://doi.org/10.3390/ijms25094584 - 23 Apr 2024
Abstract
This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the [...] Read more.
This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium’s response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 8637 KiB  
Article
Pharmacodynamic and Toxicity Studies of 6-Isopropyldithio-2′-guanosine Analogs in Acute T-Lymphoblastic Leukemia
by Tiantian Song, Zheming Yu, Qitao Shen, Yu Xu, Haihong Hu, Junqing Liu, Kui Zeng, Jinxiu Lei and Lushan Yu
Cancers 2024, 16(9), 1614; https://doi.org/10.3390/cancers16091614 (registering DOI) - 23 Apr 2024
Abstract
(1) Background: The research group has developed a new small molecule, 6-Isopropyldithio-2′-deoxyguanosine analogs-YLS004, which has been shown to be the most sensitive in acute T-lymphoblastic leukemia cells. Moreover, it was found that the structure of Nelarabine, a drug used to treat acute T-lymphoblastic [...] Read more.
(1) Background: The research group has developed a new small molecule, 6-Isopropyldithio-2′-deoxyguanosine analogs-YLS004, which has been shown to be the most sensitive in acute T-lymphoblastic leukemia cells. Moreover, it was found that the structure of Nelarabine, a drug used to treat acute T-lymphoblastic leukemia, is highly similar to that of YLS004. Consequently, the structure of YLS004 was altered to produce a new small molecule inhibitor for this study, named YLS010. (2) Results: YLS010 has exhibited potent anti-tumor effects by inducing cell apoptosis and ferroptosis. A dose gradient was designed for in vivo experiments based on tentative estimates of the toxicity dose using acute toxicity in mice and long-term toxicity in rats. The study found that YLS010 at a dose of 8 mg/kg prolonged the survival of late-stage acute T-lymphoblastic leukemia mice in the mouse model study. (3) Conclusions: YLS010 has demonstrated specific killing effects against acute T-lymphoblastic leukemia both in vivo and in vitro. Preclinical studies of YLS010 offer a new opportunity for the treatment of patients with acute T-lymphoblastic leukemia in clinical settings. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

12 pages, 2845 KiB  
Article
Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates
by Yongbum Kwon, Dai Bui-Vinh, Seung-Hwan Lee, So Hyun Baek, Songhui Lee, Jeungjai Yun, Minwoo Baek, Hyun-Woo Lee, Jaebeom Park, Miri Kim, Minsang Yoo, Bum Sung Kim, Yoseb Song, Handol Lee, Do-Hyun Lee and Da-Woon Jeong
Polymers 2024, 16(9), 1180; https://doi.org/10.3390/polym16091180 (registering DOI) - 23 Apr 2024
Abstract
Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. [...] Read more.
Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials. Full article
Show Figures

Figure 1

26 pages, 8162 KiB  
Article
Starch-Based Polysaccharide Systems with Bioactive Substances: Physicochemical and Wettability Characteristics
by Agnieszka Ewa Wiącek and Anna Furmaniuk
Int. J. Mol. Sci. 2024, 25(9), 4590; https://doi.org/10.3390/ijms25094590 - 23 Apr 2024
Abstract
Polysaccharide-based systems have very good emulsifying and stabilizing properties, and starch plays a leading role. Their modifications should add new quality features to the product to such an extent that preserves the structure-forming properties of native starch. The aim of this manuscript was [...] Read more.
Polysaccharide-based systems have very good emulsifying and stabilizing properties, and starch plays a leading role. Their modifications should add new quality features to the product to such an extent that preserves the structure-forming properties of native starch. The aim of this manuscript was to examine the physicochemical characteristics of the combinations of starch with phospholipids or lysozymes and determine the effect of starch modification (surface hydrophobization or biological additives) and preparation temperature (before and after gelatinization). Changes in electrokinetic potential (zeta), effective diameter, and size distribution as a function of time were analyzed using the dynamic light scattering and microelectrophoresis techniques. The wettability of starch-coated glass plates before and after modification was checked by the advancing and receding contact angle measurements, as well as the angle hysteresis, using the settle drop method as a complement to profilometry and FTIR. It can be generalized that starch dispersions are more stable than analogous n-alkane/starch emulsions at room and physiological temperatures. On the other hand, the contact angle hysteresis values usually decrease with temperature increase, pointing to a more homogeneous surface, and the hydrophobization effect decreases vs. the thickness of the substrate. Surface hydrophobization of starch carried out using an n-alkane film does not change its bulk properties and leads to improvement of its mechanical and functional properties. The obtained specific starch-based hybrid systems, characterized in detail by switchable wettability, give the possibility to determine the energetic state of the starch surface and understand the strength and specificity of interactions with substances of different polarities in biological processes and their applicability for multidirectional use. Full article
(This article belongs to the Special Issue New Perspectives of Colloids for Biological Applications)
Show Figures

Figure 1

20 pages, 2629 KiB  
Article
Estimation and Prediction of Commodity Returns Using Long Memory Volatility Models
by Kisswell Basira, Lawrence Dhliwayo, Knowledge Chinhamu, Retius Chifurira and Florence Matarise
Risks 2024, 12(5), 73; https://doi.org/10.3390/risks12050073 - 23 Apr 2024
Abstract
Modelling the volatility of commodity prices and creating more reliable models for estimating and forecasting commodity price returns are crucial. The body of research on statistical models that can fully reflect the empirical characteristics of commodity price returns is lacking. The main aim [...] Read more.
Modelling the volatility of commodity prices and creating more reliable models for estimating and forecasting commodity price returns are crucial. The body of research on statistical models that can fully reflect the empirical characteristics of commodity price returns is lacking. The main aim of this research was to develop a modelling framework that could be used to accurately estimate and forecast commodity price returns by combining long memory models with heavy-tailed distributions. This study employed dual hybrid long-memory generalised autoregressive conditionally heteroscedasticity (GARCH) models with heavy-tailed innovations, namely, the Student-t distribution (StD), skewed-Student-t distribution (SStD), and the generalised error distribution (GED). Based on the smallest forecasting metrics values for mean absolute error (MAE) and mean squared error (MSE) values, the best performing LM-GARCH-type model for lithium is the ARFIMA (1, o, 1)-FIAPARCH (1, ξ, 1) with normal innovations. For tobacco, the best model is ARFIMA (1, o, 1)-FIGARCH (1, ξ, 1) with SStD innovations. The robust performing model for gold is the ARFIMA (1, o, 1)-FIGARCH (1, ξ, 1)-GED model. The best performing forecasting model for crude oil and cotton returns are the FIAPARCH 1,ξ, 1SStD model and HYGARCH 1,ξ, 1StD model, respectively. The results obtained from this study would be beneficial to those concerned with financial market modelling techniques, such as derivative pricing, risk management, asset allocation, and valuation. Full article
Show Figures

Figure 1

16 pages, 4546 KiB  
Article
A Fish-Based Tool for the Quality Assessment of Portuguese Large Rivers
by António Tovar Faro, Maria Teresa Ferreira and João Manuel Oliveira
Fishes 2024, 9(5), 149; https://doi.org/10.3390/fishes9050149 - 23 Apr 2024
Abstract
Multimetric indices play a pivotal role in assessing river ecological quality, aligning with the European Water Framework Directive (EU WFD) requirements. However, indices developed specifically for large rivers are uncommon. Our objective was to develop a fish-based tool specifically tailored to assess the [...] Read more.
Multimetric indices play a pivotal role in assessing river ecological quality, aligning with the European Water Framework Directive (EU WFD) requirements. However, indices developed specifically for large rivers are uncommon. Our objective was to develop a fish-based tool specifically tailored to assess the ecological quality in Portuguese large rivers. Data were collected from seven sites in each of three Portuguese large rivers (Minho, Guadiana, and Tagus). Each site was classified using an environmental disturbance score, combining different pressure types, such as water chemistry, land use, and hydromorphological alterations. The Fish-based Multimetric Index for Portuguese Large Rivers (F-MMIP-LR) comprises four metrics: % native lithophilic individuals; % alien individuals; % migrant individuals; and % freshwater native individuals, representing compositional, reproductive, and migratory guilds. The index showed good performance in separating least- and most-disturbed sites. Least-disturbed sites were rated ‘high’ or ‘good’ by F-MMIP-LR, contrasting with no such classification for most-disturbed sites, highlighting index robustness. The three rivers presented a wide range of F-MMIP-LR values across the gradient of ‘bad’ to ‘high’, indicating that, on a large spatial extent, the biological condition was substantially altered. The F-MMIP-LR provides vital information for managers and decision-makers, guiding restoration efforts and strengthening conservation initiatives in line with the WFD. Full article
(This article belongs to the Special Issue Biomonitoring and Conservation of Freshwater & Marine Fishes)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Genetic Landscape and Clinical Features of Hyperphenylalaninemia in North Ossetia-Alania: High Frequency of P281L and P211T Genetic Variants in the PAH Gene
by Inna S. Tebieva, Polina V. Mishakova, Yulia V. Gabisova, Alana V. Khokhova, Tamara G. Kaloeva, Andrey V. Marakhonov, Olga A. Shchagina, Alexander V. Polyakov, Evgeny K. Ginter, Sergey I. Kutsev and Rena A. Zinchenko
Int. J. Mol. Sci. 2024, 25(9), 4598; https://doi.org/10.3390/ijms25094598 (registering DOI) - 23 Apr 2024
Abstract
This study, conducted in the Republic of North Ossetia-Alania (RNOA), aimed to explore the genetic landscape of hyperphenylalaninemia (HPA) and phenylketonuria (PKU) in the Ossetian population using data from newborn screening (NBS). Through comprehensive molecular genetic analysis of 29 patients with HPA from [...] Read more.
This study, conducted in the Republic of North Ossetia-Alania (RNOA), aimed to explore the genetic landscape of hyperphenylalaninemia (HPA) and phenylketonuria (PKU) in the Ossetian population using data from newborn screening (NBS). Through comprehensive molecular genetic analysis of 29 patients with HPA from diverse ethnic backgrounds, two major genetic variants in the PAH gene, P281L and P211T, were identified, constituting 50% of all detected pathogenic alleles in Ossetian patients. Remarkably, these variants exhibited an exceptionally high frequency in the Ossetian population, surpassing global prevalence rates. This study unveiled a notable prevalence of mild forms of HPA (78%), underscoring the importance of genetic counseling for carriers of pathogenic variants in the PAH gene. Moreover, the findings emphasized the necessity for ongoing monitoring of patients with mild forms, as they may lack significant symptoms for diagnosis, potentially impacting offspring. Overall, this research offers valuable insights into the genetic landscape of HPA and PKU in the Ossetian population. Full article
(This article belongs to the Special Issue Advances in Human Hereditary Diseases: Genetics and Genomics Research)
21 pages, 15827 KiB  
Article
Static Bending Mechanical Properties of Prestressed Concrete Composite Slab with Removable Rectangular Steel-Tube Lattice Girders
by Guangsheng Bian, Haoran Jin, Jiaqi Li, Shuxin Shi and Xuanting Lu
Buildings 2024, 14(5), 1187; https://doi.org/10.3390/buildings14051187 - 23 Apr 2024
Abstract
In recent years, with the development of building technology, the Chinese construction industry has begun to gradually promote the prefabricated buildings to save on construction costs. Among them, composite slabs, as essential components of prefabricated buildings, have been widely used by designers mainly [...] Read more.
In recent years, with the development of building technology, the Chinese construction industry has begun to gradually promote the prefabricated buildings to save on construction costs. Among them, composite slabs, as essential components of prefabricated buildings, have been widely used by designers mainly in favor of their low cost. However, is it possible to further reduce the cost without affecting the quality? Researchers think so if the operation cycle of support from the bottom of composite slabs can accelerate and the mechanical properties of their bottom plate can be optimized. To prove this hypothesis, researchers proposed a new type of prestressed concrete composite slab with removable rectangular steel-tube lattice girders (referred to as CDB composite slabs), whose bottom plate consists of a temporary structure composed of a prestressed concrete prefabricated plate and removable rectangular steel-tube lattice girders. Through static bending performance tests on three prefabricated bottom plates and one composite slab, researchers measured corresponding load-displacement curves, load-strain curves, crack development, and distribution, etc. The test results show that the top chord rectangular steel tubes connected to the bottom plate concrete through web reinforcement bars significantly improve the rigidity, crack resistance, and load-bearing capacity of the bottom plate and possess better ductility and out-of-plane stability. The number of supports at the bottom of the bottom plate is effectively reduced, with the maximum unsupported span reaching 4.8 m. Beyond 4.8 m, only one additional support is needed, and the maximum support span can be up to 9.0 m, which provides space for cost reduction. The cooperative load-bearing performance of the prefabricated bottom plate and the post-cast composite layer concrete is good. The top chord rectangular steel tubes are easy to dismantle and can be reused, which reduces the steel consumption by about 24% compared to that used for the same size of ordinary steel-tube lattice-girder concrete composite slabs. It can greatly decrease the cost. In conclusion, the results have shown that the new method researchers proposed here is practically applicable and also provides great space to save on financial costs. Full article
(This article belongs to the Topic Resilient Civil Infrastructure)
Show Figures

Figure 1

24 pages, 23109 KiB  
Review
The Smallest “Miner” of the Animal Kingdom and Its Importance for Raw Materials Exploitation
by George Xiroudakis, George Saratsis and Emmanouil Manoutsoglou
Mining 2024, 4(2), 260-283; https://doi.org/10.3390/mining4020016 - 23 Apr 2024
Abstract
The mining industry is the leading supplier of raw materials in modern society. This sector of human activity has experienced a severe crisis due to the energy transition and has been revived in recent years due to the need for critical metals that [...] Read more.
The mining industry is the leading supplier of raw materials in modern society. This sector of human activity has experienced a severe crisis due to the energy transition and has been revived in recent years due to the need for critical metals that are essential in the post-coal era. In underground and open pit mining, processes such as extraction, transportation, safety, underground ventilation, waste management, and rehabilitation are of major importance, and their “design” is critical to the economic survival of the mine. All the above processes required to operate a mine are strongly reminiscent of an example of nature’s workman: the ant. The sympatric insect uses the same processes as the ones aforementioned during the creation of its nest. The ants dig to “extract material from the ground”, and they transport this material from the nest‘s site to the waste deposition location. The ants ensure the safety of the underground opening and the proper ventilation needed for them to live there for a long time. This article attempts to identify the relations between all the above processes and sub-processes, and how human mining and ant colony development correlate with each other. Furthermore, we examine how an ant colony has aided in the development of mining technology, and what more humans can learn and adopt from a “miner” that is 66 million years old, in order to improve their processes. Full article
Show Figures

Graphical abstract

10 pages, 202 KiB  
Article
Exploring Healthcare Providers’ and Women’s Perspectives of Labor Companionship during Childbirth: An Interpretative Phenomenological Analysis Study
by Anwar Nader AlKhunaizi, Areej Ghalib Al-Otaibi, Manal F. Alharbi and Ghareeb Bahari
Healthcare 2024, 12(9), 869; https://doi.org/10.3390/healthcare12090869 - 23 Apr 2024
Abstract
A labor companion of choice during childbirth is crucial for improving women’s birth experience and confidence to give birth. Labor companions provide various benefits, including enhanced communication, emotional support, non-pharmacological pain relief, and better healthcare. However, little is known about the supportive actions [...] Read more.
A labor companion of choice during childbirth is crucial for improving women’s birth experience and confidence to give birth. Labor companions provide various benefits, including enhanced communication, emotional support, non-pharmacological pain relief, and better healthcare. However, little is known about the supportive actions of labor companions with respect to women’s needs during labor and birth, as well as healthcare providers’ perceptions of labor companions. Therefore, this study was conducted to explore the perceptions of healthcare providers and women regarding labor companions. The study utilized an interpretative phenomenology research design. Data collection involved conducting semi-structured interviews with 14 participants. The sample consisted of mothers, physicians, and nurses, ensuring a diverse range of perspectives. An interpretative phenomenological analysis was conducted for data analysis. Five themes were identified: (a) impact of companionship, (b) benefits for healthcare providers, (c) companion roles, (d) loneliness and alienation of mothers, and (e) challenges of implementation. The findings indicated that the presence of a companion reduces the need for unnecessary medical interventions and eases the workload of healthcare providers. Without a companion, mothers often feel lonely and disconnected during the birthing process. The presence of companions is often hindered by space limitations in delivery rooms, the absence of clear policies, and lack of childbirth education programs for companions. Clear policies, education programs, and adequate space are essential for implementing and promoting labor companionship during childbirth. Full article
16 pages, 6221 KiB  
Article
Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae
by Max W. VanDyck, John H. Long, Jr., Richard H. Baker, Cheryl Y. Hayashi and Candido Diaz, Jr.
Biomimetics 2024, 9(5), 256; https://doi.org/10.3390/biomimetics9050256 - 23 Apr 2024
Abstract
Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low [...] Read more.
Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low molecular mass compounds (LMMCs). These LMMCs are known to play a crucial role in maintaining the material properties of the glycoproteins, aid in water absorption from the environment, and increase surface adhesion. Orb-weavers within the Cyrtarachninae subfamily are moth specialists and have evolved glue droplets with novel material properties. This study investigated the biochemical composition and diversity of the LMMCs present in the aggregate glue of eight moth-specialist species and compared them with five generalist orb-weavers using nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the novel drying ability of moth-specialist glue was accompanied by novel LMMCs and lower overall percentages by silk weight of LMMCs. We measured no difference in LMMC weight by the type of prey specialization, but observed novel compositions in the glue of all eight moth-catching species. Further, we quantified the presence of a previously reported but unidentified compound that appears in the glue of all moth specialists. These silks can provide insight into the functions of bioadhesives and inform our own synthetic adhesives. Full article
(This article belongs to the Special Issue Silk-Based Bioinspired Materials: Design and Applications)
Show Figures

Figure 1

13 pages, 783 KiB  
Article
Network Structure of Depressive Symptomatology in Elderly with Cognitive Impairment
by Jeehyung Pyo, Hyukjun Lee, Jakyung Lee, Daseul Lee, Hyeona Yu, Shinn-Won Lim, Woojae Myung and Doh-Kwan Kim
Medicina 2024, 60(5), 687; https://doi.org/10.3390/medicina60050687 - 23 Apr 2024
Abstract
Objective and objectives: Patients with cognitive disorders such as Alzheimer’s disease (AD) and mild cognitive impairment (MCI) frequently exhibit depressive symptoms. Depressive symptoms can be evaluated with various measures and questionnaires. The geriatric depression scale (GDS) is a scale that can be [...] Read more.
Objective and objectives: Patients with cognitive disorders such as Alzheimer’s disease (AD) and mild cognitive impairment (MCI) frequently exhibit depressive symptoms. Depressive symptoms can be evaluated with various measures and questionnaires. The geriatric depression scale (GDS) is a scale that can be used to measure symptoms in geriatric age. Many questionnaires sum up symptom scales. However, core symptoms of depression in these patients and connections between these symptoms have not been fully explored yet. Thus, the objectives of this study were (1) to determine core symptoms of two cognitive disorders, Alzheimer’s disease and mild cognitive impairment, and (2) to investigate the network structure of depressive symptomatology in individuals with cognitive impairment in comparison with those with Alzheimer’s disease. Materials and Methods: This study encompassed 5354 patients with cognitive impairments such as Alzheimer’s disease (n = 1889) and mild cognitive impairment (n = 3464). The geriatric depression scale, a self-administered questionnaire, was employed to assess depressive symptomatology. Using exploratory graph analysis (EGA), a network analysis was conducted, and the network structure was evaluated through regularized partial correlation models. To determine the centrality of depressive symptoms within each cohort, network parameters such as strength, betweenness, and closeness were examined. Additionally, to explore differences in the network structure between Alzheimer’s disease and mild cognitive impairment groups, a network comparison test was performed. Results: In the analysis of centrality indices, “worthlessness” was identified as the most central symptom in the geriatric depression scale among patients with Alzheimer’s disease, whereas “emptiness” was found to be the most central symptom in patients with mild cognitive impairment. Despite these differences in central symptoms, the comparative analysis showed no statistical difference in the overall network structure between Alzheimer’s disease and mild cognitive impairment groups. Conclusions: Findings of this study could contribute to a better understanding of the manifestation of depressive symptoms in patients with cognitive impairment. These results are expected to aid in identifying and prioritizing core symptoms in these patients. Further research should be conducted to explore potential interventions tailored to these core symptoms in patients with Alzheimer’s disease and mild cognitive impairment. Establishing core symptoms in those groups might have clinical importance in that appropriate treatment for neuropsychiatric symptoms in patients with cognitive impairment could help preclude progression to further impairment. Full article
(This article belongs to the Section Psychiatry)
17 pages, 632 KiB  
Review
Valorization of Agro-Industrial Orange Peel By-Products through Fermentation Strategies
by Teresa Gervasi and Giuseppina Mandalari
Fermentation 2024, 10(5), 224; https://doi.org/10.3390/fermentation10050224 - 23 Apr 2024
Abstract
The use of whole-cell biocatalysts in microbial cell factories is of great interest to produce added-value compounds. Through large-scale fermentative processes, which use secondary raw materials as substrates, it is possible to recycle and upgrade agro-industrial by-products. This review addresses the main fermentative [...] Read more.
The use of whole-cell biocatalysts in microbial cell factories is of great interest to produce added-value compounds. Through large-scale fermentative processes, which use secondary raw materials as substrates, it is possible to recycle and upgrade agro-industrial by-products. This review addresses the main fermentative processes and bioreactors currently used for the valorization of orange peel, a by-product of the Citrus processing industry. Among the main added-value products, bioethanol, organic acids, enzymes, single cell proteins (SCPs), dyes and aromatic compounds have been industrially produced using orange peel via solid state fermentation and submerged fermentation. This approach fits within the circular economy goals in terms of clean technology and renewable energy, valorization and recycling, upgrade of industrial by-products and sustainability. Full article
(This article belongs to the Special Issue Microbial Biotechnology and Agro-Industrial By-Products Fermentation)
17 pages, 2716 KiB  
Article
Exploration of the Effects of Cadmium Stress on Photosynthesis in Oenanthe javanica (Blume) DC
by Ronghua Zhou, Jun Xu, Liangjun Li, Yulai Yin, Bowen Xue, Jingjing Li and Fangfang Sun
Toxics 2024, 12(5), 307; https://doi.org/10.3390/toxics12050307 - 23 Apr 2024
Abstract
Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 [...] Read more.
Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage. Full article
12 pages, 661 KiB  
Article
Alginate Cryogels as a Template for the Preparation of Edible Oleogels
by Sladjana Meseldzija, Jovana Ruzic, Jelena Spasojevic, Milan Momcilovic, Arash Moeini, Gustavo Cabrera-Barjas and Aleksandra Nesic
Foods 2024, 13(9), 1297; https://doi.org/10.3390/foods13091297 - 23 Apr 2024
Abstract
A high consumption of solid fats is linked to increased inflammation and a risk of cardiovascular diseases. Hence, in recent years, there has been increasing interest in the development of oleogels as a fat substitute in food products. Oleogels are edible gels that [...] Read more.
A high consumption of solid fats is linked to increased inflammation and a risk of cardiovascular diseases. Hence, in recent years, there has been increasing interest in the development of oleogels as a fat substitute in food products. Oleogels are edible gels that contain a large amount of liquid oils entrapped in a 3D network and that can potentially be applied to spreads, bakery goods, meat, and dairy products in order to lower their saturated fat content while maintaining a desirable food texture and mouthfeel. In this work, alginate cryogels were studied as templates for three different edible oils in the process of oleogel formation. Two different freezing regimes to obtain cryogels were employed in order to evaluate better the textural and morphological capabilities of cryogels to adsorb and retain edible oils. It was shown that rapid freezing in liquid nitrogen produces alginate cryogels with a lower density, higher porosity, and a greater ability to adsorb the tested oils. The highest uptake and holding oil capacity was achieved for olive oil, which reached a value of 792%,and 82%, respectively. The best chewiness was found for an oleogel containing olive oil, whereas oleogels with the other two tested oils showed better springiness. Hence, the results presented in this work demonstrated that alginate-based cryogels can be effectively used as templates for oleogels and potentially find applications in the food industry. Full article
(This article belongs to the Section Food Engineering and Technology)
19 pages, 10777 KiB  
Article
Effects of Different Drying Methods on Drying Characteristics, Microstructure, Quality, and Energy Consumption of Apricot Slices
by Qiaonan Yang, Xiaokang Yi, Hongwei Xiao, Xufeng Wang, Lin Liu, Ziya Tang, Can Hu and Xibing Li
Foods 2024, 13(9), 1295; https://doi.org/10.3390/foods13091295 - 23 Apr 2024
Abstract
An appropriate drying method is crucial for producing high-quality dried apricots. In this study, the effects of four drying methods, hot air drying (HAD), infrared drying (IRD), pulse vacuum drying (PVD), and vacuum freeze-drying (VFD), on the drying kinetics and physical and nutritional [...] Read more.
An appropriate drying method is crucial for producing high-quality dried apricots. In this study, the effects of four drying methods, hot air drying (HAD), infrared drying (IRD), pulse vacuum drying (PVD), and vacuum freeze-drying (VFD), on the drying kinetics and physical and nutritional characteristics of apricot slices were evaluated. PVD required the shortest time (16.25 h), followed by IRD (17.54 h), HAD (21.39 h), and VFD (34.64 h). VFD resulted in the best quality of apricot slices, with the smallest color difference (ΔE = 13.64), lowest water activity (0.312 ± 0.015) and browning degree (0.35), highest color saturation (62.84), lowest hardness (8.35 ± 0.47 N) and shrinkage (9.13 ± 0.65%), strongest rehydration ability (3.58 ± 0.11 g/g), a good microstructure, and high nutrient-retention rates (ascorbic acid content: 53.31 ± 0.58 mg/100 g, total phenolic content: 12.64 ± 0.50 mg GAE/g, and carotenoid content: 24.23 ± 0.58 mg/100 g) and antioxidant activity (DPPH: 21.10 ± 0.99 mmol Trolox/g and FRAP: 34.10 ± 0.81 mmol Trolox/g). The quality of PVD-treated apricot slices was second-best, and the quality of HAD-treated apricot slices was the worst. However, the energy consumption required for VFD was relatively high, while that required for PVD was lower. The results of this study provide a scientific basis for the large-scale industrial production of dried apricots. Full article
Show Figures

Graphical abstract

17 pages, 1111 KiB  
Article
Screening of a Saccharomyces cerevisiae Strain with High 3-Methylthio-1-Propanol Yield and Optimization of Its Fermentation Conditions
by Qi Sun, Jinghao Ma, Rana Abdul Basit, Zhilei Fu, Xiaoyan Liu and Guangsen Fan
Foods 2024, 13(9), 1296; https://doi.org/10.3390/foods13091296 - 23 Apr 2024
Abstract
3-Methylthio-1-propanol (3-Met) is an important flavor compound in various alcoholic beverages such as Baijiu and Huangjiu. To maintain the content of 3-Met in these alcoholic beverages, it is necessary to screen a micro-organism with high yield of 3-Met from the brewing environment. [...] Read more.
3-Methylthio-1-propanol (3-Met) is an important flavor compound in various alcoholic beverages such as Baijiu and Huangjiu. To maintain the content of 3-Met in these alcoholic beverages, it is necessary to screen a micro-organism with high yield of 3-Met from the brewing environment. In this study, the ability of yeast strains from the Baijiu brewing to produce 3-Met was analyzed, aiming to obtain yeast with high-yield 3-Met, and its fermentation conditions were optimized. Firstly, 39 yeast strains were screened using 3-Met conversion medium. The results showed that the majority of the strains from Baijiu brewing sources could produce 3-Met, and nearly half of the strains produced more than 0.5 g/L of 3-Met. Among these, yeast F10404, Y03401, and Y8#01, produced more than 1.0 g/L of 3-Met, with yeast Y03401 producing the highest amount at 1.30 g/L. Through morphological observation, physiological and biochemical analysis, and molecular biological identification, it was confirmed that yeast Y03401 was a Saccharomyces cerevisiae. Subsequently, the optimal fermentation conditions for 3-Met production by this yeast were obtained through single-factor designs, Plackett–Burman test, steepest ascent path design and response surface methodology. When the glucose concentration was 60 g/L, yeast extract concentration was 0.8 g/L, L-methionine concentration was 3.8 g/L, initial pH was 4, incubation time was 63 h, inoculum size was 1.6%, shaking speed was 150 rpm, loading volume was 50 mL/250 mL, and temperature was 26 °C, the content of 3-Met produced by S. cerevisiae Y03401 reached a high level of 3.66 g/L. It was also noteworthy that, in contrast to other study findings, this yeast was able to create substantial amounts of 3-Met even in the absence of L-methionine precursor. Based on the clear genome of S. cerevisiae and its characteristics in 3-Met production, S. cerevisiae Y03401 had broad prospects for application in alcoholic beverages such as Baijiu. Full article
16 pages, 3126 KiB  
Article
Functional Improvement of NiOx/CeO2 Model Catalyst Active in Dry Methane Reforming via Optimization of Nickel Content
by Piotr Legutko, Mateusz M. Marzec, Marcin Kozieł, Krystian Sokołowski, Marek Michalik and Andrzej Adamski
Processes 2024, 12(5), 851; https://doi.org/10.3390/pr12050851 - 23 Apr 2024
Abstract
The valorization of greenhouse gases, especially when focused on carbon dioxide, currently belongs to the main challenges of pro-environmental chemical processes. One of the important technologies in this field is dry methane reforming (DMR), leading to the so-called synthesis gas (CO + H [...] Read more.
The valorization of greenhouse gases, especially when focused on carbon dioxide, currently belongs to the main challenges of pro-environmental chemical processes. One of the important technologies in this field is dry methane reforming (DMR), leading to the so-called synthesis gas (CO + H2). However, to be efficient and economically viable, an active and stable catalyst is required. Ni-based systems can be recommended in this regard. This research aimed to investigate how nickel content can influence the activity of model NiOx/CeO2 catalysts in DMR. A series of NiOx/CeO2 samples of various nickel loadings (0–10 wt.%) were prepared through dry impregnation. The obtained samples were characterized through XRD, RS, N2-BET, DRIFT, SEM, UV/Vis-DR, and XPS. Nonlinear changes in surface properties of the investigated samples with increasing nickel concentration were found. The observed changes are mirrored both in the determined nickel speciation and in the corresponding catalytic activity. The highest activity was found for the catalyst containing 3 wt.%. of nickel. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop