Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
18 pages, 3520 KiB  
Article
Generalized Category Discovery in Aerial Image Classification via Slot Attention
by Yifan Zhou, Haoran Zhu, Yan Zhang, Shuo Liang, Yujing Wang and Wen Yang
Drones 2024, 8(4), 160; https://doi.org/10.3390/drones8040160 (registering DOI) - 19 Apr 2024
Abstract
Aerial images record the dynamic Earth terrain, reflecting changes in land cover patterns caused by natural processes and human activities. Nonetheless, prevailing aerial image classification methodologies predominantly function within a closed-set framework, thereby encountering challenges when confronted with the identification of newly emerging [...] Read more.
Aerial images record the dynamic Earth terrain, reflecting changes in land cover patterns caused by natural processes and human activities. Nonetheless, prevailing aerial image classification methodologies predominantly function within a closed-set framework, thereby encountering challenges when confronted with the identification of newly emerging scenes. To address this, this paper explores an aerial image recognition scenario in which a dataset comprises both labeled and unlabeled aerial images, intending to classify all images within the unlabeled subset, termed Generalized Category Discovery (GCD). It is noteworthy that the unlabeled images may pertain to labeled classes or represent novel classes. Specifically, we first develop a contrastive learning framework drawing upon the cutting-edge algorithms in GCD. Based on the multi-object characteristics of aerial images, we then propose a slot attention-based GCD training process (Slot-GCD) that contrasts learning at both the object and image levels. It decouples multiple local object features from feature maps using slots and then reconstructs the overall semantic feature of the image based on slot confidence scores and the feature map. Finally, these object-level and image-level features are input into the contrastive learning module to enable the model to learn more precise image semantic features. Comprehensive evaluations across three public aerial image datasets highlight the superiority of our approach over state-of-the-art methods. Particularly, Slot-GCD achieves a recognition accuracy of 91.5% for known old classes and 81.9% for unknown novel class data on the AID dataset. Full article
Show Figures

Figure 1

16 pages, 4006 KiB  
Article
Descriptive Epidemiology of Pathogens Associated with Acute Respiratory Infection in a Community-Based Study of K–12 School Children (2015–2023)
by Cristalyne Bell, Maureen Goss, Derek Norton, Shari Barlow, Emily Temte, Cecilia He, Caroline Hamer, Sarah Walters, Alea Sabry, Kelly Johnson, Guanhua Chen, Amra Uzicanin and Jonathan Temte
Pathogens 2024, 13(4), 340; https://doi.org/10.3390/pathogens13040340 (registering DOI) - 19 Apr 2024
Abstract
School-based outbreaks often precede increased incidence of acute respiratory infections in the greater community. We conducted acute respiratory infection surveillance among children to elucidate commonly detected pathogens in school settings and their unique characteristics and epidemiological patterns. The ORegon CHild Absenteeism due to [...] Read more.
School-based outbreaks often precede increased incidence of acute respiratory infections in the greater community. We conducted acute respiratory infection surveillance among children to elucidate commonly detected pathogens in school settings and their unique characteristics and epidemiological patterns. The ORegon CHild Absenteeism due to Respiratory Disease Study (ORCHARDS) is a longitudinal, laboratory-supported, school-based, acute respiratory illness (ARI) surveillance study designed to evaluate the utility of cause-specific student absenteeism monitoring for early detection of increased activity of influenza and other respiratory viruses in schools from kindergarten through 12th grade. Eligible participants with ARIs provided demographic, epidemiologic, and symptom data, along with a nasal swab or oropharyngeal specimen. Multipathogen testing using reverse-transcription polymerase chain reaction (RT-PCR) was performed on all specimens for 18 respiratory viruses and 2 atypical bacterial pathogens (Chlamydia pneumoniae and Mycoplasma pneumoniae). Between 5 January 2015 and 9 June 2023, 3498 children participated. Pathogens were detected in 2455 of 3498 (70%) specimens. Rhinovirus/enteroviruses (36%) and influenza viruses A/B (35%) were most commonly identified in positive specimens. Rhinovirus/enteroviruses and parainfluenza viruses occurred early in the academic year, followed by seasonal coronaviruses, RSV, influenza viruses A/B, and human metapneumovirus. Since its emergence in 2020, SARS-CoV-2 was detected year-round and had a higher median age than the other pathogens. A better understanding of the etiologies, presentations, and patterns of pediatric acute respiratory infections can help inform medical and public health system responses. Full article
(This article belongs to the Special Issue Recent Advances in Pediatric Infectious Diseases)
Show Figures

Figure 1

8 pages, 395 KiB  
Article
The Obesity Mortality Paradox in Patients with Pulmonary Embolism: Insights from a Tertiary Care Center
by Fahad Alkhalfan, Syed Bukhari, Akiva Rosenzveig, Rohitha Moudgal, Syed Zamrak Khan, Mohamed Ghoweba, Pulkit Chaudhury, Scott J. Cameron and Leben Tefera
J. Clin. Med. 2024, 13(8), 2375; https://doi.org/10.3390/jcm13082375 (registering DOI) - 19 Apr 2024
Abstract
Background: While obesity is associated with an increased risk of venous thromboembolism (VTE), there is some data to suggest that higher BMI is also associated with decreased all-cause mortality in patients with a pulmonary embolism (PE). Methods: Using PE Response Team (PERT) activation [...] Read more.
Background: While obesity is associated with an increased risk of venous thromboembolism (VTE), there is some data to suggest that higher BMI is also associated with decreased all-cause mortality in patients with a pulmonary embolism (PE). Methods: Using PE Response Team (PERT) activation data from a large tertiary hospital between 27 October 2020 and 28 August 2023, we constructed a multivariate Cox proportional hazards model to assess the association between obesity as a dichotomous variable (defined as BMI ≥ 30 vs. BMI 18.5–29.9), BMI as a continuous variable, and 30-day PE-related mortality. Results: A total of 248 patients were included in this analysis (150 with obesity and 98 who were in the normal/overweight category). Obesity was associated with a lower risk of 30-day PE-related mortality (adjusted HR 0.29, p = 0.036, 95% CI 0.09–0.92). A higher BMI was paradoxically associated with a lower risk of PE-related mortality (HR = 0.91 per 1 kg/m2 increase, p = 0.049, 95% CI 0.83–0.999). Conclusions: In our contemporary cohort of patients with a PERT activation, obesity was associated with a lower risk of PE-related mortality. Full article
Show Figures

Figure 1

7 pages, 5822 KiB  
Brief Report
Determination of Ploidy Levels and Nuclear DNA Content in Cryptococcus neoformans by Flow Cytometry: Drawbacks with Variability
by Yun C. Chang, Michael J. Davis and Kyung J. Kwon-Chung
J. Fungi 2024, 10(4), 296; https://doi.org/10.3390/jof10040296 (registering DOI) - 19 Apr 2024
Abstract
Flow cytometry is commonly employed for ploidy determination and cell cycle analysis in cryptococci. The cells are subjected to fixation and staining with DNA-binding fluorescent dyes, most commonly with propidium iodide (PI), before undergoing flow cytometric analysis. In ploidy determination, cell populations are [...] Read more.
Flow cytometry is commonly employed for ploidy determination and cell cycle analysis in cryptococci. The cells are subjected to fixation and staining with DNA-binding fluorescent dyes, most commonly with propidium iodide (PI), before undergoing flow cytometric analysis. In ploidy determination, cell populations are classified according to variations in DNA content, as evidenced by the fluorescence intensity of stained cells. As reported in Saccharomyces cerevisiae, we found drawbacks with PI staining that confounded the accurate analysis of ploidy by flow cytometry when the size of the cryptococci changed significantly. However, the shift in the fluorescence intensity, unrelated to ploidy changes in cells with increased size, could be accurately interpreted by applying the ImageStream system. SYTOX Green or SYBR Green I, reported to enable DNA analysis with a higher accuracy than PI in S. cerevisiae, were nonspecific for nuclear DNA staining in cryptococci. Until dyes or methods capable of reducing the variability inherent in the drastic changes in cell size or shape become available, PI appears to remain the most reliable method for cell cycle or ploidy analysis in Cryptococcus. Full article
Show Figures

Figure 1

11 pages, 5764 KiB  
Article
Simulation of Damage Caused by Oil Fire in Cable Passage to Tunnel Cable
by Feng Liu, Jiaqing Zhang, Mengfei Gu, Yushun Liu, Tao Sun and Liangpeng Ye
Fire 2024, 7(4), 147; https://doi.org/10.3390/fire7040147 (registering DOI) - 19 Apr 2024
Abstract
In order to evaluate the damage to tunnel cables caused by fire caused by leakage of transformer oil into a cable channel, the fire characteristics of different volumes of transformer oil flowing into a cable channel were analyzed by numerical simulation. The results [...] Read more.
In order to evaluate the damage to tunnel cables caused by fire caused by leakage of transformer oil into a cable channel, the fire characteristics of different volumes of transformer oil flowing into a cable channel were analyzed by numerical simulation. The results show that when the total leakage of transformer oil is less than or equal to 3 L, the fire will end within 120 s, and when the total leakage is greater than or equal to 5 L, the fire duration will exceed 900 s. When the leakage amount is 1 L, the cable only burns slightly, and when the leakage amount is 3~12 L, the cable burns obviously. The combustion of the cable is mainly concentrated between 15 s and 75 s, and the overall combustion rate of the cable increases first and then decreases. When the total leakage is greater than or equal to 8 L, the damage distance of the middle and lower layer cable is the smallest. When the total leakage is less than or equal to 5 L, the damage distance of the lower layer cable is the smallest, and the damage distance of the lower layer cable, middle and lower layer cable, and middle and upper layer cable is less than half of the length of the cable channel. Full article
(This article belongs to the Special Issue Cable and Electrical Fires)
Show Figures

Figure 1

9 pages, 1625 KiB  
Article
IMD: A Dating Code to Facilitate the Study of Transient Phenomena on the Surface of Mars
by Adriano Nardi, Paolo Bagiacchi and Antonio Piersanti
Geosciences 2024, 14(4), 108; https://doi.org/10.3390/geosciences14040108 (registering DOI) - 19 Apr 2024
Abstract
Today, we have satellite images of Mars with a resolution of up to 24 cm per pixel. The planet has a thin atmosphere compared to Earth’s, but its surface is revealing itself to be active and complex. The use of images is an [...] Read more.
Today, we have satellite images of Mars with a resolution of up to 24 cm per pixel. The planet has a thin atmosphere compared to Earth’s, but its surface is revealing itself to be active and complex. The use of images is an increasingly precise means of investigation for the study of transient phenomena that occur on the surface of the planet. We have developed a dating code that could be useful in the study of such phenomena. Thanks to this dating code, it is possible to immediately understand what season is in progress in the observed area starting from the terrestrial reference date of the photos taken by the orbiters. Some intermediate parameters of this calculation, such as the Martian year and the day of the year, can be equally useful for similar investigations. Satellite study of transient phenomena observable on the surface of Mars can range from geology (wind erosion and sedimentation) to meteorology (wind and phase transitions) to indigenous or non-indigenous biology. Full article
(This article belongs to the Section Climate)
Show Figures

Figure 1

19 pages, 4852 KiB  
Article
Adsorption of Fluoride from Water Using Aluminum-Coated Silica Adsorbents: Comparison of Silica Sand and Microcrystalline Silica
by Kiana Modaresahmadi, Amid P. Khodadoust and James Wescott
Separations 2024, 11(4), 125; https://doi.org/10.3390/separations11040125 (registering DOI) - 19 Apr 2024
Abstract
Two aluminum-coated silica adsorbents were evaluated using silica sand and microcrystalline silica as aluminum-oxide-based adsorbents with different crystalline silica base materials. The aluminum coating contained mainly amorphous aluminum oxides for both aluminum-coated silica adsorbents. The adsorption of fluoride onto both adsorbents was favorable [...] Read more.
Two aluminum-coated silica adsorbents were evaluated using silica sand and microcrystalline silica as aluminum-oxide-based adsorbents with different crystalline silica base materials. The aluminum coating contained mainly amorphous aluminum oxides for both aluminum-coated silica adsorbents. The adsorption of fluoride onto both adsorbents was favorable according to the Langmuir and Freundlich adsorption equations, while the physical adsorption of fluoride occurred for both adsorbents according to the Dubinin–Raduskevish (D-R) equation. The adsorption of fluoride was stronger for aluminum-coated silica sand based on adsorption parameters from the Langmuir, Freundlich, and D-R adsorption equations, with the stronger binding of fluoride likely due to the observed greater specific adsorption. The adsorption capacity determined using the Langmuir equation was about 7 times greater for aluminum-coated microcrystalline silica primarily due to the 1.22-orders-of-magnitude-larger surface area of aluminum-coated microcrystalline silica, whereas the surface-normalized adsorption capacity was 2.4 times greater for aluminum-coated silica sand, possibly due to more aluminum being present on the surface of silica sand. Fluoride adsorption occurred over a broad pH range from 3 to 10 for both adsorbents, with nearly the same pHPZC of 9.6, while aluminum-coated microcrystalline silica displayed a higher selectivity for fluoride adsorption from different natural water sources. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

22 pages, 3404 KiB  
Article
Pathogenic and Apathogenic Strains of Lymphocytic Choriomeningitis Virus Have Distinct Entry and Innate Immune Activation Pathways
by Dylan M. Johnson, Nittaya Khakhum, Min Wang, Nikole L. Warner, Jenny D. Jokinen, Jason E. Comer and Igor S. Lukashevich
Viruses 2024, 16(4), 635; https://doi.org/10.3390/v16040635 (registering DOI) - 19 Apr 2024
Abstract
Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while [...] Read more.
Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification. LCMV-ARM induces robust NF-κB and interferon response factor (IRF) activation while LCMV-WE seems to avoid early innate sensing and failed to induce strong NF-κB and IRF responses in dual-reporter monocyte and epithelial cells. Toll-like receptor 2 (TLR-2) signaling appears to play a critical role in NF-κB activation and the silencing of TLR-2 shuts down IL-6 production in ARM but not in WE-infected cells. Pathogenic LCMV-WE infection is poorly recognized in early endosomes and failed to induce TLR-2/Mal-dependent pro-inflammatory cytokines. Following infection, Interleukin-1 receptor-associated kinase 1 (IRAK-1) expression is diminished in LCMV-ARM- but not LCMV-WE-infected cells, which indicates it is likely involved in the LCMV-ARM NF-κB activation. By confocal microscopy, ARM and WE strains have similar intracellular trafficking although LCMV-ARM infection appears to coincide with greater co-localization of early endosome marker EEA1 with TLR-2. Both strains co-localize with Rab-7, a late endosome marker, but the interaction with LCMV-WE seems to be more prolonged. These findings suggest that LCMV-ARM’s intracellular trafficking pathway may facilitate interaction with innate immune sensors, which promotes the induction of effective innate and adaptive immune responses. Full article
(This article belongs to the Special Issue Arenaviruses 2024)
Show Figures

Figure 1

18 pages, 16362 KiB  
Article
Global El Niño–Southern Oscillation Teleconnections in CMIP6 Models
by Ilya V. Serykh and Dmitry M. Sonechkin
Atmosphere 2024, 15(4), 500; https://doi.org/10.3390/atmos15040500 (registering DOI) - 19 Apr 2024
Abstract
The results of a piControl experiment investigating general circulation models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) were examined. The global interannual variability in the monthly surface temperature (ST) and sea level pressure (SLP) anomalies was considered. The [...] Read more.
The results of a piControl experiment investigating general circulation models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) were examined. The global interannual variability in the monthly surface temperature (ST) and sea level pressure (SLP) anomalies was considered. The amplitudes of the fluctuations in the anomalies of these meteorological fields between opposite phases of the El Niño–Southern Oscillation (ENSO) were calculated. It was shown that most CMIP6 models reproduced fluctuations in the ST and SLP anomalies between El Niño and La Niña not only in the equatorial Pacific, but also throughout the tropics, as well as in the middle and high latitudes. Some of the CMIP6 models reproduced the global structures of the ST and SLP anomaly oscillations quite accurately between opposite phases of ENSO, as previously determined from observational data and reanalyses. It was found that the models AS-RCEC TaiESM1, CAMS CAMS-CSM1-0, CAS FGOALS-f3-L, CMCC CMCC-ESM2, KIOST KIOST-ESM, NASA GISS-E2-1-G, NCAR CESM2-WACCM-FV2, and NCC NorCPM1 reproduced strong ENSO teleconnections in regions beyond the tropical Pacific. Full article
Show Figures

Figure 1

40 pages, 18005 KiB  
Article
Mutations in Glycosyltransferases and Glycosidases: Implications for Associated Diseases
by Xiaotong Gu, Aaron S. Kovacs, Yoochan Myung and David B. Ascher
Biomolecules 2024, 14(4), 497; https://doi.org/10.3390/biom14040497 (registering DOI) - 19 Apr 2024
Abstract
Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein [...] Read more.
Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein stability and solubility. Mutations in these enzymes have been implicated in a spectrum of diseases, prompting critical research into the structural and functional consequences of such genetic variations. This study compiles an extensive dataset from ClinVar and UniProt, providing a nuanced analysis of 2603 variants within 343 GT and GH genes. We conduct thorough MTR score analyses for the proteins with the most documented variants using MTR3D-AF2 via AlphaFold2 (AlphaFold v2.2.4) predicted protein structure, with the analyses indicating that pathogenic mutations frequently correlate with Beta Bridge secondary structures. Further, the calculation of the solvent accessibility score and variant visualisation show that pathogenic mutations exhibit reduced solvent accessibility, suggesting the mutated residues are likely buried and their localisation is within protein cores. We also find that pathogenic variants are often found proximal to active and binding sites, which may interfere with substrate interactions. We also incorporate computational predictions to assess the impact of these mutations on protein function, utilising tools such as mCSM to predict the destabilisation effect of variants. By identifying these critical regions that are prone to disease-associated mutations, our study opens avenues for designing small molecules or biologics that can modulate enzyme function or compensate for the loss of stability due to these mutations. Full article
(This article belongs to the Special Issue Protein Glycosylation and Human Diseases)
Show Figures

Figure 1

27 pages, 1852 KiB  
Review
Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet–Pharmacotherapy Interactions
by Simona Cristina (Nicolescu) Marinescu, Miruna-Maria Apetroaei, Marina Ionela (Ilie) Nedea, Andreea Letiția Arsene, Bruno Ștefan Velescu, Sorina Hîncu, Emilia Stancu, Anca Lucia Pop, Doina Drăgănescu and Denisa Ioana Udeanu
Nutrients 2024, 16(8), 1213; https://doi.org/10.3390/nu16081213 (registering DOI) - 19 Apr 2024
Abstract
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as [...] Read more.
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients’ compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases. Full article
Show Figures

Figure 1

14 pages, 11129 KiB  
Article
The Catalytic Effect of Pt on Lignin Pyrolysis: A Reactive Molecular Dynamics Study
by Weiming Zhan, Kejiang Li, Rita Khanna, Yuri Konyukhov, Zeng Liang, Yushan Bu, Zhen Sun, Chunhe Jiang and Jianliang Zhang
Sustainability 2024, 16(8), 3419; https://doi.org/10.3390/su16083419 (registering DOI) - 19 Apr 2024
Abstract
Lignin is the second-largest renewable resource in nature, second only to cellulose. Lignin is one of the most significant components of biomass, and it determines the behaviour of biomass in many thermochemical processes. However, limited studies have focused on the influence of metal [...] Read more.
Lignin is the second-largest renewable resource in nature, second only to cellulose. Lignin is one of the most significant components of biomass, and it determines the behaviour of biomass in many thermochemical processes. However, limited studies have focused on the influence of metal catalysts on lignin pyrolysis. This study aims to develop a sustainable lignin catalytic pyrolysis technology to improve biomass energy-conversion efficiency, reduce dependence on fossil fuels, and promote the development of clean energy. In this study, the impact of Pt catalyst on the pyrolysis process of hardwood lignin was simulated by using reactive force field (ReaxFF) molecular dynamics. Through the comparison of the system without catalysts, the catalyst exhibited evident attraction to lignin macromolecules, prompting their decomposition at lower temperatures. Additionally, the catalyst has the strongest adsorption capacity for H radical. The activation energy of the reaction was calculated by kinetic analysis. It was found that the addition of catalysts significantly reduced the activation energy of the reaction. By revealing the effect of Pt catalyst on the lignin pyrolysis process, it provides a theoretical basis for biomass pyrolysis and the utilization of metal catalysts in industry. Full article
Show Figures

Figure 1

18 pages, 324 KiB  
Article
“It’s a Lot of Closets to Come out of in This Life”: Experiences of Brazilian Gay Men Living with Human Immunodeficiency Virus at the Time of Diagnosis and Its Biopsychosocial Impacts
by Felipe Alckmin-Carvalho, Henrique Pereira and Lucia Nichiata
Eur. J. Investig. Health Psychol. Educ. 2024, 14(4), 1068-1085; https://doi.org/10.3390/ejihpe14040070 (registering DOI) - 19 Apr 2024
Abstract
We investigated the experiences of Brazilian gay men with HIV, focusing on the moment of diagnosis and its potential biopsychosocial impacts. This clinical–qualitative study involved 15 participants interviewed online and synchronously by a clinical psychologist in 2021. Thematic analysis was employed to analyze [...] Read more.
We investigated the experiences of Brazilian gay men with HIV, focusing on the moment of diagnosis and its potential biopsychosocial impacts. This clinical–qualitative study involved 15 participants interviewed online and synchronously by a clinical psychologist in 2021. Thematic analysis was employed to analyze the data. Interpretations were grounded in Minority Stress Theory. Four thematic axes emerged, including “Diagnostic Revelation”, “Social and Internalized Stigma”, “Biopsychosocial Effects of Living with HIV”, and “Gratitude for Treatment Advances and the Brazilian Health System”. The diagnosis was often experienced as traumatic, exacerbated by the absence of empathy and emotional support from healthcare providers. Participants commonly reported guilt, fear upon learning of their HIV status, social isolation, loneliness, lack of social support, and damage to affective-sexual relationships. Many also noted a decline in mental health, even those without HIV-related medical complications. Despite over 40 years since the HIV epidemic began, the prevalence of homophobia and serophobia among gay men remains widespread, including within the multidisciplinary teams of specialized services. This indicates that the stigma associated with homosexuality and HIV persists, despite significant biomedical progress in the diagnosis and treatment of the infection, particularly in Brazil. Full article
(This article belongs to the Special Issue Disparities in Mental Health and Well-Being)
12 pages, 420 KiB  
Article
Impact of Isolated Exercise-Induced Small Airway Dysfunction on Exercise Performance in Professional Male Cyclists
by Konstantinos M. Pigakis, Vasileios T. Stavrou, Aggeliki K. Kontopodi, Ioannis Pantazopoulos, Zoe Daniil and Konstantinos Gourgoulianis
Sports 2024, 12(4), 112; https://doi.org/10.3390/sports12040112 (registering DOI) - 19 Apr 2024
Abstract
Background: Professional cycling puts significant demands on the respiratory system. Exercise-induced bronchoconstriction (EIB) is a common problem in professional athletes. Small airways may be affected in isolation or in combination with a reduction in forced expiratory volume at the first second (FEV1 [...] Read more.
Background: Professional cycling puts significant demands on the respiratory system. Exercise-induced bronchoconstriction (EIB) is a common problem in professional athletes. Small airways may be affected in isolation or in combination with a reduction in forced expiratory volume at the first second (FEV1). This study aimed to investigate isolated exercise-induced small airway dysfunction (SAD) in professional cyclists and assess the impact of this phenomenon on exercise capacity in this population. Materials and Methods: This research was conducted on professional cyclists with no history of asthma or atopy. Anthropometric characteristics were recorded, the training age was determined, and spirometry and specific markers, such as fractional exhaled nitric oxide (FeNO) and immunoglobulin E (IgE), were measured for all participants. All of the cyclists underwent cardiopulmonary exercise testing (CPET) followed by spirometry. Results: Compared with the controls, 1-FEV3/FVC (the fraction of the FVC that was not expired during the first 3 s of the FVC) was greater in athletes with EIB, but also in those with isolated exercise-induced SAD. The exercise capacity was lower in cyclists with isolated exercise-induced SAD than in the controls, but was similar to that in cyclists with EIB. This phenomenon appeared to be associated with a worse ventilatory reserve (VE/MVV%). Conclusions: According to our data, it appears that professional cyclists may experience no beneficial impacts on their respiratory system. Strenuous endurance exercise can induce airway injury, which is followed by a restorative process. The repeated cycle of injury and repair can trigger the release of pro-inflammatory mediators, the disruption of the airway epithelial barrier, and plasma exudation, which gradually give rise to airway hyper-responsiveness, exercise-induced bronchoconstriction, intrabronchial inflammation, peribronchial fibrosis, and respiratory symptoms. The small airways may be affected in isolation or in combination with a reduction in FEV1. Cyclists with isolated exercise-induced SAD had lower exercise capacity than those in the control group. Full article
Show Figures

Figure 1

12 pages, 1521 KiB  
Article
Micro-Computed Tomography Analysis of Peri-Implant Bone Defects Exposed to a Peri-Implantitis Microcosm, with and without Bone Substitute, in a Rabbit Model: A Pilot Study
by Camila Panes, Iván Valdivia-Gandur, Carlos Veuthey, Vanessa Sousa, Mariano del Sol and Víctor Beltrán
Bioengineering 2024, 11(4), 397; https://doi.org/10.3390/bioengineering11040397 (registering DOI) - 19 Apr 2024
Abstract
Peri-implantitis is an inflammatory condition characterized by inflammation in the peri-implant connective tissue and a progressive loss of supporting bone; it is commonly associated with the presence of biofilms on the surface of the implant, which is an important factor in the development [...] Read more.
Peri-implantitis is an inflammatory condition characterized by inflammation in the peri-implant connective tissue and a progressive loss of supporting bone; it is commonly associated with the presence of biofilms on the surface of the implant, which is an important factor in the development and progression of the disease. The objective of this study was to evaluate, using micro-CT, the bone regeneration of surgically created peri-implant defects exposed to a microcosm of peri-implantitis. Twenty-three adult New Zealand white rabbits were included in the study. Bone defects of 7 mm diameter were created in both tibiae, and a cap-shaped titanium device was placed in the center, counter-implanted with a peri-implantitis microcosm. The bone defects received a bone substitute and/or a resorbable synthetic PLGA membrane, according to random distribution. Euthanasia was performed 15 and 30 days postoperatively. Micro-CT was performed on all samples to quantify bone regeneration parameters. Bone regeneration of critical defects occurred in all experimental groups, with a significantly greater increase in cases that received bone graft treatment (p < 0.0001), in all measured parameters, at 15 and 30 days. No significant differences were observed in the different bone neoformation parameters between the groups that did not receive bone grafts (p > 0.05). In this experimental model, the presence of peri-implantitis microcosms was not a determining factor in the bone volume parameter, both in the groups that received regenerative treatment and in those that did not. Full article
(This article belongs to the Special Issue Biomaterials for Bone Repair and Regeneration)
Show Figures

Figure 1

14 pages, 2546 KiB  
Review
A Perspective Review: Analyzing Collagen Alterations in Ovarian Cancer by High-Resolution Optical Microscopy
by Kristal L. Gant, Manish S. Patankar and Paul J. Campagnola
Cancers 2024, 16(8), 1560; https://doi.org/10.3390/cancers16081560 (registering DOI) - 19 Apr 2024
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of [...] Read more.
High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of origin of HGSOC. Although there have been significant strides in our understanding of this disease, early stage detection and diagnosis are still rare. Current clinical imaging modalities lack the ability to detect early stage pathogenesis in the fallopian tubes and the ovaries. However, there are several microscopic imaging techniques used to analyze the structural modifications in the extracellular matrix (ECM) protein collagen in ex vivo FT and ovarian tissues that potentially can be modified to fit the clinical setting. In this perspective, we evaluate and compare the myriad of optical tools available to visualize these alterations and the invaluable insights these data provide on HGSOC initiation. We also discuss the clinical implications of these findings and how these data may help novel tools for early diagnosis of HGSOC. Full article
(This article belongs to the Special Issue Advances in Oncological Imaging)
Show Figures

Figure 1

18 pages, 4026 KiB  
Article
Characterization of Biodegradable Polymers for Porous Structure: Further Steps toward Sustainable Plastics
by Guilherme M. R. Lima, Adrivit Mukherjee, Francesco Picchioni and Ranjita K. Bose
Polymers 2024, 16(8), 1147; https://doi.org/10.3390/polym16081147 (registering DOI) - 19 Apr 2024
Abstract
Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics—polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, [...] Read more.
Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics—polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, and mechanical properties, we elucidate their structural intricacies, processing behaviors, and potential morphologies. Employing an environmentally friendly process utilizing supercritical carbon dioxide, we successfully produced porous materials with microcellular structures. PBAT, PBS, and PLA exhibit closed-cell morphologies, while PHBV presents open cells, reflecting their distinct overall properties. Notably, PBAT foam demonstrated an average porous area of 1030.86 μm2, PBS showed an average porous area of 673 μm2, PHBV displayed open pores with an average area of 116.6 μm2, and PLA exhibited an average porous area of 620 μm2. Despite the intricacies involved in correlating morphology with material properties, the observed variations in pore area sizes align with the findings from chemical, thermal, and mechanical characterization. This alignment enhances our understanding of the morphological characteristics of each sample. Therefore, here, we report an advancement and comprehensive research in bioplastics, offering deeper insights into their properties and potential morphologies with an easy sustainable foaming process. The alignment of the process with sustainability principles, coupled with the unique features of each polymer, positions them as environmentally conscious and versatile materials for a range of applications. Full article
(This article belongs to the Section Biomacromolecules, Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 9837 KiB  
Article
Robust Calibration Technique for Precise Transformation of Low-Resolution 2D LiDAR Points to Camera Image Pixels in Intelligent Autonomous Driving Systems
by Ravichandran Rajesh and Pudureddiyur Venkataraman Manivannan
Vehicles 2024, 6(2), 711-727; https://doi.org/10.3390/vehicles6020033 (registering DOI) - 19 Apr 2024
Abstract
In the context of autonomous driving, the fusion of LiDAR and camera sensors is essential for robust obstacle detection and distance estimation. However, accurately estimating the transformation matrix between cost-effective low-resolution LiDAR and cameras presents challenges due to the generation of uncertain points [...] Read more.
In the context of autonomous driving, the fusion of LiDAR and camera sensors is essential for robust obstacle detection and distance estimation. However, accurately estimating the transformation matrix between cost-effective low-resolution LiDAR and cameras presents challenges due to the generation of uncertain points by low-resolution LiDAR. In the present work, a new calibration technique is developed to accurately transform low-resolution 2D LiDAR points into camera pixels by utilizing both static and dynamic calibration patterns. Initially, the key corresponding points are identified at the intersection of 2D LiDAR points and calibration patterns. Subsequently, interpolation is applied to generate additional corresponding points for estimating the homography matrix. The homography matrix is then optimized using the Levenberg–Marquardt algorithm to minimize the rotation error, followed by a Procrustes analysis to minimize the translation error. The accuracy of the developed calibration technique is validated through various experiments (varying distances and orientations). The experimental findings demonstrate that the developed calibration technique significantly reduces the mean reprojection error by 0.45 pixels, rotation error by 65.08%, and distance error by 71.93% compared to the standard homography technique. Thus, the developed calibration technique promises the accurate transformation of low-resolution LiDAR points into camera pixels, thereby contributing to improved obstacle perception in intelligent autonomous driving systems. Full article
Show Figures

Graphical abstract

17 pages, 1808 KiB  
Article
NGS-Guided Precision Oncology in Breast Cancer and Gynecological Tumors—A Retrospective Molecular Tumor Board Analysis
by Niklas Gremke, Fiona R. Rodepeter, Julia Teply-Szymanski, Sebastian Griewing, Jelena Boekhoff, Alina Stroh, Thomas S. Tarawneh, Jorge Riera-Knorrenschild, Christina Balser, Akira Hattesohl, Martin Middeke, Petra Ross, Anne-Sophie Litmeyer, Marcel Romey, Thorsten Stiewe, Thomas Wündisch, Andreas Neubauer, Carsten Denkert, Uwe Wagner and Elisabeth K. M. Mack
Cancers 2024, 16(8), 1561; https://doi.org/10.3390/cancers16081561 (registering DOI) - 19 Apr 2024
Abstract
Background: Precision oncology treatments are being applied more commonly in breast and gynecological oncology through the implementation of Molecular Tumor Boards (MTBs), but real-world clinical outcome data remain limited. Methods: A retrospective analysis was conducted in patients with breast cancer (BC) and gynecological [...] Read more.
Background: Precision oncology treatments are being applied more commonly in breast and gynecological oncology through the implementation of Molecular Tumor Boards (MTBs), but real-world clinical outcome data remain limited. Methods: A retrospective analysis was conducted in patients with breast cancer (BC) and gynecological malignancies referred to our center’s MTB from 2018 to 2023. The analysis covered patient characteristics, next-generation sequencing (NGS) results, MTB recommendations, therapy received, and clinical outcomes. Results: Sixty-three patients (77.8%) had metastatic disease, and forty-four patients (54.3%) had previously undergone three or more lines of systemic treatment. Personalized treatment recommendations were provided to 50 patients (63.3%), while 29 (36.7%) had no actionable target. Ultimately, 23 patients (29.1%) underwent molecular-matched treatment (MMT). Commonly altered genes in patients with pan-gyn tumors (BC and gynecological malignancies) included TP53 (n = 42/81, 51.9%), PIK3CA (n = 18/81, 22.2%), BRCA1/2 (n = 10/81, 12.3%), and ARID1A (n = 9/81, 11.1%). Patients treated with MMT showed significantly prolonged progression-free survival (median PFS 5.5 vs. 3.5 months, p = 0.0014). Of all patients who underwent molecular profiling, 13.6% experienced a major clinical benefit (PFSr ≥ 1.3 and PR/SD ≥ 6 months) through precision oncology. Conclusions: NGS-guided precision oncology demonstrated improved clinical outcomes in a subgroup of patients with gynecological and breast cancers. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Gynecological Cancer)
Show Figures

Figure 1

18 pages, 4768 KiB  
Article
Evaluation of Printability of PVA-Based Tablets from Powder and Assessment of Critical Rheological Parameters
by Jonas Lenhart, Florian Pöstges, Karl G. Wagner and Dominique J. Lunter
Pharmaceutics 2024, 16(4), 553; https://doi.org/10.3390/pharmaceutics16040553 (registering DOI) - 19 Apr 2024
Abstract
Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer–active pharmaceutical ingredient (API)—mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process [...] Read more.
Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer–active pharmaceutical ingredient (API)—mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process is utilized to increase the bioavailability of pharmaceutically relevant active ingredients that are poorly soluble in physiological medium by transforming them into solid amorphous dispersions (ASD). The release from such ASDs is expected to be faster and higher compared to the raw materials and thus enhance bioavailability. Printing directly from powder while forming ASDs from loperamide in Polyvinylalcohol was realized. Different techniques such as a change in infill and the incorporation of sorbitol as a plastisizer to change release patterns as well as a non-destructive way for the determination of API distribution were shown. By measuring the melt viscosities of the mixtures printed, a rheological model for the printer used is proposed. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of 3D Printing)
Show Figures

Figure 1

25 pages, 331 KiB  
Article
Exploring the Influence of Construction Companies Characteristics on Their Response to the COVID-19 Pandemic in the Chilean Context
by Felipe Araya, Paula Poblete, Luis Arturo Salazar, Omar Sánchez, Leonardo Sierra-Varela and Álvaro Filun
Sustainability 2024, 16(8), 3417; https://doi.org/10.3390/su16083417 (registering DOI) - 19 Apr 2024
Abstract
The COVID-19 pandemic was a significant disruption to the construction industry around the globe with multiple impacts, such as workforce limitations and contractual conflicts. Multiple studies have explored the impacts of the pandemic in the construction sector so far. However, little is known [...] Read more.
The COVID-19 pandemic was a significant disruption to the construction industry around the globe with multiple impacts, such as workforce limitations and contractual conflicts. Multiple studies have explored the impacts of the pandemic in the construction sector so far. However, little is known about how construction companies responded to the pandemic and what companies’ characteristics may have influenced their responses. The objective of this study is to explore the impacts of COVID-19 and how construction companies responded to the pandemic. To do so, semi-structured interviews with experienced professional working in Chile are qualitatively analyzed to leverage their experience. Furthermore, characteristics of construction companies that influenced how companies responded to the pandemic, namely, size, experience, and financial standing, are explored. The results obtained suggest that the focus in responding to the pandemic was taking care of workers’ safety, improving the planning of projects under highly uncertain conditions, and dealing with the financial stress of developing construction projects. When looking at the influence of companies’ experience, size, and economic capacity, experienced and large companies’ responses were related to implementing teleworking and dealing with a limited workforce. Regarding the economic capacity of construction companies, the focus was placed on responding to the pandemic using multiple sources of financing. Differences identified in how construction companies responded to the pandemic emphasizes the importance of understanding attributes that led companies to having better responses to the pandemic and being prepared for the post-pandemic context. Full article
16 pages, 1103 KiB  
Article
Towards Sustainable Eating Habits of Generation Z: Perception of and Willingness to Pay for Plant-Based Meat Alternatives
by Oliver Meixner, Michael Malleier and Rainer Haas
Sustainability 2024, 16(8), 3414; https://doi.org/10.3390/su16083414 (registering DOI) - 19 Apr 2024
Abstract
Within the food sector, there is a growing embrace of meat substitutes as a more sustainable alternative to meat, driven by ethical, environmental, and health considerations. This study aims to explore consumer behavior and willingness to pay (WTP) for plant-based meat alternatives (PBMAs), [...] Read more.
Within the food sector, there is a growing embrace of meat substitutes as a more sustainable alternative to meat, driven by ethical, environmental, and health considerations. This study aims to explore consumer behavior and willingness to pay (WTP) for plant-based meat alternatives (PBMAs), illustrated by the example of vegan burger patties. The sample of the study (n = 433) consists of young consumers roughly below 30 years of age, known as Generation Z (Gen Z). The study aims to (1) assess of the importance of PBMA attributes to Gen Z, and (2) approximate Gen Z’s willingness to pay for specific PBMA attribute levels. A choice-based conjoint analysis was used to assess Gen Z’s preferences for meat substitutes. The findings indicate that the most crucial PBMA attribute is origin, followed by price and the primary vegan ingredient. Notably, Gen Z values domestic and EU-sourced products positively, contrasting with the negative perception of third-country imports. Organic production is associated with a positive part-worth utility, whereas the attribute fat content has almost no impact. Consequently, WTP is approximated to be the highest for products of domestic origin compared to the significant discount required for non-EU origin. All other attribute levels have a much lower impact. Despite sociodemographic variables, the respondents’ eating habits (vegan, vegetarian, etc.) most significantly influence the approximation of the importance of some of the PBMA attributes, in particular price and primary ingredient. Full article
Show Figures

Figure 1

13 pages, 3229 KiB  
Article
Stably Improving the Catalytic Activity of Oxygen Evolution Reactions via Two-Dimensional Graphene Oxide-Incorporated NiFe-Layered Double Hydroxides
by Ling Chen, Yue Lu, Manman Duanmu, Xin Zhao, Shenglu Song, Liyue Duan, Zhipeng Ma, Ailing Song and Guangjie Shao
Catalysts 2024, 14(4), 278; https://doi.org/10.3390/catal14040278 (registering DOI) - 19 Apr 2024
Abstract
NiFe-layered double hydroxides (NiFe-LDH) have been reported to possess exceptional oxygen evolution reaction (OER) activity. However, maintaining the stability of high activity over a long time remains a critical challenge that needs to be addressed for their practical application. Here, we report a [...] Read more.
NiFe-layered double hydroxides (NiFe-LDH) have been reported to possess exceptional oxygen evolution reaction (OER) activity. However, maintaining the stability of high activity over a long time remains a critical challenge that needs to be addressed for their practical application. Here, we report a custom-sized deep recombination of 2D graphene oxide with NiFe-LDH (NiFe-LDH/GO/NF) through a simple electrodeposition method that improves OER activity and achieves excellent stability. The excellent performance of the catalyst mainly comes from the three-phase interface and electron transport channel dredged by the three-dimensional structure constructed by the deep composite, which can not only significantly reduce its charge and electron transfer resistance, improving the material conductivity, but it also effectively increases the specific surface area, inhibits aggregation, and exposes rich active sites. In addition, GO with good conductivity not only supports NiFe-LDH well but also increases the heterogeneous interface, putting the NiFe-LDH/GO composites in close contact with Ni foam and increasing the electrocatalytic stability of the NiFe-LDH/GO/NF. The experimental results show that the overpotential of NiFe-LDH/20,000GO/NF is only 295 mV at a current density of 100 mA cm−2; the Tafel slope is 52 mV dec−1, and the charge transfer resistance (Rct) is only 0.601 Ω in 1 M KOH. This indicates that GO has excellent potential to assist in constructing geometric and electronic structures of NiFe-LDH in long-term applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop