Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
13 pages, 996 KiB  
Review
Organoids Modeling Stroke in a Petri Dish
by Chiara Giorgi, Vanessa Castelli, Michele d’Angelo and Annamaria Cimini
Biomedicines 2024, 12(4), 877; https://doi.org/10.3390/biomedicines12040877 (registering DOI) - 16 Apr 2024
Abstract
Stroke is a common neurological disorder, the second leading cause of death, and the third leading cause of disability. Unfortunately, the only approved drug for it is tissue plasminogen, but the therapeutic window is limited. In this context, preclinical studies are relevant to [...] Read more.
Stroke is a common neurological disorder, the second leading cause of death, and the third leading cause of disability. Unfortunately, the only approved drug for it is tissue plasminogen, but the therapeutic window is limited. In this context, preclinical studies are relevant to better dissect the underlying mechanisms of stroke and for the drug screening of potential therapies. Brain organoids could be relevant in this setting. They are derived from pluripotent stem cells or isolated organ progenitors that differentiate to form an organ-like tissue, exhibiting multiple cell types that self-organize to form a structure not unlike the organ in vivo. Brain organoids mimic many key features of early human brain development at molecular, cellular, structural, and functional levels and have emerged as novel model systems that can be used to investigate human brain diseases including stroke. Brain organoids are a promising and powerful tool for ischemic stroke studies; however, there are a few concerns that need to be addressed, including the lack of vascularization and the many cell types that are typically present in the human brain. The aim of this review is to discuss the potential of brain organoids as a novel model system for studying ischemic stroke, highlighting both the advantages and disadvantages in the use of this technology. Full article
(This article belongs to the Special Issue Organoids in Biomedical Research)
Show Figures

Figure 1

23 pages, 8203 KiB  
Article
Design of an Assisted Driving System for Obstacle Avoidance Based on Reinforcement Learning Applied to Electrified Wheelchairs
by Federico Pacini, Pierpaolo Dini and Luca Fanucci
Electronics 2024, 13(8), 1507; https://doi.org/10.3390/electronics13081507 (registering DOI) - 16 Apr 2024
Abstract
Driving a motorized wheelchair is not without risk and requires high cognitive effort to obtain good environmental perception. Therefore, people with severe disabilities are at risk, potentially lowering their social engagement, and thus, affecting their overall well-being. Therefore, we designed a cooperative driving [...] Read more.
Driving a motorized wheelchair is not without risk and requires high cognitive effort to obtain good environmental perception. Therefore, people with severe disabilities are at risk, potentially lowering their social engagement, and thus, affecting their overall well-being. Therefore, we designed a cooperative driving system for obstacle avoidance based on a trained reinforcement learning (RL) algorithm. The system takes the desired direction and speed from the user via a joystick and the obstacle distribution from a LiDAR placed in front of the wheelchair. Considering both inputs, the system outputs a pair of forward and rotational speeds that ensure obstacle avoidance while being as close as possible to the user commands. We validated it through simulations and compared it with a vector field histogram (VFH). The preliminary results show that the RL algorithm does not disruptively alter the user intention, reduces the number of collisions, and provides better door passages than a VFH; furthermore, it can be integrated on an embedded device. However, it still suffers from higher jerkiness. Full article
Show Figures

Figure 1

15 pages, 5573 KiB  
Article
Uncovering Hidden Microbial Diversity in Nitrate/Iodide Deposits (NIDs) in the Domeyko District, Atacama Desert, Chile
by Mayra Cortés, Priscilla Avendaño, Olga Encalada, Camila Salazar-Ardiles, David C. Andrade, Benito Gómez-Silva, Daniel Contreras, Norman Toro, Dayana Arias and Lorena V. Escudero
Soil Syst. 2024, 8(2), 46; https://doi.org/10.3390/soilsystems8020046 (registering DOI) - 16 Apr 2024
Abstract
Unique worldwide, nitrate/iodine deposits (NIDs) are located along a 700 km geological belt in the Atacama Desert, Chile. They serve as the primary source of mineral ores for the extraction of iodine, sodium, and potassium nitrates. NIDs have been relatively underexplored from a [...] Read more.
Unique worldwide, nitrate/iodine deposits (NIDs) are located along a 700 km geological belt in the Atacama Desert, Chile. They serve as the primary source of mineral ores for the extraction of iodine, sodium, and potassium nitrates. NIDs have been relatively underexplored from a biological perspective. To address this, we collected sixteen soil samples from abandoned mines in Oficinas Pissis and Savona for chemical, mineralogical, and metagenomic analyses. The soils primarily consisted of halite and darapskite, with only one sample being predominantly composed of thenardite. Deliquescence and water activity measurements yielded values ranging from 0.02% to 0.40% and 0.47 to 0.62, respectively. To investigate the presence, identification, relative abundance, and diversity of microbial life in NID soils, we employed MiSeq high-throughput sequencing and bioinformatic tools. The dominant phyla observed were Firmicutes and Proteobacteria, with Actinobacteria and Cyanobacteria being predominant in two soil samples. Furthermore, we detected nitrate/perchlorate-reducing bacterial activity in enriched cultures from the soil samples. This study sheds light on the resilience of microbial life in the Atacama Desert NIDs, providing compelling evidence for its existence and offering insight into factors that could facilitate it within this unique environment. Full article
Show Figures

Figure 1

15 pages, 1122 KiB  
Review
Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters
by Guillaume Giraud, Khadija El Achi, Fabien Zoulim and Barbara Testoni
Viruses 2024, 16(4), 615; https://doi.org/10.3390/v16040615 (registering DOI) - 16 Apr 2024
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed [...] Read more.
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis. Full article
(This article belongs to the Special Issue HBV Transcriptional and Post-transcriptional Regulation)
Show Figures

Figure 1

17 pages, 4769 KiB  
Article
Phosphatidylethanolamine Improves Postnatal Growth Retardation by Regulating Mucus Secretion of Intestinal Goblet Cells in Piglets
by Nan Wang, Chengming Wang, Ming Qi, Xingtong Lin, Andong Zha, Bie Tan, Yulong Yin and Jing Wang
Animals 2024, 14(8), 1193; https://doi.org/10.3390/ani14081193 (registering DOI) - 16 Apr 2024
Abstract
Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to [...] Read more.
Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to their body weight (BW 2.79 ± 0.50 kg or 1.88 ± 0.40 kg) at 7 days old, CON-NBW, PE-NBW, CON-PGR, and PE-PGR. PE was supplemented to NBW piglets and PGR piglets during lactation and post-weaning periods. Compared with the NBW piglets, the growth performance of PGR piglets was lower, while PE improved the poor growth performance. PGR piglets showed injured intestinal morphology, as evidenced by the reduced ratio of villus height to crypt depth (VH/CD) and goblet cell numbers in the jejunum and ileum. PE recovered the intestinal barrier injury by increasing VH/CD and goblet cell numbers. The decreased MUC2 mRNA and protein expressions were observed in the small intestine of PGR piglets, and PE remarkably increased the expression of MUC2. Mechanistically, PE increased the goblet cell differentiation promoting gene spdef mRNA levels and reduced the mRNA expressions involved in endoplasmic reticulum stress in the jejunal and ileal mucosa of PGR piglets. Overall, we found that PE alleviated growth retardation by regulating intestinal health and generalized its application in neonates. Full article
Show Figures

Figure 1

14 pages, 8016 KiB  
Article
Study on Electrochemical Corrosion of Q235 Steel in Sand Containing HA Solution under a Natural Air-Dried State
by Ruizhen Xie, Yage Bao, Ruicheng Geng, Qi Zhang, Haosheng Hou, Yakang Wang, Boqiong Li, Pengju Han, Zhenxia Wang, Shiying Wang, Naiming Lin and Baojie Dou
Coatings 2024, 14(4), 491; https://doi.org/10.3390/coatings14040491 (registering DOI) - 16 Apr 2024
Abstract
To explore the corrosion of Q235 steel in sand containing a simulated haze aqueous solution (HA solution) under a natural air-dried state, the effect of moisture (age) on the corrosion of Q235 steel in sand was comprehensively studied by EIS, polarization curve, SEM, [...] Read more.
To explore the corrosion of Q235 steel in sand containing a simulated haze aqueous solution (HA solution) under a natural air-dried state, the effect of moisture (age) on the corrosion of Q235 steel in sand was comprehensively studied by EIS, polarization curve, SEM, EDS and XPS. The physical and chemical properties of the sand showed that the sand containing the HA solution was basically neutral under natural air drying, and the temperature was around 20 °C. After 14 days, the moisture content gradually decreased from 30% to 0%, and the salinity decreased from 1.26% to 0.04%. With the increase in age, the Eocp gradually positively skews, indicating the corrosion kinetics of the Q235 steel decrease. The impedance spectra showed that in the frequency of 10−2–103 Hz, the impedance spectra exhibited a flat capacitive loop, and the corrosion of Q235 steel was the strongest in the sand containing HA solution on the 8 d. The polarization curves showed that with increasing age, the degree of corrosion of Q235 steel changed from medium or above to slight corrosion in the sand containing HA solution. The pitting characteristics of anode branch for polarization curve also indicate the faster corrosion kinetics of Q235 steel in the early age (1–5 d). The corrosion current density Io first increased and then decreased, and the highest value was 3.44 × 10−5 A/cm2 at 6 d. The average corrosion rate was 0.1629 mm/a. HA solution accelerates the corrosion of Q235 steel in sand without HA solution (average corrosion rate, 1.51 × 10−2 mm/a). A large amount of brown-yellow corrosion products (iron oxides, about 70–200 μm) presented on the surface of the Q235 steel. The corrosion of Q235 steel belonged to local corrosion, and the corrosion pits were connected to form a large dimple-like area. The HA solution and the porous structure of sand jointly affect the electrochemical corrosion of Q235 steel. Full article
(This article belongs to the Special Issue Detection and Monitoring of Corrosion in Steel Structures)
Show Figures

Figure 1

14 pages, 2858 KiB  
Article
A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors
by Eftichia Kritsi, Paris Christodoulou, Thalia Tsiaka, Panagiotis Georgiadis and Maria Zervou
Curr. Issues Mol. Biol. 2024, 46(4), 3394-3407; https://doi.org/10.3390/cimb46040213 (registering DOI) - 16 Apr 2024
Abstract
Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today’s pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied [...] Read more.
Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today’s pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved “Epi-drugs”. Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30–45% at 100 µM of the tested compounds. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
Show Figures

Figure 1

11 pages, 4830 KiB  
Article
Study of AlN Epitaxial Growth on Si (111) Substrate Using Pulsed Metal–Organic Chemical Vapour Deposition
by Muhammad Iznul Hisyam, Ahmad Shuhaimi, Rizuan Norhaniza, Marwan Mansor, Adam Williams and Mohd Rofei Mat Hussin
Crystals 2024, 14(4), 371; https://doi.org/10.3390/cryst14040371 (registering DOI) - 16 Apr 2024
Abstract
A dense and smooth aluminium nitride thin film grown on a silicon (111) substrates using pulsed metal–organic chemical vapor deposition is presented. The influence of the pulsed cycle numbers on the surface morphology and crystalline quality of the aluminium nitride films are discussed [...] Read more.
A dense and smooth aluminium nitride thin film grown on a silicon (111) substrates using pulsed metal–organic chemical vapor deposition is presented. The influence of the pulsed cycle numbers on the surface morphology and crystalline quality of the aluminium nitride films are discussed in detail. It was found that 70 cycle numbers produced the most optimized aluminium nitride films. Field emission scanning electron microscopy and atomic force microscopy images show a dense and smooth morphology with a root-mean-square-roughness of 2.13 nm. The narrowest FWHM of the X-ray rocking curve for the AlN 0002 and 10–12 reflections are 2756 arcsec and 3450 arcsec, respectively. Furthermore, reciprocal space mapping reveals an in-plane tensile strain of 0.28%, which was induced by the heteroepitaxial growth on the silicon (111) substrate. This work provides an alternative approach to grow aluminium nitride for possible application in optoelectronic and power devices. Full article
(This article belongs to the Special Issue Epitaxial Growth and Application of Metallic Oxide Thin Films)
Show Figures

Figure 1

13 pages, 2005 KiB  
Article
Global Measles Surveillance: Trends, Challenges, and Implications for Public Health Interventions
by Francesco Branda, Marta Giovanetti, Chiara Romano, Domenico Benvenuto, Alessandra Ciccozzi, Daria Sanna, Massimo Ciccozzi and Fabio Scarpa
Infect. Dis. Rep. 2024, 16(2), 367-379; https://doi.org/10.3390/idr16020028 (registering DOI) - 16 Apr 2024
Abstract
Measles, a highly contagious disease primarily affecting children, carries serious health risks, including complications and mortality. Vaccination remains the most effective preventive measure against measles transmission. The COVID-19 pandemic has exacerbated challenges in surveillance and immunization efforts, leaving millions of people exposed to [...] Read more.
Measles, a highly contagious disease primarily affecting children, carries serious health risks, including complications and mortality. Vaccination remains the most effective preventive measure against measles transmission. The COVID-19 pandemic has exacerbated challenges in surveillance and immunization efforts, leaving millions of people exposed to preventable diseases such as measles. Globally accelerated immunization campaigns are critical for achieving regional elimination goals and mitigating the risk of outbreaks. Our team has developed an open-access database for global measles monitoring, facilitating standardized data collection and analysis. The analysis of measles cases from 2011 to 2023 reveals fluctuating trends, with notable increases in Africa in 2019 and 2023, indicating potential gaps in control strategies. Using an automated signal detection tool developed by the European Centre for Disease Prevention and Control (ECDC) team, we identified significant variations between World Health Organization (WHO) regions, underscoring the importance of continuous monitoring to detect epidemiological changes early. These results underscore the need for robust surveillance systems and accelerated vaccination efforts to safeguard public health. Full article
Show Figures

Figure 1

14 pages, 4236 KiB  
Article
A TriAdj-Adjuvanted Chlamydia trachomatis CPAF Protein Vaccine Is Highly Immunogenic in Pigs
by Jessica Proctor, Maria Stadler, Lizette M. Cortes, David Brodsky, Lydia Poisson, Volker Gerdts, Alex I. Smirnov, Tatyana I. Smirnova, Subarna Barua, Darren Leahy, Kenneth W. Beagley, Jonathan M. Harris, Toni Darville and Tobias Käser
Vaccines 2024, 12(4), 423; https://doi.org/10.3390/vaccines12040423 (registering DOI) - 16 Apr 2024
Abstract
Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in [...] Read more.
Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in animals such as C. suis (Cs) in pigs. Based on the similarities between humans and pigs, as well as their chlamydia species, we use pigs as a large biomedical animal model for chlamydia research. In this study, we used the pig model to develop a vaccine candidate against Ct. The vaccine candidate consists of TriAdj-adjuvanted chlamydial-protease-like activity factor (CPAF) protein. We tested two weekly administration options—twice intranasal (IN) followed by twice intramuscular (IM) and twice IM followed by twice IN. We assessed the humoral immune response in both serum using CPAF-specific IgG (including antibody avidity determination) and also in cervical and rectal swabs using CPAF-specific IgG and IgA ELISAs. The systemic T-cell response was analyzed following in vitro CPAF restimulation via IFN-γ and IL-17 ELISpots, as well as intracellular cytokine staining flow cytometry. Our data demonstrate that while the IN/IM vaccination mainly led to non-significant systemic immune responses, the vaccine candidate is highly immunogenic if administered IM/IN. This vaccination strategy induced high serum anti-CPAF IgG levels with strong avidity, as well as high IgA and IgG levels in vaginal and rectal swabs and in uterine horn flushes. In addition, this vaccination strategy prompted a pronounced cellular immune response. Besides inducing IL-17 production, the vaccine candidate induced a strong IFN-γ response with CD4 T cells. In IM/IN-vaccinated pigs, these cells also significantly downregulated their CCR7 expression, a sign of differentiation into peripheral-tissue-homing effector/memory cells. Conclusively, this study demonstrates the strong immunogenicity of the IM/IN-administered TriAdj-adjuvanted Ct CPAF vaccine candidate. Future studies will test the vaccine efficacy of this promising Ct vaccine candidate. In addition, this project demonstrates the suitability of the Cs pre-exposed outbred pig model for Ct vaccine development. Thereby, we aim to open the bottleneck of large animal models to facilitate the progression of Ct vaccine candidates into clinical trials. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

13 pages, 1928 KiB  
Article
Diet-Induced Early Inflammatory Response of Visceral Adipose Tissue in Healthy Male Wistar Rats
by Iliyan Dimitrov, Teodora Stankova, Penka Angelova, Nikolay Boyadjiev, Katerina Georgieva, Ivica Dimov, Anelia Bivolarska, Milena Draganova, Fanka Gerginska, Elena Daskalova, Vilian Gramatikov and Slavi Delchev
Nutrients 2024, 16(8), 1184; https://doi.org/10.3390/nu16081184 (registering DOI) - 16 Apr 2024
Abstract
The prolonged consumption of a high-fat diet (HFD) leads to abnormal growth of the visceral adipose tissue (VAT), increased macrophage infiltration, and altered secretion of biologically active molecules. This is considered as a precondition for the development of obesity, inflammation, and obesity-related disorders. [...] Read more.
The prolonged consumption of a high-fat diet (HFD) leads to abnormal growth of the visceral adipose tissue (VAT), increased macrophage infiltration, and altered secretion of biologically active molecules. This is considered as a precondition for the development of obesity, inflammation, and obesity-related disorders. Therefore, we studied HFD-induced changes in the tissue levels of the inflammatory markers C-reactive protein, serum amyloid-A, and interleukin-4 in healthy male Wistar rats. The animals were first divided at random into two groups subjected to either a standard or a high-fat diet. The initial effect of the diet was evaluated after fourteen weeks. In order to study the diet duration effect, the standard diet was given to twelve animals from the HFD group, while the remaining continued with the HFD for an additional four weeks. Our results showed that the HFD barely affected body mass index, conicity, relative fat mass, and Lee indices, whereas it provoked adipocyte hypertrophy and gradually increased the levels of both the pro- and anti-inflammatory markers. The switch from the high-fat to the standard diet resulted in the comparatively fast restoration of the baseline levels of the studied molecules. Although, the prolonged consumption of an HFD causes adipocyte hypertrophy in healthy male animals, the inflammatory process in VAT is well-coordinated, time-dependent, and reversible. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

9 pages, 1240 KiB  
Article
Electrophysiological Screening to Assess Foot Drop Syndrome in Severe Acquired Brain Injury in Rehabilitative Settings
by Francesco Piccione, Antonio Cerasa, Paolo Tonin, Simone Carozzo, Rocco Salvatore Calabrò, Stefano Masiero and Lucia Francesca Lucca
Biomedicines 2024, 12(4), 878; https://doi.org/10.3390/biomedicines12040878 (registering DOI) - 16 Apr 2024
Abstract
Background: Foot drop syndrome (FDS), characterized by severe weakness and atrophy of the dorsiflexion muscles of the feet, is commonly found in patients with severe acquired brain injury (ABI). If the syndrome is unilateral, the cause is often a peroneal neuropathy (PN), due [...] Read more.
Background: Foot drop syndrome (FDS), characterized by severe weakness and atrophy of the dorsiflexion muscles of the feet, is commonly found in patients with severe acquired brain injury (ABI). If the syndrome is unilateral, the cause is often a peroneal neuropathy (PN), due to compression of the nervous trunk on the neck of the fibula at the knee level; less frequently, the cause is a previous or concomitant lumbar radiculopathy. Bilateral syndromes are caused by polyneuropathies and myopathies. Central causes, due to brain or spinal injury, mimic this syndrome but are usually accompanied by other symptoms, such as spasticity. Critical illness polyneuropathy (CIP) and myopathy (CIM), isolated or in combination (critical illness polyneuromyopathy, CIPNM), have been shown to constitute an important cause of FDS in patients with ABI. Assessing the causes of FDS in the intensive rehabilitation unit (IRU) has several limitations, which include the complexity of the electrophysiological tests, limited availability of neurophysiology consultants, and the severe disturbance in consciousness and lack of cooperation from patients. Objectives: We sought to propose a simplified electrophysiological screening that identifies FDS causes, particularly PN and CIPNM, to help clinicians to recognize the significant clinical predictors of poor outcomes in severe ABI at admission to IRU. Methods: This prospective, single-center study included 20 severe ABI patients with FDS (11 females/9 males, mean age 55.10 + 16.26; CRS-R= 11.90 + 6.32; LCF: 3.30 + 1.30; DRS: 21.45 + 3.33), with prolonged rehabilitation treatment (≥2 months). We applied direct tibialis anterior muscle stimulation (DMS) associated with peroneal nerve motor conduction evaluation, across the fibular head (NCS), to identify CIP and/or CIM and to exclude demyelinating or compressive unilateral PN. Results: At admission to IRU, simplified electrophysiological screening reported four unilateral PN, four CIP and six CIM with a CIPNM overall prevalence estimate of about 50%. After 2 months, the CIPNM group showed significantly poorer outcomes compared to other ABI patients without CIPNM, as demonstrated by the lower probability of achieving endotracheal-tube weaning (20% versus 90%) and lower CRS-R and DRS scores. Due to the subacute rehabilitation setting of our study, it was not possible to evaluate the motor results of recovery of the standing position, functional walking and balance, impaired by the presence of unilateral PN. Conclusions: The implementation of the proposed simplified electrophysiological screening may enable the early identification of unilateral PN or CIPNM in severe ABI patients, thereby contributing to better functional prognosis in rehabilitative settings. Full article
Show Figures

Figure 1

22 pages, 8259 KiB  
Review
Strategies for Treating Traumatic Neuromas with Tissue-Engineered Materials
by Teng Wan, Qi-Cheng Li, Ming-Yu Qin, Yi-Lin Wang, Feng-Shi Zhang, Xiao-Meng Zhang, Yi-Chong Zhang and Pei-Xun Zhang
Biomolecules 2024, 14(4), 484; https://doi.org/10.3390/biom14040484 (registering DOI) - 16 Apr 2024
Abstract
Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include [...] Read more.
Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment. Full article
(This article belongs to the Section Biological and Bio- Materials)
Show Figures

Figure 1

12 pages, 288 KiB  
Article
Relativistic Formulation in Dual Minkowski Spacetime
by Timothy Ganesan
Symmetry 2024, 16(4), 482; https://doi.org/10.3390/sym16040482 (registering DOI) - 16 Apr 2024
Abstract
The objective of this work is to derive the structure of Minkowski spacetime using a Hermitian spin basis. This Hermitian spin basis is analogous to the Pauli spin basis. The derived Minkowski metric is then employed to obtain the corresponding Lorentz factors, potential [...] Read more.
The objective of this work is to derive the structure of Minkowski spacetime using a Hermitian spin basis. This Hermitian spin basis is analogous to the Pauli spin basis. The derived Minkowski metric is then employed to obtain the corresponding Lorentz factors, potential Lie algebra, effects on gamma matrices and complex representations of relativistic time dilation and length contraction. The main results, a discussion of the potential applications and future research directions are provided. Full article
26 pages, 7487 KiB  
Article
An Analysis of the Impact of Government Subsidies on Emission Reduction Technology Investment Strategies in Low-Carbon Port Operations
by Minjie Li, Jianlin Luan, Xiaodong Li and Peng Jia
Systems 2024, 12(4), 134; https://doi.org/10.3390/systems12040134 (registering DOI) - 16 Apr 2024
Abstract
The sustainable development of the maritime supply chain is an undeniable trend. Low-carbon port operations are a vital component of creating an eco-friendly maritime supply chain, requiring substantial investments in technologies that reduce carbon emissions. However, the key factors influencing investment decisions by [...] Read more.
The sustainable development of the maritime supply chain is an undeniable trend. Low-carbon port operations are a vital component of creating an eco-friendly maritime supply chain, requiring substantial investments in technologies that reduce carbon emissions. However, the key factors influencing investment decisions by ports and shipping companies in these green technologies, particularly government subsidies, remain poorly understood. Hence, this paper proposes a game-based framework to explore the impact of government subsidies. Through numerical analysis, this study first demonstrates that the pricing decisions, investment level, and profits of ports and shipping companies are sensitive to government subsidies and low-carbon preferences of the market; however, the influence of government subsidies and low-carbon preferences varies with different adopted investment strategies. Furthermore, investment decisions are mainly influenced by investment costs, low-carbon preferences, government subsidies, and cost-sharing ratios. Ports are more sensitive to government subsidies and low-carbon preferences while shipping companies are more sensitive to government subsidies and cost-sharing ratios. In addition, government subsidies and low-carbon preferences are substitutes for each other and can balance cost-sharing ratios between ports and shipping companies. Finally, recommendations are provided to the government, ports, and shipping companies for promoting low-carbon port operations based on the findings of this study. Full article
(This article belongs to the Special Issue Sustainable Supply Chain Management in a Global Context)
Show Figures

Figure 1

13 pages, 2032 KiB  
Article
Description of Phenological Events of Persian Walnut (Juglans regia L.) according to the Extended BBCH Scale and Historical Scales
by Julie Robin, Anthony Bernard, Lisa Albouy, Sibylle Papillon, Eloise Tranchand, Marie-Neige Hebrard, Jean-Baptiste Philibert, Marine Barbedette, Sadia Schafleitner, Bénédicte Wenden, Teresa Barreneche, Marine Delmas, Fabrice Lheureux and Julien Toillon
Horticulturae 2024, 10(4), 402; https://doi.org/10.3390/horticulturae10040402 (registering DOI) - 16 Apr 2024
Abstract
Walnut trees are grown worldwide for their edible fruits, which have high nutritional value. To address climate change, researchers have studied walnut phenology to create cultivars adapted to warmer climates. The objective of this study is to propose a scale for phenological Persian [...] Read more.
Walnut trees are grown worldwide for their edible fruits, which have high nutritional value. To address climate change, researchers have studied walnut phenology to create cultivars adapted to warmer climates. The objective of this study is to propose a scale for phenological Persian walnut observations using the Biologische Bundesanstalt, Bundessortenamt, und CHemische Industrie (BBCH) codification and alignment with historical alphameric scales. Here, the principal growth stages (PGSs) of Persian walnut (Juglans regia L.) are described using stages from a previously available alphanumeric scale. This standardised phenological scale describes Persian walnut growth from the dormant vegetative state through reproductive budding and senescence. This phenological scale is expected to increase the efficiency of walnut phenological monitoring. Fifty-seven stages are used to describe the life cycle of Persian walnut in this BBCH scale. Of these 57 stages, 3 stages are dedicated to seed germination (PGS-0), 4 stages are dedicated to bud development (PGS-0), 7 stages are dedicated to leaf development (PGS-1), 4 stages are dedicated to stem elongation (PGS-3), 8 stages are dedicated to inflorescence emergence (PGS-5), 5 stages are dedicated to male flowering (PGS-6), 5 stages are dedicated to female flowering (PGS-6), 5 stages are dedicated to fruit development (PGS-7), 12 stages are dedicated to fruit ripening (PGS-8), and 4 stages are dedicated to leaf senescence (PGS-9). Full article
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
Study of the Surface-Layer Softening Effects in xLi2ZrO3–(1 − x)Li4SiO4 Ceramics under Irradiation with He2+ Ions
by Dmitriy I. Shlimas, Daryn B. Borgekov, Kayrat K. Kadyrzhanov, Artem L. Kozlovskiy and Maxim V. Zdorovets
Ceramics 2024, 7(2), 547-561; https://doi.org/10.3390/ceramics7020036 (registering DOI) - 16 Apr 2024
Abstract
The study investigates alterations in the mechanical and thermophysical properties of ceramics composed of xLi2ZrO3–(1 − x)Li4SiO4 as radiation damage accumulates, mainly linked to helium agglomeration in the surface layer. This research is motivated by the [...] Read more.
The study investigates alterations in the mechanical and thermophysical properties of ceramics composed of xLi2ZrO3–(1 − x)Li4SiO4 as radiation damage accumulates, mainly linked to helium agglomeration in the surface layer. This research is motivated by the potential to develop lithium-containing ceramics characterized by exceptional strength properties and a resistance to the accumulation of radiation damage and ensuing deformation distortions in the near-surface layer. The study of the radiation damage accumulation processes in the near-surface layer was conducted through intense irradiation of ceramics using He2+ ions at a temperature of 700 °C, simulating conditions closely resembling operation conditions. Following this, a correlation between the accumulation of structural modifications (value of atomic displacements) and variations in strength and thermophysical characteristics was established. During the research, it was observed that two-component ceramics exhibit significantly greater resistance to external influences and damage accumulation related to radiation exposure compared to their single-component counterparts. Furthermore, the composition that provides the highest resistance to softening in two-component ceramics is an equal ratio of the components of 0.5Li2ZrO3–0.5Li4SiO4 ceramics. Full article
Show Figures

Figure 1

16 pages, 10998 KiB  
Article
Easy Development of Industry 4.0 Remote Labs
by Carlos Rejón, Sergio Martin and Antonio Robles-Gómez
Electronics 2024, 13(8), 1508; https://doi.org/10.3390/electronics13081508 (registering DOI) - 16 Apr 2024
Abstract
Acquiring hands-on skills is nowadays key for engineers in the context of Industry 4.0. However, it is not always possible to achieve this in person. Therefore, it is essential to be able to conduct skill acquisition from a remote location. To support the [...] Read more.
Acquiring hands-on skills is nowadays key for engineers in the context of Industry 4.0. However, it is not always possible to achieve this in person. Therefore, it is essential to be able to conduct skill acquisition from a remote location. To support the development of remote labs for experimentation, this work proposes the development of an open Industry 4.0 remote platform that can be easily configured and scaled to develop new remote labs for IoT (Internet of Things), cybersecurity, perception systems, robotics, AI (artificial intelligence), etc. Over time, these capabilities will enable the development of sustainable Industry 4.0 remote labs. These labs will coexist on the same Industry 4.0 platform, as our proposed Industry 4.0 remote platform is capable of connecting multiple heterogeneous types of devices for remote programming. In this way, it is possible to easily design open remote labs for the digital transition to Industry 4.0 in a standardized way, which is the main research goal of our In4Labs project. Several users already conducted a series of IoT experiments on our remote Industry 4.0 platform, providing useful recommendations to be included in future versions of the platform. Full article
(This article belongs to the Special Issue IoT in the Industry Revolution 4.0)
Show Figures

Figure 1

15 pages, 4572 KiB  
Article
Activated Carbon Derived from Cucumber Peel for Use as a Supercapacitor Electrode Material
by Meruyert Nazhipkyzy, Gulim Kurmanbayeva, Aigerim Seitkazinova, Esin Apaydın Varol, Wanlu Li, Balaussa Dinistanova, Almagul Issanbekova and Togzhan Mashan
Nanomaterials 2024, 14(8), 686; https://doi.org/10.3390/nano14080686 (registering DOI) - 16 Apr 2024
Abstract
Biowaste conversion into activated carbon is a sustainable and inexpensive approach that relieves the pressure on its disposal. Here, we prepared micro-mesoporous activated carbons (ACs) from cucumber peels through carbonization at 600 °C followed by thermal activation at different temperatures. The ACs were [...] Read more.
Biowaste conversion into activated carbon is a sustainable and inexpensive approach that relieves the pressure on its disposal. Here, we prepared micro-mesoporous activated carbons (ACs) from cucumber peels through carbonization at 600 °C followed by thermal activation at different temperatures. The ACs were tested as supercapacitors for the first time. The carbon activated at 800 °C (ACP-800) showed a high specific capacitance value of 300 F/g at a scan rate of 5 mV/s in the cyclic voltammetry and 331 F/g at the current density of 0.1 A/g in the galvanostatic charge–discharge analysis. At the current density of 1 A/g, the specific discharge capacitance was 286 F/g and retained 100% capacity after 2000 cycles. Their properties were analyzed by scanning electron microscopy, energy-dispersive X-ray analysis, porosity, thermal analysis, and Fourier-transform infrared spectroscopy. The specific surface area of this sample was calculated to be 2333 m2 g−1 using the Brunauer–Emmett–Teller method. The excellent performance of ACP-800 is mainly attributed to its hierarchical porosity, as the mesopores provide connectivity between the micropores and improve the capacitive performance. These electrochemical properties enable this carbon material prepared from cucumber peels to be a potential source for supercapacitor materials. Full article
Show Figures

Figure 1

18 pages, 9671 KiB  
Article
Development of a Tool to Manipulate Flexible Pieces in the Industry: Hardware and Software
by Francisco José Martínez-Peral, Jorge Borrell Méndez, José Vicente Segura Heras and Carlos Perez-Vidal
Actuators 2024, 13(4), 149; https://doi.org/10.3390/act13040149 (registering DOI) - 16 Apr 2024
Abstract
Currently, the textile industry is a poorly automated sector, due in part to problems in the handling of deformable leather and textile parts during production operations. In this work, several problems in the handling process of leather and textile parts are addressed, introducing [...] Read more.
Currently, the textile industry is a poorly automated sector, due in part to problems in the handling of deformable leather and textile parts during production operations. In this work, several problems in the handling process of leather and textile parts are addressed, introducing methods to increase the automation of the process. A pneumatic actuator designed to pick up textile or leather parts avoiding their deformation during transport has been developed. This actuator maximizes the number of gripping points to improve handling, making it more stable and efficient. Additionally, a vision system has been implemented in the part-picking task which, in conjunction with the CAD information of the part, sends the modified gripping position of the part to the robot. This allows customized handling of each textile or leather part. Finally, validation tests have been carried out on this development, both in simulations and in laboratory conditions, demonstrating its viability and direct applicability in the production line. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

14 pages, 4275 KiB  
Article
Differential Effects of n-3 and n-6 Polyunsaturated Fatty Acids on Placental and Embryonic Growth and Development in Diabetic Pregnant Mice
by Huiying Li, Chuanjing Chen, Shiyi Liu, Yan Shi, Xiaotong Kuang, Xiaolei Song, Duo Li and Kelei Li
Nutrients 2024, 16(8), 1182; https://doi.org/10.3390/nu16081182 (registering DOI) - 16 Apr 2024
Abstract
The present study aimed to investigate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on placental and embryonic development. Pregnant mice were assigned to five groups: healthy control (HC), diabetes mellitus control (DMC), diabetes + low-dose n-3 [...] Read more.
The present study aimed to investigate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on placental and embryonic development. Pregnant mice were assigned to five groups: healthy control (HC), diabetes mellitus control (DMC), diabetes + low-dose n-3 PUFA (Ln-3), diabetes + high-dose n-3 PUFA (Hn-3), and diabetes + n-6 PUFA (n-6). On E12.5d, the Hn-3 group, but not the n-6 group, had a higher placenta weight. The weight ratio of embryo to placenta in the n-6 group was significantly lower than in the Hn-3 group but higher than in the DMC group. The Hn-3 group had significantly higher protein levels of VEGF, IGF-1, and IGFBP3, while the n-6 group had lower VEGF than the DMC group. Compared with the DMC group, embryonic Cer-16:0 was significantly higher in the Hn-3 group, while embryonic PC (36:6), PC (38:7), and PE (40:7) were significantly lower in the n-6 group. The embryo and placenta weights were positively correlated with placental VEGF, IGFBP3, and embryonic Cer-16:0, and they were negatively correlated with embryonic PC (36:6) and PE (40:7). The weight ratio of embryo to placenta was negatively correlated with embryonic PC (36:6). In addition, embryonic Cer-16:0 was positively correlated with placental VEGF and IGFBP3. In conclusion, n-3 PUFA and n-6 PUFA improved placental and embryonic growth through different mechanisms. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

21 pages, 1104 KiB  
Article
The Short-Term Price Elasticity, Temperature Elasticity, and Wind Speed Elasticity of Electricity: A Case Study from Norway
by Johannes Idsø, Jon Gunnar Nesse and Øyvind Heimset Larsen
Sustainability 2024, 16(8), 3321; https://doi.org/10.3390/su16083321 (registering DOI) - 16 Apr 2024
Abstract
Energy production using hydropower has a 150-year history in Norway. High mountains, lots of rain, and a well-developed technology laid the foundation for low and stable electricity prices. The Norwegian electricity market is unique and different from any other country. Nearly all electricity [...] Read more.
Energy production using hydropower has a 150-year history in Norway. High mountains, lots of rain, and a well-developed technology laid the foundation for low and stable electricity prices. The Norwegian electricity market is unique and different from any other country. Nearly all electricity produced (98.3 percent) comes from renewable energy sources and 75 percent of the energy used for heating is electricity. From autumn 2020, major changes have been observed in the electricity market in Norway. In 2021, Norway opened two transmission cables, one to Germany and one to England. Both cables have a capacity of 1400 MW. The average price per MWh was NOK 263 in southern Norway in the period 2013–2020, which more than quadrupled to NOK 1192 per MWh in the period 2021–2023. We have investigated how the market reacted to the large price increase. We found that price elasticity is low even when the price is very high. It is the temperature that controls the consumption. When it is cold—below zero degrees Celcius—the temperature elasticity is close to zero; the temperature elasticity is not constant. When the temperature is above zero, the temperature elasticity is about −0.7. Price variations or changes in wind speed only lead to minor adjustments in electricity consumption. It is the variations in temperature that result in the observable fluctuations in electricity consumption. Since Norway exports electricity to Sweden, Denmark, Finland, Germany, the Netherlands, and England, knowledge of the Norwegian electricity market is relevant for many market participants. The Norwegian electricity market differs from those in other countries. Therefore, there is a risk that conclusions drawn about the Norwegian electricity market based on research conducted in other countries may be incorrect or inaccurate. Our contribution with this case study is to deepen the knowledge of how the electricity market in Norway operates. Full article
Show Figures

Figure 1

20 pages, 3638 KiB  
Article
Chitosan-Based Grafted Cationic Magnetic Material to Remove Emulsified Oil from Wastewater: Performance and Mechanism
by Sicong Du, Chuang Liu, Peng Cheng and Wenyan Liang
Processes 2024, 12(4), 797; https://doi.org/10.3390/pr12040797 (registering DOI) - 16 Apr 2024
Abstract
In order to remove high-concentration emulsified oil from wastewater, a chitosan-based magnetic flocculant, denoted as FS@CTS-P(AM-DMC), was employed in this present study. The effects of factors including the magnetic flocculant dose, pH values, and coexisting ions were investigated. A comparative dosing mode with [...] Read more.
In order to remove high-concentration emulsified oil from wastewater, a chitosan-based magnetic flocculant, denoted as FS@CTS-P(AM-DMC), was employed in this present study. The effects of factors including the magnetic flocculant dose, pH values, and coexisting ions were investigated. A comparative dosing mode with the assistance of polyacrylamide (PAM) was also included. The evolution of floc size was studied using microscopic observation to investigate the properties of flocs under different pH values and dosing modes. Particle image velocimetry (PIV) and extended Deryaguin–Landau–Verwey–Overbeek models were utilized to illustrate the distribution and velocity magnitude of the particle flow fields and to delve into the mechanism of magnetic flocculation. The results showed that FS@CTS-P(AM-DMC) achieved values of 96.4 and 74.5% for both turbidity and COD removal for 3000 mg/L of simulated emulsified oil. In the presence of PAM, the turbidity and COD removal reached 95.7 and 71.6%. In addition, FS@CTS-P(AM-DMC) demonstrated remarkable recycling and reusability performances, maintaining effective removal after eight cycles. The strength and recovery factors of magnetic flocs without PAM reached 69.3 and 76.8%, respectively. However, with the addition of PAM, they decreased to 46.73 and 51.47%, respectively. During the magnetophoretic processes, FS@CTS-P(AM-DMC) and oil droplets continuously collided and aggregated, forming three-dimensional network aggregates. Moreover, the magnetic floc generated a swirling motion, and the residual emulsified oil droplets could be further captured. Emulsified oil droplets were primarily removed through charge neutralization under acidic conditions. Under neutral and alkaline conditions, magnetic interactions played a major role in magnetic flocculation. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop