The 2023 MDPI Annual Report has
been released!
 
13 pages, 428 KiB  
Article
Effects of Hypopressive Abdominal Training on Ventilatory Capacity and Quality of Life: A Randomized Controlled Trial
by Maria del Carmen Herena-Funes, Caroline Correia de Alencar, Dara María Velázquez-Torres, Elisenda Marrero García, Yolanda Castellote-Caballero, Felipe León-Morillas, Aday Infante-Guedes and David Cruz-Díaz
Healthcare 2024, 12(9), 893; https://doi.org/10.3390/healthcare12090893 (registering DOI) - 25 Apr 2024
Abstract
Pelvic floor dysfunctions, associated with alterations in respiratory mechanics and, consequently, quality of life, are the cause of the most frequent gynecological problems. Pelvic floor muscle training emerges as a first-line treatment, with new approaches such as hypopressive exercises. The aim of this [...] Read more.
Pelvic floor dysfunctions, associated with alterations in respiratory mechanics and, consequently, quality of life, are the cause of the most frequent gynecological problems. Pelvic floor muscle training emerges as a first-line treatment, with new approaches such as hypopressive exercises. The aim of this study was to analyze the efficacy of an 8-week supervised training program of hypopressive exercises on the pelvic floor and its impact on improving the ventilatory mechanics and quality of life in women. Analysis of the spirometric parameters showed a significant main Group × Time effect for three parameters: the ratio of FEV1/FVC (p = 0.030), the forced expiratory flow at 75% of the expired vital capacity (p < 0.001), and the forced expiratory flow over the middle half of the forced vital capacity (p = 0.005). No statistical significance was found regarding the SF-12 questionnaire components; only differences were found over time in the physical role (p = 0.023), bodily pain (p = 0.001), and vitality (p < 0.010) domains and in the physical component summary score (p = 0.010). After an 8-week intervention of hypopressive exercises, an improvement in the ventilatory and pulmonary capacities can be observed. Full article
12 pages, 2554 KiB  
Article
Rubber-like PTFE Thin Coatings Deposited by Pulsed Electron Beam Deposition (PED) Method
by Agata Niemczyk, Roman Jędrzejewski, Joanna Piwowarczyk and Jolanta Baranowska
Polymers 2024, 16(9), 1205; https://doi.org/10.3390/polym16091205 (registering DOI) - 25 Apr 2024
Abstract
PTFE coatings were manufactured using the pulsed electron beam deposition (PED) technique and deposited on Si substrates. The deposition was carried out at constant parameters: temperature 24 °C, discharge voltages 12 kV, and 5000 electron pulses with a pulse frequency of 5 Hz. [...] Read more.
PTFE coatings were manufactured using the pulsed electron beam deposition (PED) technique and deposited on Si substrates. The deposition was carried out at constant parameters: temperature 24 °C, discharge voltages 12 kV, and 5000 electron pulses with a pulse frequency of 5 Hz. Nitrogen was used as the background gas. The gas pressure varied from 3 to 11 mTorr. The coating adhesion was evaluated using micro scratch testing and the residual scratch morphology was characterized by atomic force microscopy. Detailed studies of the chemical and physical structure were conducted using infrared spectroscopy and X-ray diffraction. These analyses were then correlated with the mechanical response of the coatings observed during the scratch tests. Drawing upon a review of the literature concerning energetic beam interactions with PTFE material, hypotheses were posed to explain why only specific conditions of the PED process yielded PTFE coatings with rubber-like properties. Full article
(This article belongs to the Special Issue Advanced Polymeric Films II)
Show Figures

Figure 1

13 pages, 2245 KiB  
Article
Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries
by Patrícia Alves, Diana Luzio, Kevin de Sá, Ilídio Correia and Paula Ferreira
Gels 2024, 10(5), 297; https://doi.org/10.3390/gels10050297 (registering DOI) - 25 Apr 2024
Abstract
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the [...] Read more.
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials. Full article
Show Figures

Figure 1

13 pages, 3592 KiB  
Article
Fabrication of High Thermal Conductivity Aluminum Nitride Ceramics via Digital Light Processing 3D Printing
by Yuxin Tang, Zhenhai Xue, Guohong Zhou and Song Hu
Materials 2024, 17(9), 2010; https://doi.org/10.3390/ma17092010 (registering DOI) - 25 Apr 2024
Abstract
The sintering of high-performance ceramics with complex shapes at low temperatures has a significant impact on the future application of ceramics. A joint process of digital light processing (DLP) 3D printing technology and a nitrogen-gas pressure-assisted sintering method were proposed to fabricate AlN [...] Read more.
The sintering of high-performance ceramics with complex shapes at low temperatures has a significant impact on the future application of ceramics. A joint process of digital light processing (DLP) 3D printing technology and a nitrogen-gas pressure-assisted sintering method were proposed to fabricate AlN ceramics in the present work. Printing parameters, including exposure energy and time, were optimized for the shaping of green bodies. The effects of sintering temperature, as well as nitrogen pressure, on the microstructure, density, and thermal conductivity of AlN ceramics were systematically discussed. A high thermal conductivity of 168 W·m−1·K−1 was achieved by sintering and holding at a significantly reduced temperature of 1720 °C with the assistance of a 0.6 MPa nitrogen-gas pressure. Further, a large-sized AlN ceramic plate and a heat sink with an internal mini-channel structure were designed and successfully fabricated by using the optimized printing and sintering parameters proposed in this study. The heat transfer performance of the ceramic heat sink was evaluated by infrared thermal imaging, showing excellent cooling abilities, which provides new opportunities for the development of ceramic heat dissipation modules with complex geometries and superior thermal management properties. Full article
(This article belongs to the Special Issue Additive Manufacturing of Ceramics and Composites)
11 pages, 714 KiB  
Article
First Report of Endemic Frog Virus 3 (FV3)-like Ranaviruses in the Korean Clawed Salamander (Onychodactylus koreanus) in Asia
by Jongsun Kim, Haan Woo Sung, Tae Sung Jung, Jaejin Park and Daesik Park
Viruses 2024, 16(5), 675; https://doi.org/10.3390/v16050675 (registering DOI) - 25 Apr 2024
Abstract
Frog virus 3 (FV3) in the genus Ranavirus of the family Iridoviridae causes mass mortality in both anurans and urodeles worldwide; however, the phylogenetic origin of FV3-like ranaviruses is not well established. In Asia, three FV3-like ranaviruses have been reported in farmed populations [...] Read more.
Frog virus 3 (FV3) in the genus Ranavirus of the family Iridoviridae causes mass mortality in both anurans and urodeles worldwide; however, the phylogenetic origin of FV3-like ranaviruses is not well established. In Asia, three FV3-like ranaviruses have been reported in farmed populations of amphibians and reptiles. Here, we report the first case of endemic FV3-like ranavirus infections in the Korean clawed salamander Onychodactylus koreanus, caught in wild mountain streams in the Republic of Korea (ROK), through whole-genome sequencing and phylogenetic analysis. Two isolated FV3-like ranaviruses (Onychodactylus koreanus ranavirus, OKRV1 and 2) showed high similarity with the Rana grylio virus (RGV, 91.5%) and Rana nigromaculata ranavirus (RNRV, 92.2%) but relatively low similarity with the soft-shelled turtle iridovirus (STIV, 84.2%) in open reading frame (ORF) comparisons. OKRV1 and 2 formed a monophyletic clade with previously known Asian FV3-like ranaviruses, a sister group of the New World FV3-like ranavirus clade. Our results suggest that OKRV1 and 2 are FV3-like ranaviruses endemic to the ROK, and RGV and RNRV might also be endemic strains in China, unlike previous speculation. Our data have great implications for the study of the phylogeny and spreading routes of FV3-like ranaviruses and suggest the need for additional detection and analysis of FV3-like ranaviruses in wild populations in Asian countries. Full article
15 pages, 496 KiB  
Article
A New Generalized Definition of Fractal–Fractional Derivative with Some Applications
by Francisco Martínez and Mohammed K. A. Kaabar
Math. Comput. Appl. 2024, 29(3), 31; https://doi.org/10.3390/mca29030031 (registering DOI) - 25 Apr 2024
Abstract
In this study, a new generalized fractal–fractional (FF) derivative is proposed. By applying this definition to some elementary functions, we show its compatibility with the results of the FF derivative in the Caputo sense with the power law. The main elements of classical [...] Read more.
In this study, a new generalized fractal–fractional (FF) derivative is proposed. By applying this definition to some elementary functions, we show its compatibility with the results of the FF derivative in the Caputo sense with the power law. The main elements of classical differential calculus are introduced in terms of this new derivative. Thus, we establish and demonstrate the basic operations with derivatives, chain rule, mean value theorems with their immediate applications and inverse function’s derivative. We complete the theory of generalized FF calculus by proposing a notion of integration and presenting two important results of integral calculus: the fundamental theorem and Barrow’s rule. Finally, we analytically solve interesting FF ordinary differential equations by applying our proposed definition. Full article
9 pages, 313 KiB  
Article
Epidemiology of Musculoskeletal Injuries in Golf Athletes: A Championship in Portugal
by Beatriz Minghelli, Ana Sofia Palma Soares, Carolina Duarte Cabrita and Claudia Coelho Martins
Int. J. Environ. Res. Public Health 2024, 21(5), 542; https://doi.org/10.3390/ijerph21050542 (registering DOI) - 25 Apr 2024
Abstract
Although golf is a low-impact sport without physical contact, its movements are carried out over a large range of motion, and their repetition can predispose athletes to the development of injuries. This study aimed to investigate the epidemiology of musculoskeletal injuries in golf [...] Read more.
Although golf is a low-impact sport without physical contact, its movements are carried out over a large range of motion, and their repetition can predispose athletes to the development of injuries. This study aimed to investigate the epidemiology of musculoskeletal injuries in golf athletes who participated in championships in southern Portugal, determining the types, locations and mechanisms of injury and their associated risk factors. The sample consisted of 140 athletes aged between 18 and 72 years, 133 (95%) being male. The measuring instrument was a questionnaire about sociodemographics, modality and injuries’ characteristics. Throughout golf practice, 70 (50%) athletes reported injuries, totaling 133 injuries. In the 12-month period, 43 (30.7%) athletes suffered injuries, totaling 65 injuries. The injury proportion was of 0.31, and the injury rate was of 0.33 injuries per 1000 h of golf training. The most common injury type was muscle sprain or rupture (19; 30.9%), located in the lumbar spine (17; 27%), in which the repetitive movements were the main injury mechanism (42; 66.7%). The athletes who trained 4 times or more per week were 3.5 more likely (CI: 0.97–12.36; p = 0.056) to develop an injury while playing golf. Moderate injury presence was observed, with the high training frequency being an associated risk factor. Full article
(This article belongs to the Special Issue Physical Activity, Sport and Health in Children and Adults)
14 pages, 972 KiB  
Article
Identifying Variables Influencing Traditional Food Solid-State Fermentation by Statistical Modeling
by Guangyuan Jin, Sjoerd Boeschoten, Jos Hageman, Yang Zhu, René Wijffels, Arjen Rinzema and Yan Xu
Foods 2024, 13(9), 1317; https://doi.org/10.3390/foods13091317 (registering DOI) - 25 Apr 2024
Abstract
Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical [...] Read more.
Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes. For example, it is hard to identify the most important variables influencing product yield and quality fluctuations. Here, using solid-state fermentation of Chinese liquor as a case study, we established statistical models to correlate the final liquor yield with available industrial data, including the starting content of starch, water and acid; starting temperature; and substrate temperature profiles throughout the process. Models based on starting concentrations and temperature profiles gave unsatisfactory yield predictions. Although the most obvious factor is the starting month, ambient temperature is unlikely to be the direct driver of differences. A lactic-acid-inhibition model indicates that lactic acid from lactic acid bacteria is likely the reason for the reduction in yield between April and December. Further integrated study strategies are necessary to confirm the most crucial variables from both microbiological and engineering perspectives. Our findings can facilitate better understanding and improvement of complex solid-state fermentations. Full article
14 pages, 1483 KiB  
Article
An Adaptive Large Neighborhood Search Algorithm for Equipment Scheduling in the Railway Yard of an Automated Container Terminal
by Hongbin Chen and Wei Liu
J. Mar. Sci. Eng. 2024, 12(5), 710; https://doi.org/10.3390/jmse12050710 (registering DOI) - 25 Apr 2024
Abstract
In container sea–rail combined transport, the railway yard in an automated container terminal (RYACT) is the link in the whole logistics transportation process, and its operation and scheduling efficiency directly affect the efficiency of logistics. To improve the equipment scheduling efficiency of an [...] Read more.
In container sea–rail combined transport, the railway yard in an automated container terminal (RYACT) is the link in the whole logistics transportation process, and its operation and scheduling efficiency directly affect the efficiency of logistics. To improve the equipment scheduling efficiency of an RYACT, this study examines the “RYACT–train” cooperative optimization problem in the mode of “unloading before loading” for train containers. A mixed-integer programming model with the objective of minimizing the maximum completion time of automated rail-mounted gantry crane (ARMG) tasks is established. An adaptive large neighborhood search (ALNS) algorithm and random search algorithm (RSA) are designed to solve the abovementioned problem, and the feasibility of the model and algorithm is verified by experiments. At the same time, the target value and calculation time of the model and algorithms are compared. The experimental results show that the model and the proposed algorithms are feasible and can effectively solve the “RYACT–train” cooperative optimization problem. The model only obtains the optimal solution of the “RYACT–train” cooperative scheduling problem with no more than 50 tasks within a limited time, and the ALNS algorithm can solve examples of various scales within a reasonable amount of time. The target value of the ALNS solution is smaller than that of the RSA solution. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 9115 KiB  
Article
Predicting Diffusion Coefficients in Nafion Membranes during the Soaking Process Using a Machine Learning Approach
by Ivan Malashin, Daniil Daibagya, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub and Aleksei Borodulin
Polymers 2024, 16(9), 1204; https://doi.org/10.3390/polym16091204 (registering DOI) - 25 Apr 2024
Abstract
Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane’s IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick’s second law, diffusion [...] Read more.
Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane’s IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick’s second law, diffusion coefficients for these processes are derived via exponential approximation. By harnessing machine learning (ML) techniques, including the optimization of neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors, we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons, employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and ELU activation functions, respectively. Full article
(This article belongs to the Special Issue Scientific Machine Learning for Polymeric Materials)
Show Figures

Figure 1

25 pages, 954 KiB  
Article
Barriers to Older Adults Adapting Smart Homes: Perceived Risk Scale Development
by Yuqi Liu, Ryoichi Tamura and Liang Xiao
Buildings 2024, 14(5), 1226; https://doi.org/10.3390/buildings14051226 (registering DOI) - 25 Apr 2024
Abstract
The 21st century has marked the dawn of an aging population. China’s aging process ranks first worldwide. The country has recognized the gravity of this demographic shift and implemented strategies to address it at the national level. A vast majority of elderly Chinese [...] Read more.
The 21st century has marked the dawn of an aging population. China’s aging process ranks first worldwide. The country has recognized the gravity of this demographic shift and implemented strategies to address it at the national level. A vast majority of elderly Chinese individuals (approximately 90%) aspire to age in their own homes. Smart homes, endowed with cutting-edge digital technologies, such as AI, the Internet of Things, and big data, hold vast potential for enabling this vision. However, acceptance of smart home products and services among elderly individuals in China remains low. The main reason is that the related products and services fail to effectively alleviate the perceived risk of this population in the R&D process of related products and services, and there is a lack of effective measurement methods. To holistically assess the potential obstacles faced by elderly individuals using smart home products and services, this study targeted individuals aged 45–60 years in China. This study aimed to develop a comprehensive perceived risk scale specific to smart homes for this demographic. Initially, this study identified key risk dimensions and corresponding measurement items through a rigorous literature review, user interviews, and expert consultations. Subsequently, it ensured the reliability and validity of each dimension and its corresponding observation variables through preliminary research, exploratory factor analysis, and confirmatory factor analysis. This approach allowed for a comprehensive understanding of the challenges faced by future elderly individuals when utilizing smart home products and services, thus enabling the development of more effective solutions. The scale encompassed ten factors and seventy measurement items, including Privacy and Security Risk (seven items), Physical Risk (seven items), Technological Risk (nine items), Performance Risk (seven items), Service Risk (nine items), Financial Risk (five items), Psychological Risk (seven items), Industry and Market Risk (six items), Social Support Risk (six items), and Policy and Legal risk (seven items). The measurement scale developed in this study represents a groundbreaking first attempt to create a systematic scale for assessing the perceived risks associated with smart homes for the elderly in China. It not only enables professionals, businesses, and manufacturers to avoid or reduce barriers in the R&D process of related products and services, facilitating smart home industry growth and enhancing user adoption, but also serves as a universal reference for the potential obstacles that digital technology may encounter in addressing aging-related issues, which has significant theoretical value and practical importance. Full article
Show Figures

Figure 1

13 pages, 4474 KiB  
Article
Dissecting the Effects of Cephenemyia stimulator on the Olfactory Turbinates and Nasopharynx of Roe Deers (Capreolus capreolus)
by Irene Ortiz-Leal, Mateo V. Torres, Ana López-Beceiro, Pablo Sanchez-Quinteiro and Luis Fidalgo
Animals 2024, 14(9), 1297; https://doi.org/10.3390/ani14091297 (registering DOI) - 25 Apr 2024
Abstract
Nasopharyngeal myiasis in European roe deer (Capreolus capreolus) is a pathological condition caused by the larval stages of Cephenemyia stimulator, a fly from the Oestridae family. These larvae reside in the host’s upper respiratory tract for months, inducing significant tissue damage and [...] Read more.
Nasopharyngeal myiasis in European roe deer (Capreolus capreolus) is a pathological condition caused by the larval stages of Cephenemyia stimulator, a fly from the Oestridae family. These larvae reside in the host’s upper respiratory tract for months, inducing significant tissue damage and clinical symptoms. The lifecycle of Cephenemyia stimulator is complex, involving three larval stages before maturation into adult flies, with each stage contributing to the progressive pathology observed in the host. Despite their prevalence, the histopathological effects of these larvae in the nasal and nasopharyngeal cavities have been understudied. Our study fills this knowledge gap by providing a detailed histopathological analysis of the affected tissues, using various staining techniques to reveal the extent and nature of the damage caused by these parasitic larvae. This histopathological examination reveals significant alterations within the nasopharyngeal mucosa and nasal cavity, including erythematous changes, mucosal metaplasia, fibrosis, and tissue necrosis. Parasitic cysts and eosinophilic infiltration further characterize the impact of the infestation, compromising not only the mucosal integrity but also potentially the olfactory function of the affected animals. This research is crucial for understanding the impact of myiasis on both the health and olfactory capabilities of roe deer populations and could have significant implications for wildlife management and conservation. Full article
(This article belongs to the Special Issue Chemical Senses in Vertebrates)
16 pages, 3070 KiB  
Article
Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation
by Koji Umezawa, Rena Ikeda, Taiichi Sakamoto, Yuya Enomoto, Yuma Nihashi, Sayaka Shinji, Takeshi Shimosato, Hiroshi Kagami and Tomohide Takaya
BioTech 2024, 13(2), 11; https://doi.org/10.3390/biotech13020011 (registering DOI) - 25 Apr 2024
Abstract
A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5′-AGA TTA GGG TGA GGG TGA-3′), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. [...] Read more.
A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5′-AGA TTA GGG TGA GGG TGA-3′), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5′-TTG GGT GGG GAA-3′), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs. Full article
Show Figures

Figure 1

18 pages, 7592 KiB  
Article
Low-Friction and -Knocking Diesel Engine Cylindrical-Tapered Bore Profile Design
by Junhong Zhang, Ning Wang, Jian Wang, Hui Wang, Xueling Zhang, Huwei Dai and Jiewei Lin
Energies 2024, 17(9), 2042; https://doi.org/10.3390/en17092042 (registering DOI) - 25 Apr 2024
Abstract
To reduce the friction loss and the piston-knocking noise from the perspective of the design of the cylinder bore profile, the piston-ring cylinder bore (PRCB) dynamic model of an L6 diesel engine was developed using AVL-Excite-Piston & Rings. Based on the full-scale test [...] Read more.
To reduce the friction loss and the piston-knocking noise from the perspective of the design of the cylinder bore profile, the piston-ring cylinder bore (PRCB) dynamic model of an L6 diesel engine was developed using AVL-Excite-Piston & Rings. Based on the full-scale test method, the effects of bore taper, starting height of tapered profile, and ellipticity on the friction power and knocking energy of the PRCB system were investigated, and the optimization of the design of the bore profile was carried out with the objectives of minimizing the system’s friction power and the peak knocking kinetic energy. The results showed that the taper of the cylinder bore has the greatest influence on the system’s friction power and the peak knocking kinetic energy, followed by the starting height of the conical profile. For the peak knocking kinetic energy of the piston, there was an obvious interaction between the taper and the starting height of the conical profile. When the taper was 35 μm and 45 μm, the peak knocking kinetic energy showed a decreasing and then increasing trend with the increase in the starting height of the profile, and when the taper was 55 μm the peak knocking kinetic energy monotonically was decreased with the increase in the starting height of the conical profile. The optimization results showed that the system’s friction power was decreased by 15.05% and the peak knocking kinetic energy was decreased by 21.41% for a taper degree of 55 μm, a tapered profile starting height of 31 mm, and an ellipticity of 50 μm compared to the initial cylindrical cylinder bore. Full article
(This article belongs to the Topic Zero Carbon Vehicles and Power Generation)
Show Figures

Figure 1

17 pages, 1567 KiB  
Article
Demand Time Series Prediction of Stacked Long Short-Term Memory Electric Vehicle Charging Stations Based on Fused Attention Mechanism
by Chengyu Yang, Han Zhou, Ximing Chen and Jiejun Huang
Energies 2024, 17(9), 2041; https://doi.org/10.3390/en17092041 (registering DOI) - 25 Apr 2024
Abstract
The layout and configuration of urban infrastructure are essential for the orderly operation and healthy development of cities. With the promotion and popularization of new energy vehicles, the modeling and prediction of charging pile usage and allocation have garnered significant attention from governments [...] Read more.
The layout and configuration of urban infrastructure are essential for the orderly operation and healthy development of cities. With the promotion and popularization of new energy vehicles, the modeling and prediction of charging pile usage and allocation have garnered significant attention from governments and enterprises. Short-term demand forecasting for charging piles is crucial for their efficient operation. However, existing prediction models lack a discussion on the appropriate time window, resulting in limitations in station-level predictions. Recognizing the temporal nature of charging pile occupancy, this paper proposes a novel stacked-LSTM model called attention-SLSTM that integrates an attention mechanism to predict the charging demand of electric vehicles at the station level over the next few hours. To evaluate its performance, this paper compares it with several methods. The experimental results demonstrate that the attention-SLSTM model outperforms both LSTM and stacked-LSTM models. Deep learning methods generally outperform traditional time series forecasting methods. In the test set, MAE is 1.6860, RMSE is 2.5040, and MAPE is 9.7680%. Compared to the stacked-LSTM model, MAE and RMSE are reduced by 4.7%and 5%, respectively; while MAPE value decreases by 1.3%, making it superior to LSTM overall. Furthermore, subsequent experiments compare prediction performance among different charging stations, which confirms that the attention-SLSTM model exhibits excellent predictive capabilities within a six-step (2 h) window. Full article
(This article belongs to the Topic Electric Vehicles Energy Management, 2nd Volume)
13 pages, 506 KiB  
Case Report
From Investigating a Case of Cellulitis to Exploring Nosocomial Infection Control of ST1 Legionella pneumophila Using Genomic Approaches
by Charlotte Michel, Fedoua Echahidi, Sammy Place, Lorenzo Filippin, Vincent Colombie, Nicolas Yin, Delphine Martiny, Olivier Vandenberg, Denis Piérard and Marie Hallin
Microorganisms 2024, 12(5), 857; https://doi.org/10.3390/microorganisms12050857 (registering DOI) - 25 Apr 2024
Abstract
Legionella pneumophila can cause a large panel of symptoms besides the classic pneumonia presentation. Here we present a case of fatal nosocomial cellulitis in an immunocompromised patient followed, a year later, by a second case of Legionnaires’ disease in the same ward. While [...] Read more.
Legionella pneumophila can cause a large panel of symptoms besides the classic pneumonia presentation. Here we present a case of fatal nosocomial cellulitis in an immunocompromised patient followed, a year later, by a second case of Legionnaires’ disease in the same ward. While the first case was easily assumed as nosocomial based on the date of symptom onset, the second case required clear typing results to be assigned either as nosocomial and related to the same environmental source as the first case, or community acquired. To untangle this specific question, we applied core-genome multilocus typing (MLST), whole-genome single nucleotide polymorphism and whole-genome MLST methods to a collection of 36 Belgian and 41 international sequence-type 1 (ST1) isolates using both thresholds recommended in the literature and tailored threshold based on local epidemiological data. Based on the thresholds applied to cluster isolates together, the three methods gave different results and no firm conclusion about the nosocomial setting of the second case could been drawn. Our data highlight that despite promising results in the study of outbreaks and for large-scale epidemiological investigations, next-generation sequencing typing methods applied to ST1 outbreak investigation still need standardization regarding both wet-lab protocols and bioinformatics. A deeper evaluation of the L. pneumophila evolutionary clock is also required to increase our understanding of genomic differences between isolates sampled during a clinical infection and in the environment. Full article
13 pages, 2142 KiB  
Article
Synergistic Effects of Boron and Rare Earth Elements on the Microstructure and Stress Rupture Properties in a Ni-Based Superalloy
by Qiang Tian, Shuo Huang, Heyong Qin, Ran Duan, Chong Wang and Xintong Lian
Materials 2024, 17(9), 2007; https://doi.org/10.3390/ma17092007 (registering DOI) - 25 Apr 2024
Abstract
The synergistic effects of boron (B) and rare earth (RE) elements on the microstructure and stress rupture properties were investigated in a Ni-based superalloy. The stress rupture lifetime at 650 °C/873 MPa significantly increased with the addition of B as a single element. [...] Read more.
The synergistic effects of boron (B) and rare earth (RE) elements on the microstructure and stress rupture properties were investigated in a Ni-based superalloy. The stress rupture lifetime at 650 °C/873 MPa significantly increased with the addition of B as a single element. Furthermore, the stress rupture lifetime reached its peak (303 h), with a certain amount of B and RE added together in test alloys. Although the grain size and morphology of the γ′ phase varied a little with the change in B and RE addition, they were not considered to be the main reasons for stress rupture performance. The enhancement in stress rupture lifetime was mostly attributed to the segregation of the B and RE elements, which increased the binding force of the grain boundary and improved its strength and plasticity. In addition, the enrichment of B and RE inhabited the precipitation of carbides along grain boundaries. Furthermore, nano-scale RE precipitates containing sulfur (S) and phosphorus (P) were observed to be distributed along the grain boundaries. The purification of grain boundaries by B and RE elements was favorable to further improve the stress rupture properties. Full article
(This article belongs to the Special Issue Processing, Microstructure and Properties Relationships of Steels)
13 pages, 2157 KiB  
Article
Study of Precipitated Secondary Phase at 700 °C on the Electrochemical Properties of Super Duplex Stainless Steel AISI2507: Advanced High-Temperature Safety of a Lithium-Ion Battery Case
by Byung-Hyun Shin, Seongjun Kim, Jinyong Park, Jung-Woo Ok, Dohyung Kim and Jang-Hee Yoon
Materials 2024, 17(9), 2009; https://doi.org/10.3390/ma17092009 (registering DOI) - 25 Apr 2024
Abstract
Super duplex stainless steel (SDSS) is a suitable structural material for various engineering applications due to its outstanding strength and corrosion resistance. In particular, its high-temperature strength can enhance the safety of electronic products and cars. SDSS AISI2507, known for its excellent strength [...] Read more.
Super duplex stainless steel (SDSS) is a suitable structural material for various engineering applications due to its outstanding strength and corrosion resistance. In particular, its high-temperature strength can enhance the safety of electronic products and cars. SDSS AISI2507, known for its excellent strength and high corrosion resistance, was analyzed for its microstructure and electrochemical behavior at the ignition temperature of Li-ion batteries, 700 °C. At 700 °C, AISI2507 exhibited secondary phase precipitation values of 1% and 8% after 5 and 10 h, respectively. Secondary phase precipitation was initiated by the expansion of austenite, forming sigma, chi, and CrN phases. The electrochemical behavior varied with the fraction of secondary phases. Secondary phase precipitation reduced the potential (From −0.25 V to −0.31 V) and increased the current density (From 8 × 10−6 A/cm2 to 3 × 10−6 A/cm2) owing to galvanic corrosion by sigma and chi. As the fraction of secondary phases increased (From 0.0% to 8.1%), the open circuit potential decreased (From −0.25 V to −0.32 V). Secondary phase precipitation is a crucial factor in reducing the corrosion resistance of SDSS AISI2507 and occurs after 1 h of exposure at 700 °C. Full article
(This article belongs to the Special Issue Corrosion Technology and Electrochemistry of Metals and Alloys)
25 pages, 2086 KiB  
Article
Satellite Image Fusion Airborne LiDAR Point-Clouds-Driven Machine Learning Modeling to Predict the Carbon Stock of Typical Subtropical Plantation in China
by Guangpeng Fan, Binghong Zhang, Jialing Zhou, Ruoyoulan Wang, Qingtao Xu, Xiangquan Zeng, Feng Lu, Weisheng Luo, Huide Cai, Yongguo Wang, Zhihai Dong and Chao Gao
Forests 2024, 15(5), 751; https://doi.org/10.3390/f15050751 (registering DOI) - 25 Apr 2024
Abstract
In the current context of carbon neutrality, afforestation is an effective means of absorbing carbon dioxide. Stock can be used not only as an economic value index of forest wood resources but also as an important index of biomass and carbon storage estimation [...] Read more.
In the current context of carbon neutrality, afforestation is an effective means of absorbing carbon dioxide. Stock can be used not only as an economic value index of forest wood resources but also as an important index of biomass and carbon storage estimation in forest emission reduction project evaluation. In this paper, we propose a data-driven machine learning framework and method for predicting plantation stock based on airborne LiDAR + satellite remote sensing, and carried out experimental verification at the site of the National Forest emission reduction project in Southern China. We used step-up regression and random forest (RF) to screen LiDAR and Landsat 8 OLI multispectral indicators suitable for the prediction of plantation stock, and constructed a plantation stock model based on machine learning (support vector machine regression, RF regression). Our method is compared with traditional statistical methods (stepwise regression and partial least squares regression). Through the verification of 57 plantation field survey data, the accuracy of the stand estimation model constructed using the RF method is generally better (ΔR2 = 0.01~0.27, ΔRMSE = 1.88~13.77 m3·hm−2, ΔMAE = 1.17~13.57 m3·hm−2). The model evaluation accuracy based on machine learning is higher than that of the traditional statistical method, and the fitting R2 is greater than 0.91, while the fitting R2 of the traditional statistical method is 0.85. The best fitting models were all support vector regression models. The combination of UAV point clouds and satellite multi-spectral images has the best modeling effect, followed by LiDAR point clouds and Landsat 8. At present, this method is only applicable to artificial forests; further verification is needed for natural forests. In the future, the density and quality of higher clouds could be increased. The validity and accuracy of the method were further verified. This paper provides a method for predicting the accumulation of typical Chinese plantations at the forest farm scale based on the “airborne LiDAR + satellite remote sensing” data-driven machine learning modeling, which has potential application value for the current carbon neutrality goal of the southern plantation forest emission reduction project. Full article
23 pages, 7465 KiB  
Article
Enrichment and Evaluation of Antitumor Properties of Total Flavonoids from Juglans mandshurica Maxim
by Shuli Yang, Guodong Chu, Jiacheng Wu, Guofeng Zhang, Linna Du and Ruixin Lin
Molecules 2024, 29(9), 1976; https://doi.org/10.3390/molecules29091976 (registering DOI) - 25 Apr 2024
Abstract
Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs [...] Read more.
Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs by macroporous resins were first obtained. The loading concentration, flow rate, and loading volume of raw flavonoid extracts were 1.4 mg/mL, 2.4 BV/h, and 5 BV, respectively, and for desorption, 60% ethanol (4 BV) was selected to elute JMFs-loaded AB-8 resin at a flow rate of 2.4 BV/h. This adsorption behavior can be explained by the pseudo-second-order kinetic model and Langmuir isotherm model. Subsequently, JMFs were identified using Fourier transform infrared combined with high-performance liquid chromatography and tandem mass spectrometry, and a total of 156 flavonoids were identified. Furthermore, the inhibitory potential of JMFs on the proliferation, migration, and invasion of HepG2 cells was demonstrated. The results also show that exposure to JMFs induced apoptotic cell death, which might be associated with extrinsic and intrinsic pathways. Additionally, flow cytometry detection found that JMFs exposure triggered S phase arrest and the generation of reactive oxygen species in HepG2 cells. These findings suggest that the JMFs purified in this study represent great potential for the treatment of liver cancer. Full article
(This article belongs to the Section Natural Products Chemistry)
18 pages, 2170 KiB  
Article
Clustering-Based Classification of Polygonal Wheels in a Railway Freight Vehicle Using a Wayside System
by António Guedes, Rúben Silva, Diogo Ribeiro, Jorge Magalhães, Tomás Jorge, Cecília Vale, Andreia Meixedo, Araliya Mosleh and Pedro Montenegro
Appl. Sci. 2024, 14(9), 3650; https://doi.org/10.3390/app14093650 (registering DOI) - 25 Apr 2024
Abstract
Polygonal wheels are one of the most common defects in train wheels, causing a reduction in comfort levels for passengers and a higher degradation of vehicle and track components. With the aim of contributing to the safety and reliability of railway transport, this [...] Read more.
Polygonal wheels are one of the most common defects in train wheels, causing a reduction in comfort levels for passengers and a higher degradation of vehicle and track components. With the aim of contributing to the safety and reliability of railway transport, this paper presents the development of an innovative methodology for classifying polygonal wheels based on a wayside system. To achieve that, a numerical train-track interaction model was adopted to simulate the passage of a freight train over a virtual wayside monitoring system composed of a set of accelerometers installed on the rails. Then, the acquired acceleration time series was transformed to a frequency domain using a Fast Fourier transform (FFT), and on this data, damage-sensitive features were extracted. The features based on Principal Component Analysis (PCA) showed great sensitivity to the harmonic order, while the ones based on Continuous Wavelet Transform (CWT) model showed great sensitivity to the defect amplitude. One step further, all features are merged using the Mahalanobis distance in order to obtain a damage index strongly correlated with the polygonal defect. Finally, a cluster analysis allowed the automatic classification of polygonal wheels, according to the harmonic order (harmonic-based) and defect amplitude (amplitude-based). The proposed methodology demonstrated high efficiency in identifying different types of polygonal wheels using a minimum layout of two sensors. Full article
17 pages, 1780 KiB  
Article
Statistical Genetic Approaches to Investigate Genotype-by-Environment Interaction: Review and Novel Extension of Models
by Vincent P. Diego, Eron G. Manusov, Marcio Almeida, Sandra Laston, David Ortiz, John Blangero and Sarah Williams-Blangero
Genes 2024, 15(5), 547; https://doi.org/10.3390/genes15050547 (registering DOI) - 25 Apr 2024
Abstract
Statistical genetic models of genotype-by-environment (G×E) interaction can be divided into two general classes, one on G×E interaction in response to dichotomous environments (e.g., sex, disease-affection status, or presence/absence of an exposure) and the other in response to continuous environments (e.g., physical activity, [...] Read more.
Statistical genetic models of genotype-by-environment (G×E) interaction can be divided into two general classes, one on G×E interaction in response to dichotomous environments (e.g., sex, disease-affection status, or presence/absence of an exposure) and the other in response to continuous environments (e.g., physical activity, nutritional measurements, or continuous socioeconomic measures). Here we develop a novel model to jointly account for dichotomous and continuous environments. We develop the model in terms of a joint genotype-by-sex (for the dichotomous environment) and genotype-by-social determinants of health (SDoH; for the continuous environment). Using this model, we show how a depression variable, as measured by the Beck Depression Inventory-II survey instrument, is not only underlain by genetic effects (as has been reported elsewhere) but is also significantly determined by joint G×Sex and G×SDoH interaction effects. This model has numerous applications leading to potentially transformative research on the genetic and environmental determinants underlying complex diseases. Full article
(This article belongs to the Special Issue Statistical Genetics of Human Complex Traits)
Show Figures

Figure 1

15 pages, 806 KiB  
Article
An Improved Analytical Thermal Rating Method for Cable Joints
by Fawu He, Yue Xie, Pengyu Wang, Zhiheng Wu, Shuzhen Bao, Wei Wang, Xiaofeng Xu, Xiaokai Meng and Gang Liu
Energies 2024, 17(9), 2040; https://doi.org/10.3390/en17092040 (registering DOI) - 25 Apr 2024
Abstract
To improve the utilization rate of cable lines while retaining sufficient security, the accurate thermal assessment of cable is significant for cable operation condition evaluation. The thermal rating for a cable joint, which is regarded as a hot spot of cable lines, is [...] Read more.
To improve the utilization rate of cable lines while retaining sufficient security, the accurate thermal assessment of cable is significant for cable operation condition evaluation. The thermal rating for a cable joint, which is regarded as a hot spot of cable lines, is not covered by the scope of IEC 60287. While the existing publications for cable joint thermal evaluation also have some limitations. In this paper, the quasi-three-dimensional thermal model of the cable joint was established and the iterative solution method for the model is presented. Based on the model, an improved thermal rating method for the cable joint was proposed, which was implemented with monitored surface temperature and load data. The improved method was verified by the finite element method and the results showed an error of less than 5%. The superiority of the improved method was conducted by the comparison between the previously published method and the improved method. The improved method showed a better accuracy than the previously published method. The proposed method in this paper can be complementary to the IEC method, and is easy to use for the operating evaluation of cable joints in the field with the on-line condition monitoring technology. Full article
(This article belongs to the Special Issue Electrical Engineering, High Voltage and Insulation Technology)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop