The 2023 MDPI Annual Report has
been released!
 
16 pages, 2862 KiB  
Article
Phenotypic and Functional Characterization of Bovine Adipose-Derived Mesenchymal Stromal Cells
by Vitali V. Maldonado, Sriya Pokharel, Jeremy G. Powell and Rebekah M. Samsonraj
Animals 2024, 14(9), 1292; https://doi.org/10.3390/ani14091292 (registering DOI) - 25 Apr 2024
Abstract
Background: Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the [...] Read more.
Background: Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. Methods: Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). Results: Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon–gamma stimulation, indicating ability for immunomodulation. Conclusions: We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle. Full article
(This article belongs to the Collection Cattle Diseases)
Show Figures

Figure 1

18 pages, 1153 KiB  
Article
Decreased IL-1 β Secretion as a Potential Predictor of Tuberculosis Recurrence in Individuals Diagnosed with HIV
by Marina Nosik, Konstantin Ryzhov, Asya V. Kudryavtseva, Ulyana Kuimova, Alexey Kravtchenko, Alexandr Sobkin, Vitaly Zverev and Oxana Svitich
Biomedicines 2024, 12(5), 954; https://doi.org/10.3390/biomedicines12050954 (registering DOI) - 25 Apr 2024
Abstract
Background: The mechanisms of the formation of immunological competence against tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood. However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors of successful treatment outcomes. The [...] Read more.
Background: The mechanisms of the formation of immunological competence against tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood. However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors of successful treatment outcomes. The goal of the study was to identify possible immunological markers of TB recurrence in individuals with HIV/TB co-infection. Methods: The plasma levels of IFN-γ, TNF-α, IL-10, and IL-1β (cytokines which play important roles in the immune activation and protection against Mycobacterium tuberculosis) were measured using ELISA EIA-BEST kits. The cytokine concentrations were determined using a standard curve obtained with the standards provided by the manufacturer of each kit. Results: A total of 211 individuals were enrolled in the study as follows: 62 patients with HIV/TB co-infection, 52 with HIV monoinfection, 52 with TB monoinfection, and 45 healthy donors. Out of the 62 patients with HIV/TB, 75.8% (47) of patients were newly diagnosed with HIV and TB, and 24.2% (15) displayed recurrent TB and were newly diagnosed with HIV. Decreased levels of IFN-γ, TNF-α, and IL-10 were observed in patients with HIV/TB when compared with HIV and TB patients. However, there was no difference in IFN-γ, TNF-α, or IL-10 secretion between both HIV/TB groups. At the same time, an almost 4-fold decrease in Il-1β levels was detected in the HIV/TB group with TB recurrence when compared with the HIV/TB group (p = 0.0001); a 2.8-fold decrease when compared with HIV patients (p = 0.001); and a 2.2-fold decrease with newly diagnosed TB patients (p = 0.001). Conclusions: Significantly decreased Il-1β levels in HIV/TB patients’ cohort with secondary TB indicate that this cytokine can be a potential biomarker of TB recurrence. Full article
Show Figures

Figure 1

13 pages, 6661 KiB  
Article
Longitudinal Dynamics of Immune Response in Occupational Populations Post COVID-19 Infection in the Changning District of Shanghai, China
by Li Li, Fengge Wang, Xiaoding He, Tingting Pei, Jiani Lu, Zhan Zhang, Ping Zhao, Jiayu Xue, Lin Zhu, Xinxin Chen, Zijie Yan, Yihan Lu and Jianlin Zhuang
Viruses 2024, 16(5), 672; https://doi.org/10.3390/v16050672 (registering DOI) - 25 Apr 2024
Abstract
Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of [...] Read more.
Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of 66 participants that were infected between November 2022 and January 2023 was selected for longitudinal follow-up. The study aimed to investigate the dynamics of the immune response, including neutralizing antibodies (NAbs), anti-spike (S)-immunoglobulin G (IgG), anti-S-IgM, and lymphocyte profiles, by analyzing peripheral blood samples collected three to seven months post infection. A gradual decrease in NAbs and IgG levels were observed from three to seven months post infection. No significant differences in NAbs and IgG titers were found across various demographics, including age, sex, occupation, and symptomatic presentation, across five follow-up assessments. Additionally, a strong correlation between NAbs and IgG levels was identified. Lymphocyte profiles showed a slight change at five months but had returned to baseline levels by seven months post infection. Notably, healthcare workers exhibited lower B-cell levels compared to police officers. Our study demonstrated that the immune response to SARS-CoV-2 infection persisted for at least seven months. Similar patterns in the dynamics of antibody responses and cellular immunity were observed throughout this period. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

31 pages, 1531 KiB  
Article
A Multi-Source Braking Force Control Method for Electric Vehicles Considering Energy Economy
by Yinhang Wang, Liqing Zhou, Liang Chu, Di Zhao, Zhiqi Guo and Zewei Jiang
Energies 2024, 17(9), 2032; https://doi.org/10.3390/en17092032 (registering DOI) - 25 Apr 2024
Abstract
Advancements in electric vehicle technology have promoted the development trend of smart and low-carbon environmental protection. The design and optimization of electric vehicle braking systems faces multiple challenges, including the reasonable allocation and control of braking torque to improve energy economy and braking [...] Read more.
Advancements in electric vehicle technology have promoted the development trend of smart and low-carbon environmental protection. The design and optimization of electric vehicle braking systems faces multiple challenges, including the reasonable allocation and control of braking torque to improve energy economy and braking performance. In this paper, a multi-source braking force system and its control strategy are proposed with the aim of enhancing braking strength, safety, and energy economy during the braking process. Firstly, an ENMPC (explicit nonlinear model predictive control)-based braking force control strategy is proposed to replace the traditional ABS strategy in order to improve braking strength and safety while providing a foundation for the participation of the drive motor in ABS (anti-lock braking system) regulation. Secondly, a grey wolf algorithm is used to rationally allocate mechanical and electrical braking forces, with power consumption as the fitness function, to obtain the optimal allocation method and provide potential for EMB (electro–mechanical brake) optimization. Finally, simulation tests verify that the proposed method can improve braking strength, safety, and energy economy for different road conditions, and compared to other methods, it shows good performance. Full article
(This article belongs to the Special Issue Energy Management Control of Hybrid Electric Vehicles)
Show Figures

Figure 1

16 pages, 2942 KiB  
Article
Design and Preparation Technology of Green Multiple Solid Waste Cementitious Materials
by Yexin Ge, Xianping Liu, Zhonghe Shui, Xu Gao, Wu Zheng, Zengchao Zhu and Xudong Zhao
Materials 2024, 17(9), 1998; https://doi.org/10.3390/ma17091998 (registering DOI) - 25 Apr 2024
Abstract
For solid waste-based cementitious materials, most scholars focus their research on the hydration reaction of cementitious materials, but there is still a lack of solid waste design that comprehensively considers mechanical properties and durability. Therefore, this article focuses on exploring the mix of [...] Read more.
For solid waste-based cementitious materials, most scholars focus their research on the hydration reaction of cementitious materials, but there is still a lack of solid waste design that comprehensively considers mechanical properties and durability. Therefore, this article focuses on exploring the mix of design and the microscopic and macroscopic properties of multi solid waste cementitious materials (MSWCMs), namely steel slag (SS), slag powder (SP), desulfurization gypsum (DG), fly ash (FA), and ordinary Portland cement (OPC). According to the orthogonal experimental results, the compressive strength of MSWCMs is optimal when the OPC content is 50% and the SS, SP, DG, and FA contents are 10%, 20%, 5%, and 15%, respectively. The MSWCMs group with an OPC content of 50% and SS, SP, DG, and FA contents of 5%, 15%, 5%, and 25% was selected as the control group. The pure OPC group was used as the blank group, and the optimal MSWCMs ratio group had a 28-day compressive strength of 50.7 megapascals, which was 14% and 7.6% higher than the control group and blank group, respectively. The drying shrinkage rate and resistance to chloride ions were also significantly improved, with maximum increases of 22.9%, 22.6%, and 8.9%, 9.8%, respectively. According to XRD, TG-DTG, and NMR testing, the improvement in macroscopic performance can be attributed to the synergistic effect between various solid wastes. This synergistic effect produces more ettringite (AFt) and C-(A)-S-H gel. This study provides a good theoretical basis for improving the comprehensive performance of MSWCMs and is conducive to reducing the use of cement, with significant economic and environmental benefits. Full article
(This article belongs to the Special Issue Properties and Applications of Cement and Concrete Composites)
Show Figures

Figure 1

18 pages, 313 KiB  
Article
Exploring Independent and Cumulative Effects of Adverse Childhood Experiences on PTSD and CPTSD a Study in Ugandan Adolescents
by Paulo Ferrajão, Francisco Frias and Ask Elklit
Children 2024, 11(5), 517; https://doi.org/10.3390/children11050517 (registering DOI) - 25 Apr 2024
Abstract
Exposure to adverse childhood experiences (ACEs) is related to higher morbidity and mortality among adolescents. The present study analyzed the independent and cumulative effects of ACE exposure on the likelihood of PTSD and a CPSTD diagnosis in Ugandan adolescents. A sample of 401 [...] Read more.
Exposure to adverse childhood experiences (ACEs) is related to higher morbidity and mortality among adolescents. The present study analyzed the independent and cumulative effects of ACE exposure on the likelihood of PTSD and a CPSTD diagnosis in Ugandan adolescents. A sample of 401 schoolchildren participated in the study. The primary aim was to collect information on ACEs, PTSD, CPTSD, and attachment styles among adolescents living in different countries. It was found that exposure to 2–3 ACEs and exposure to 4–5 ACEs were significantly associated with PTSD diagnosis, while exposure to sexual abuse, bullying, threats of violence, and near-drowning were significantly related to CPTSD diagnosis. Fearful attachment style was significantly associated with PTSD diagnosis. The results propose that biological, psychological, and social issues interact and contribute to the differential prevalence of ACE, attachment styles, and PTSD/CPTSD. This study underscores the importance of addressing childhood-averse and traumatic experiences as a public health priority in Uganda. Full article
(This article belongs to the Section Child and Adolescent Psychiatry)
21 pages, 2950 KiB  
Article
Role of Maternal Antibodies in the Protection of Broiler Chicks against Campylobacter Colonization in the First Weeks of Life
by Kristof Haems, Diederik Strubbe, Nathalie Van Rysselberghe, Geertrui Rasschaert, An Martel, Frank Pasmans and An Garmyn
Animals 2024, 14(9), 1291; https://doi.org/10.3390/ani14091291 (registering DOI) - 25 Apr 2024
Abstract
Thermophilic Campylobacter species are the most common cause of bacterium-mediated diarrheal disease in humans globally. Poultry is considered the most important reservoir of human campylobacteriosis, but so far, no effective countermeasures are in place to prevent the bacterium from colonizing broiler flocks. This [...] Read more.
Thermophilic Campylobacter species are the most common cause of bacterium-mediated diarrheal disease in humans globally. Poultry is considered the most important reservoir of human campylobacteriosis, but so far, no effective countermeasures are in place to prevent the bacterium from colonizing broiler flocks. This study investigated maternal antibodies’ potential to offer protection against Campylobacter in broiler chicks via a field trial and an immunization trial. In the field trial, breeder flocks with high and low anti-Campylobacter antibody levels in the yolk were selected based on serological screening. Offspring were subsequently monitored for maternal antibodies and Campylobacter prevalence during early life. Although maternal antibodies declined rapidly in the serum of broilers, offspring from flocks with lower anti-Campylobacter antibody levels seemed to be more susceptible to colonization. In the immunization trial, breeders from a seropositive breeder flock were vaccinated with an experimental bacterin or subunit vaccine. Immunization increased antibody levels in the yolk and consequently in the offspring. Elevated maternal antibody levels were significantly associated with reduced Campylobacter susceptibility in broilers at 2 weeks old but not at 1 and 3 weeks old. Overall, the protective effect of maternal immunity should be cautiously considered in the context of Campylobacter control in broilers. Immunization of breeders may enhance resistance but is not a comprehensive solution. Full article
(This article belongs to the Special Issue The Animal Microbiome in Health and Disease)
Show Figures

Figure 1

30 pages, 22117 KiB  
Article
Sea Buckthorn Polysaccharide Ameliorates Colitis
by Qinqin Ouyang, Xin Li, Yongheng Liang and Rong Liu
Nutrients 2024, 16(9), 1280; https://doi.org/10.3390/nu16091280 (registering DOI) - 25 Apr 2024
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC [...] Read more.
Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

14 pages, 2981 KiB  
Article
Using a One-Dimensional Convolutional Neural Network with Taguchi Parametric Optimization for a Permanent-Magnet Synchronous Motor Fault-Diagnosis System
by Meng-Hui Wang, Fu-Chieh Chan and Shiue-Der Lu
Processes 2024, 12(5), 860; https://doi.org/10.3390/pr12050860 (registering DOI) - 25 Apr 2024
Abstract
Hyperparameter tuning requires trial and error, which is time consuming. This study employed a one-dimensional convolutional neural network (1D CNN) and Design of Experiments (DOE) using the Taguchi method for optimal parameter selection, in order to improve the accuracy of a fault-diagnosis system [...] Read more.
Hyperparameter tuning requires trial and error, which is time consuming. This study employed a one-dimensional convolutional neural network (1D CNN) and Design of Experiments (DOE) using the Taguchi method for optimal parameter selection, in order to improve the accuracy of a fault-diagnosis system for a permanent-magnet synchronous motor (PMSM). An orthogonal array was used for the DOE. One control factor with two levels and six control factors with three levels were proposed as the parameter architecture of the 1D CNN. The identification accuracy and loss function were set to evaluate the fault-diagnosis system in the optimization design. Analysis of variance (ANOVA) was conducted to design multi-objective optimization and resolve conflicts. Motor fault signals measured by a vibration spectrum analyzer were used for fault diagnosis. The results show that the identification accuracy of the proposed optimization method reached 99.91%, which is higher than the identification accuracy of 96.75% of the original design parameters before optimization. With the proposed method, the parameters can be optimized with a good DOE and the minimum number of experiments. Besides reducing time and the use of resources, the proposed method can speed up the construction of a motor fault-diagnosis system with excellent recognition. Full article
(This article belongs to the Special Issue Clean Combustion and Emission in Vehicle Power System, 2nd Edition)
Show Figures

Figure 1

18 pages, 3675 KiB  
Article
A Metastatic Cancer Expression Generator (MetGen): A Generative Contrastive Learning Framework for Metastatic Cancer Generation
by Zhentao Liu, Yu-Chiao Chiu, Yidong Chen and Yufei Huang
Cancers 2024, 16(9), 1653; https://doi.org/10.3390/cancers16091653 (registering DOI) - 25 Apr 2024
Abstract
Despite significant advances in tumor biology and clinical therapeutics, metastasis remains the primary cause of cancer-related deaths. While RNA-seq technology has been used extensively to study metastatic cancer characteristics, challenges persist in acquiring adequate transcriptomic data. To overcome this challenge, we propose MetGen, [...] Read more.
Despite significant advances in tumor biology and clinical therapeutics, metastasis remains the primary cause of cancer-related deaths. While RNA-seq technology has been used extensively to study metastatic cancer characteristics, challenges persist in acquiring adequate transcriptomic data. To overcome this challenge, we propose MetGen, a generative contrastive learning tool based on a deep learning model. MetGen generates synthetic metastatic cancer expression profiles using primary cancer and normal tissue expression data. Our results demonstrate that MetGen generates comparable samples to actual metastatic cancer samples, and the cancer and tissue classification yields performance rates of 99.8 ± 0.2% and 95.0 ± 2.3%, respectively. A benchmark analysis suggests that the proposed model outperforms traditional generative models such as the variational autoencoder. In metastatic subtype classification, our generated samples show 97.6% predicting power compared to true metastatic samples. Additionally, we demonstrate MetGen’s interpretability using metastatic prostate cancer and metastatic breast cancer. MetGen has learned highly relevant signatures in cancer, tissue, and tumor microenvironments, such as immune responses and the metastasis process, which can potentially foster a more comprehensive understanding of metastatic cancer biology. The development of MetGen represents a significant step toward the study of metastatic cancer biology by providing a generative model that identifies candidate therapeutic targets for the treatment of metastatic cancer. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

17 pages, 13980 KiB  
Article
Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes
by Huilan Yin, Haoyu Zhang, Jiaoyang Cui, Qianlian Wu, Linlin Huang, Jiaoyue Qiu, Xin Zhang, Yanyu Xiang, Bo Li, Hongbo Liu, Zhishu Tang, Yue Zhang and Huaxu Zhu
Membranes 2024, 14(5), 97; https://doi.org/10.3390/membranes14050097 (registering DOI) - 25 Apr 2024
Abstract
This study used polyacrylonitrile (PAN) and heat-treated polyacrylonitrile (H-PAN) membranes to enrich nutmeg essential oils, which have more complex compositions compared with common oils. The oil rejection rate of the H-PAN membrane was higher than that of the PAN membrane for different oil [...] Read more.
This study used polyacrylonitrile (PAN) and heat-treated polyacrylonitrile (H-PAN) membranes to enrich nutmeg essential oils, which have more complex compositions compared with common oils. The oil rejection rate of the H-PAN membrane was higher than that of the PAN membrane for different oil concentrations of nutmeg essential oil-in-water emulsions. After heat treatment, the H-PAN membrane showed a smaller pore size, narrower pore size distribution, a rougher surface, higher hydrophilicity, and higher oleophobicity. According to the GC-MS results, the similarities of the essential oils enriched by the PAN and H-PAN membranes to those obtained by steam distillation (SD) were 0.988 and 0.990, respectively. In addition, these two membranes also exhibited higher essential oil rejection for Bupleuri Radix, Magnolia Officinalis Cortex, Caryophylli Flos, and Cinnamomi Cortex essential oil-in-water emulsions. This work could provide a reference for membrane technology for the non-destructive separation of oil with complex components from oil-in-water emulsions. Full article
(This article belongs to the Special Issue Application of Membrane Technology in Foods and Natural Products)
Show Figures

Figure 1

14 pages, 6049 KiB  
Article
Fe,Ni-Based Metal–Organic Frameworks Embedded in Nanoporous Nitrogen-Doped Graphene as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction
by Panjuan Tang, Biagio Di Vizio, Jijin Yang, Bhushan Patil, Mattia Cattelan and Stefano Agnoli
Nanomaterials 2024, 14(9), 751; https://doi.org/10.3390/nano14090751 (registering DOI) - 25 Apr 2024
Abstract
The quest for economically sustainable electrocatalysts to replace critical materials in anodes for the oxygen evolution reaction (OER) is a key goal in electrochemical conversion technologies, and, in this context, metal–organic frameworks (MOFs) offer great promise as alternative electroactive materials. In this study, [...] Read more.
The quest for economically sustainable electrocatalysts to replace critical materials in anodes for the oxygen evolution reaction (OER) is a key goal in electrochemical conversion technologies, and, in this context, metal–organic frameworks (MOFs) offer great promise as alternative electroactive materials. In this study, a series of nanostructured electrocatalysts was successfully synthesized by growing tailored Ni-Fe-based MOFs on nitrogen-doped graphene, creating composite systems named MIL-NG-n. Their growth was tuned using a molecular modulator, revealing a non-trivial trend of the properties as a function of the modulator quantity. The most active material displayed an excellent OER performance characterized by a potential of 1.47 V (vs. RHE) to reach 10 mA cm−2, a low Tafel slope (42 mV dec−1), and a stability exceeding 18 h in 0.1 M KOH. This outstanding performance was attributed to the synergistic effect between the unique MOF architecture and N-doped graphene, enhancing the amount of active sites and the electron transfer. Compared to a simple mixture of MOFs and N-doped graphene or the deposition of Fe and Ni atoms on the N-doped graphene, these hybrid materials demonstrated a clearly superior OER performance. Full article
(This article belongs to the Special Issue Advances in Nanoscale Electrocatalysts)
Show Figures

Figure 1

18 pages, 967 KiB  
Review
Recent Trends in Adipose Tissue-Derived Injectable Therapies for Osteoarthritis: A Scoping Review of Animal Models
by Alina Otilia Adam, Horea Rares Ciprian Benea, Horia Mihnea Fotescu, Miriam Alcalá Ruiz, George Claudiu Cimpean, Vladimir Ciornei, Arsenii Cernacovschi, Andrei Rares Edves and Maria Crisan
Medicina 2024, 60(5), 707; https://doi.org/10.3390/medicina60050707 (registering DOI) - 25 Apr 2024
Abstract
Background and Objectives: This scoping review investigates recent trends in adipose tissue-derived injectable therapies for osteoarthritis (OA) in animal models, focusing on minimally manipulated or lightly processed adipose tissue. By evaluating and examining the specific context in which these therapies were investigated [...] Read more.
Background and Objectives: This scoping review investigates recent trends in adipose tissue-derived injectable therapies for osteoarthritis (OA) in animal models, focusing on minimally manipulated or lightly processed adipose tissue. By evaluating and examining the specific context in which these therapies were investigated across diverse animal OA models, this review aims to provide valuable insights that will inform and guide future research and clinical applications in the ongoing pursuit of effective treatments for osteoarthritis. Materials and Methods: This research conducted a comprehensive literature review of PubMed and Embase to determine studies about minimally manipulated adipose tissue-derived injectable therapies for osteoarthritis investigated using animal models. The primary search found 530 results. After excluding articles that focused on spontaneous osteoarthritis; on transfected, preconditioned, cultured, or co-cultured adipose-derived stem cells; and articles with unavailable full text, we included 11 articles in our review. Results: The examined therapies encompassed mechanical micro-fragmented adipose tissue (MFAT) and stromal vascular fraction (SVF) obtained via collagenase digestion and centrifugation. These interventions were evaluated across various animal models, including mice, rats, rabbits, and sheep with induced OA. Notably, more studies concentrated on surgically induced OA rather than chemically induced OA. The assessment of these therapies focused on elucidating their protective immunomodulatory, anti-inflammatory, and chondroregenerative potential through comprehensive evaluations, including macroscopic assessments, histological analyses, immunohistochemical examinations, and biochemical assays. Conclusions: This review provides a comprehensive analysis of adipose tissue-derived injectable therapies for osteoarthritis across diverse animal models. While revealing potential benefits and insights, the heterogeneity of data and the limited number of studies highlight the need for further research to formulate conclusive recommendations for clinical applications. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

12 pages, 1252 KiB  
Article
The Safety and Efficacy of the Combination of Sacituzumab Govitecan and Palliative Radiotherapy—A Retrospective Multi-Center Cohort Study
by David Krug, Joke Tio, Ali Abaci, Björn Beurer, Sandra Brügge, Khaled Elsayad, Eva Meixner, Tjoung-Won Park-Simon, Katharina Smetanay, Franziska Winkelmann, Andrea Wittig and Achim Wöckel
Cancers 2024, 16(9), 1649; https://doi.org/10.3390/cancers16091649 (registering DOI) - 25 Apr 2024
Abstract
Sacituzumab govitecan (SG) is a new treatment option for patients with metastatic triple-negative and hormone receptor-positive, HER2-negative breast cancer. This antibody–drug conjugate is currently approved as monotherapy. Palliative radiotherapy is frequently used to treat symptomatic metastases locally. Concurrent use of SG and irradiation [...] Read more.
Sacituzumab govitecan (SG) is a new treatment option for patients with metastatic triple-negative and hormone receptor-positive, HER2-negative breast cancer. This antibody–drug conjugate is currently approved as monotherapy. Palliative radiotherapy is frequently used to treat symptomatic metastases locally. Concurrent use of SG and irradiation was excluded in clinical trials of SG, and there are currently limited published data. We report here a systematic review, as well as a retrospective multi-center study of 17 patients with triple-negative breast cancer who received concurrent SG and radiotherapy. In these patients, concurrent use was found to be efficient, safe and well tolerated. There were no apparent differences in moderate or severe acute toxicity according to the timing of SG administration. Full article
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Energy Integration of Thermal Pretreatment in Anaerobic Digestion of Wheat Straw
by Alfonso García Álvaro, César Ruiz Palomar, Israel Díaz Villalobos, Daphne Hermosilla, Raúl Muñoz and Ignacio de Godos
Energies 2024, 17(9), 2030; https://doi.org/10.3390/en17092030 (registering DOI) - 25 Apr 2024
Abstract
Cereal straw stands out as one of the most abundant and globally distributed agricultural residues. Traditional applications cope with a limited amount of production, leaving the remainder in the field for natural decomposition. Managing cereal straw through controlled biological transformation under anaerobic conditions [...] Read more.
Cereal straw stands out as one of the most abundant and globally distributed agricultural residues. Traditional applications cope with a limited amount of production, leaving the remainder in the field for natural decomposition. Managing cereal straw through controlled biological transformation under anaerobic conditions holds the potential to generate added value in the form of bioenergy. However, the lignocellulosic composition of these substrates poses challenges for organic degradation, often requiring energy-intensive pretreatments. A detailed study with a comprehensive calculation of the overall energy balance of the integrated process is proposed, aiming to provide real added value and replicability. Three scenarios for wheat straw transformation were investigated, incorporating two preliminary pre-treatment stages—mechanical milling and physicochemical steam explosion. Three conditions of pretreatment were essayed, varying the time exposure of the steam explosion. The subsequent energy integration analysis revealed that the process was optimized by up to 15% in the final energy balance when the steam explosion was set to 10 min. The macromolecular composition determination revealed that the thermal pretreatment reduced the lag phase of the hydrolysis step through hemicellulose breakdown. Full article
Show Figures

Figure 1

25 pages, 19921 KiB  
Article
Evaluation of Daily and Hourly Performance of Multi-Source Satellite Precipitation Products in China’s Nine Water Resource Regions
by Hongji Gu, Dingtao Shen, Shuting Xiao, Chunxiao Zhang, Fengpeng Bai and Fei Yu
Remote Sens. 2024, 16(9), 1516; https://doi.org/10.3390/rs16091516 (registering DOI) - 25 Apr 2024
Abstract
Satellite precipitation products (SPPs) are of great significance for water resource management and utilization in China; however, they suffer from considerable uncertainty. While numerous researchers have evaluated the accuracy of various SPPs, further investigation is needed to assess their performance across China’s nine [...] Read more.
Satellite precipitation products (SPPs) are of great significance for water resource management and utilization in China; however, they suffer from considerable uncertainty. While numerous researchers have evaluated the accuracy of various SPPs, further investigation is needed to assess their performance across China’s nine major water resource regions. This study used the latest precipitation dataset of the China Meteorological Administration’s Land Surface Data Assimilation System (CLDAS-V2.0) as the benchmark and evaluated the performance of six SPPs—GSMaP, PERSIANN, CMORPH, CHIRPS, GPM IMERG, and TRMM—using six indices: correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI), at both daily and hourly scales across China’s nine water resource regions. The conclusions of this study are as follows: (1) The performance of the six SPPs was generally weaker in the west than in the east, with the Continental Basin (CB) exhibiting the poorest performance, followed by the Southwest Basin (SB). (2) At the hourly scale, the performance of the six SPPs was weaker compared to the daily scale, particularly in the high-altitude CB and the high-latitude Songhua and Liaohe River Basin (SLRB), where observing light precipitation and snowfall presents significant challenges. (3) GSMaP, CMORPH, and GPM IMERG demonstrated superior overall performance compared to CHIRPS, PERISANN, and TRMM. (4) CMORPH was found to be better suited for application in drought-prone areas, showcasing optimal performance in the CB and SB. GSMaP excelled in humid regions, displaying the best overall performance in the remaining seven basins. GPM IMERG serves as a complementary precipitation data source for the first two. Full article
(This article belongs to the Special Issue Applications of Remotely Sensed Data in Hydrology and Climatology II)
Show Figures

Figure 1

16 pages, 5629 KiB  
Article
A Multi-Satellite SBAS for Retrieving Long-Term Ground Displacement Time Series
by Doha Amr, Xiao-Li Ding and Reda Fekry
Remote Sens. 2024, 16(9), 1520; https://doi.org/10.3390/rs16091520 (registering DOI) - 25 Apr 2024
Abstract
Ground deformation is one of the crucial issues threatening many cities in both societal and economic aspects. Interferometric synthetic aperture radar (InSAR) has been widely used for deformation monitoring. Recently, there has been an increasing availability of massive archives of SAR images from [...] Read more.
Ground deformation is one of the crucial issues threatening many cities in both societal and economic aspects. Interferometric synthetic aperture radar (InSAR) has been widely used for deformation monitoring. Recently, there has been an increasing availability of massive archives of SAR images from various satellites or sensors. This paper introduces Multi-Satellite SBAS that exploits complementary information from different SAR data to generate integrated long-term ground displacement time series. The proposed method is employed to create the vertical displacement maps of Almokattam City in Egypt from 2000 to 2020. The experimental results are promising using ERS, ENVISAT ASAR, and Sentinel-1A displacement integration. There is a remarkable deformation in the vertical direction along the west area while the mean deformation velocity is −2.32 mm/year. Cross-validation confirms that the root mean square error (RMSE) did not exceed 2.8 mm/year. In addition, the research findings are comparable to those of the previous research in the study area. Consequently, the proposed integration method has great potential to generate displacement time series based on multi-satellite SAR data; however, it still requires further evaluation using field measurements. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Interferon-γ Release Assay in the Assessment of Cellular Immunity—A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis
by Katarzyna Kapten, Krzysztof Orczyk, Anna Maeser and Elzbieta Smolewska
J. Clin. Med. 2024, 13(9), 2523; https://doi.org/10.3390/jcm13092523 (registering DOI) - 25 Apr 2024
Abstract
Background: As the SARS-CoV-2 virus remains one of the main causes of severe respiratory system infections, the Food and Drug Administration strongly advises the continuation of current vaccination programs, including the distribution of updated boosters, especially in high-risk groups of patients. Therefore, [...] Read more.
Background: As the SARS-CoV-2 virus remains one of the main causes of severe respiratory system infections, the Food and Drug Administration strongly advises the continuation of current vaccination programs, including the distribution of updated boosters, especially in high-risk groups of patients. Therefore, there is an unceasing need for further research on the safety and, no less importantly, the clinical effectivity of the vaccines, with an extra focus on cohorts of patients with underlying health problems. This study aimed to assess the efficacy of the SARS-CoV-2 vaccine in possibly immunocompromised children with rheumatic disease while utilizing the interferon-gamma release assay (IGRA) as a marker for COVID-19 immunity in the study follow-up. Methods: This prospective study was performed in a group of 55 pediatric patients diagnosed with juvenile idiopathic arthritis. Eight participants were immunized with the Comirnaty mRNA vaccine before the research commenced, while the rest of the group (n = 47) had not been vaccinated against SARS-CoV-2. At the study baseline, the cellular response to the virus antigen was measured using a specific quantitative IGRA in whole blood; subsequently, the anti-SARS-CoV-2 test was performed, marking the antibodies’ levels in serum. Around four months after the enrollment of the last patient in the study, a follow-up survey regarding the events of COVID-19 infection within the cohort was conducted. Results: The study confirmed that all the vaccinated children developed specific T-cell (p = 0.0016) and humoral (p = 0.001 for IgA antibodies, p = 0.008 for IgG antibodies) responses to the inoculation, including those receiving biological treatment and those on conventional disease-modifying anti-rheumatic drugs. The study also showed the different patterns of immunity elicited both after infection and post-vaccination, with higher levels of antibodies and T-cell response after inoculation than after natural exposure to the pathogen. According to the follow-up survey, six children developed PCR-confirmed SARS-CoV-2 infection, whereas the additional 10 patients admitted to having COVID-like symptoms with no laboratory verification. Conclusions: SARS-CoV-2 vaccinations elicit valid immune responses in pediatric rheumatic patients. Including the assessment of T-cell immunity in the evaluation of inoculation-induced immunization can enhance the accuracy of sole humoral response assays. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

19 pages, 3052 KiB  
Article
Exosome-Mediated Paracrine Signaling Unveils miR-1246 as a Driver of Aggressiveness in Fusion-Negative Rhabdomyosarcoma
by Farah Ramadan, Raya Saab, Farah Ghamloush, Rita Khoueiry, Zdenko Herceg, Ludovic Gomez, Bassam Badran, Philippe Clezardin, Nader Hussein, Pascale A. Cohen and Sandra E. Ghayad
Cancers 2024, 16(9), 1652; https://doi.org/10.3390/cancers16091652 (registering DOI) - 25 Apr 2024
Abstract
Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be [...] Read more.
Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be enriched with miRNAs, including miR-1246, possibly contributing to disease aggressiveness. We aimed to decipher the functional impact of exosomal miR-1246 on recipient cells and its role in promoting aggressiveness. Treatment of normal fibroblasts with FN-RMS-derived exosomes resulted in a significant uptake of miR-1246 paired with an increase in cell proliferation, migration, and invasion. In turn, delivery of miR-1246-mimic lipoplexes promoted fibroblast proliferation, migration, and invasion in a similar manner. Conversely, when silencing miR-1246 in FN-RMS cells, the resulting derived exosomes demonstrated reversed effects on recipient cells’ phenotype. Delivery of exosomal miR-1246 targets GSK3β and promotes β-catenin nuclear accumulation, suggesting a deregulation of the Wnt pathway, known to be important in tumor progression. Finally, a pilot clinical study highlighted, for the first time, the presence of high exosomal miR-1246 levels in RMS patients’ sera. Altogether, our results demonstrate that exosomal miR-1246 has the potential to alter the tumor microenvironment of FN-RMS cells, suggesting its potential role in promoting oncogenesis. Full article
(This article belongs to the Special Issue Exosomes in Tumor)
Show Figures

Figure 1

12 pages, 6492 KiB  
Article
The Influence of Various Crosslinking Conditions of EDC/NHS on the Properties of Fish Collagen Film
by Alina Sionkowska, Karolina Kulka-Kamińska, Patrycja Brudzyńska, Katarzyna Lewandowska and Łukasz Piwowarski
Mar. Drugs 2024, 22(5), 194; https://doi.org/10.3390/md22050194 (registering DOI) - 25 Apr 2024
Abstract
The process of crosslinking improves the physicochemical properties of biopolymer-based composites, making them valuable for biomedical applications. EDC/NHS-crosslinked collagen materials have a significant potential for tissue engineering applications, due to their enhanced properties and biocompatibility. Chemical crosslinking of samples can be carried out [...] Read more.
The process of crosslinking improves the physicochemical properties of biopolymer-based composites, making them valuable for biomedical applications. EDC/NHS-crosslinked collagen materials have a significant potential for tissue engineering applications, due to their enhanced properties and biocompatibility. Chemical crosslinking of samples can be carried out in several ways, which is crucial and has a direct effect on the final properties of the obtained material. In this study, the effect of crosslinking conditions on the properties of collagen films using EDC and NHS was investigated. Studies included FTIR spectroscopy, AFM, swelling and degradation tests, mechanical testing and contact angle measurements. Evaluation of prepared collagen films indicated that both crosslinking agents and crosslinking conditions influenced film properties. Notable alternations were observed in the infrared spectrum of the sample, to which EDC was added directly to the fish collagen solution. The same sample indicated the lowest Young modulus, tensile strength and breaking force parameters and the highest elongation at break. All samples reached the maximum swelling degree two hours after immersion in PBS solution; however, the immersion-crosslinked samples exhibited a significantly lower degree of swelling and were highly durable. The highest roughness was observed for the collagen film crosslinked with EDC, whereas the lowest was observed for the specimen crosslinked with EDC with NHS addition. The crosslinking agents increased the surface roughness of the collagen film, except for the sample modified with the addition of EDC and NHS mixture. All films were characterized by hydrophilic character. The films’ modification resulted in a decrease in their hydrophilicity and wettability. Our research allows for a comparison of proposed EDC/NHS crosslinking conditions and their influence on the physicochemical properties of fish collagen thin films. EDC and NHS are promising crosslinking agents for the modification of fish collagen used in biomedical applications. Full article
(This article belongs to the Special Issue Fundamentals and Biomedical Applications of Marine Collagen)
Show Figures

Figure 1

15 pages, 2431 KiB  
Article
3-Ethynyltriimidazo[1,2-a:1′,2′-c:1″,2″-e][1,3,5]triazine Dual Short- and Long-Lived Emissions with Crystallization-Enhanced Feature: Role of Hydrogen Bonds and π-π Interactions
by Daniele Malpicci, Daniele Maver, Elisabetta Rosadoni, Alessia Colombo, Elena Lucenti, Daniele Marinotto, Chiara Botta, Fabio Bellina, Elena Cariati and Alessandra Forni
Molecules 2024, 29(9), 1967; https://doi.org/10.3390/molecules29091967 (registering DOI) - 25 Apr 2024
Abstract
Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising [...] Read more.
Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence. Full article
Show Figures

Figure 1

25 pages, 23569 KiB  
Article
Analyzing the Influence of Dean Number on an Accelerated Toroidal: Insights from Particle Imaging Velocimetry Gyroscope (PIVG)
by Ramy Elaswad, Naser El-Sheimy and Abdulmajeed Mohamad
Fluids 2024, 9(5), 103; https://doi.org/10.3390/fluids9050103 (registering DOI) - 25 Apr 2024
Abstract
Computational Fluid Dynamics (CFD) simulations were utilized in this study to comprehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of our simulations, we systematically conducted grid convergence [...] Read more.
Computational Fluid Dynamics (CFD) simulations were utilized in this study to comprehensively explore the fluid dynamics within an accelerated toroidal vessel, specifically those central to Particle Imaging Velocimetry Gyroscope (PIVG) technology. To ensure the robustness of our simulations, we systematically conducted grid convergence studies and quantified uncertainties, affirming the stability, accuracy, and reliability of our computational grid and results. Comprehensive validation against experimental data further confirmed our simulations’ fidelity, emphasizing the model’s fidelity. As the PIVG is set up to address the primary flow through the toroidal pipe, we focused on the interaction between the primary and secondary flows to provide insights into the relevant dynamics of the fluid. In our investigation covering Dean numbers (De) from 10 to 70, we analyzed diverse aspects, including primary flow, secondary flow patterns, pressure distribution, and the interrelation between primary and secondary flows within toroidal structures, offering a comprehensive view across this range. Our research indicated stability and fully developed fluid dynamics within the toroidal pipe under accelerated angular velocity, particularly for low De. Furthermore, we identified an optimal Dean number of 11, which corresponded to ideal dimensions for the toroidal geometry with a curvature radius of 25 mm and a cross-sectional diameter of 5 mm. This study enhances our understanding of toroidal fluid dynamics and highlights the pivotal role of CFD in optimizing toroidal vessel design for advanced navigation technologies. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

17 pages, 1233 KiB  
Article
Comparative Analysis of Virulence and Molecular Diversity of Puccinia striiformis f. sp. tritici Isolates Collected in 2016 and 2023 in the Western Region of China
by Tesfay Gebrekirstos Gebremariam, Fengtao Wang, Ruiming Lin and Hongjie Li
Genes 2024, 15(5), 542; https://doi.org/10.3390/genes15050542 (registering DOI) - 25 Apr 2024
Abstract
Puccinia striiformis f. sp. tritici (Pst) is adept at overcoming resistance in wheat cultivars, through variations in virulence in the western provinces of China. To apply disease management strategies, it is essential to understand the temporal and spatial dynamics of Pst [...] Read more.
Puccinia striiformis f. sp. tritici (Pst) is adept at overcoming resistance in wheat cultivars, through variations in virulence in the western provinces of China. To apply disease management strategies, it is essential to understand the temporal and spatial dynamics of Pst populations. This study aimed to evaluate the virulence and molecular diversity of 84 old Pst isolates, in comparison to 59 newer ones. By using 19 Chinese wheat differentials, we identified 98 pathotypes, showing virulence complexity ranging from 0 to 16. Associations between 23 Yr gene pairs showed linkage disequilibrium and have the potential for gene pyramiding. The new Pst isolates had a higher number of polymorphic alleles (1.97), while the older isolates had a slightly higher number of effective alleles, Shannon’s information, and diversity. The Gansu Pst population had the highest diversity (uh = 0.35), while the Guizhou population was the least diverse. Analysis of molecular variance revealed that 94% of the observed variation occurred within Pst populations across the four provinces, while 6% was attributed to differences among populations. Overall, Pst populations displayed a higher pathotypic diversity of H > 2.5 and a genotypic diversity of 96%. This underscores the need to develop gene-pyramided cultivars to enhance the durability of resistance. Full article
(This article belongs to the Special Issue Quality Gene Mining and Breeding of Wheat)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop