Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
28 pages, 744 KiB  
Review
A Social Perspective on AI in the Higher Education System: A Semisystematic Literature Review
by Budur Turki Alshahrani, Salvatore Flavio Pileggi and Faezeh Karimi
Electronics 2024, 13(8), 1572; https://doi.org/10.3390/electronics13081572 (registering DOI) - 19 Apr 2024
Abstract
The application of Artificial Intelligence in Education (AIED) is experiencing widespread interest among students, educators, researchers, and policymakers. AIED is expected, among other things, to enhance learning environments in the higher education system. However, in line with the general trends, there are also [...] Read more.
The application of Artificial Intelligence in Education (AIED) is experiencing widespread interest among students, educators, researchers, and policymakers. AIED is expected, among other things, to enhance learning environments in the higher education system. However, in line with the general trends, there are also increasing concerns about possible negative and collateral effects. The consequent social impact cannot be currently assessed in depth. Balancing benefits with social considerations according to a socio-technical approach is essential for harnessing the true power of AI in a responsible and trustworthy context. This study proposes a semi-systematic literature review of the available knowledge on the adoption of artificial intelligence (AI) in the higher education system. It presents a stakeholder-centric analysis to explore multiple perspectives, including pedagogical, managerial, technological, governmental, external, and social ones. The main goal is to identify and discuss major gaps and challenges in context, looking at the existing body of knowledge and momentum. AIED should encompass pedagogical, ethical, and social dimensions to be properly addressed. This review highlights a not-always-explicit socio-technical perspective. Additionally, this study reveals a significant lack of empirical systematic evaluation of added value and institutional readiness. Because of the broad scope of the study and the intense ongoing debate on the topic, an exhaustive identification of the current body of knowledge is probably unrealistic, so this study aims mainly to identify the mainstream and major trends by looking at the most recent contributions. Full article
(This article belongs to the Special Issue Advanced Research in Technology and Information Systems)
13 pages, 336 KiB  
Article
Rigidity of Holomorphically Projective Mappings of Kähler Spaces with Finite Complete Geodesics
by Lenka Vítková, Irena Hinterleitner and Josef Mikeš
Mathematics 2024, 12(8), 1239; https://doi.org/10.3390/math12081239 (registering DOI) - 19 Apr 2024
Abstract
In this work, we consider holomorphically projective mappings of (pseudo-) Kähler spaces. We determine the conditions for finite complete geodesics that must be satisfied for the mappings to be trivial; i.e., these spaces are rigid. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds II)
27 pages, 2369 KiB  
Review
A Comprehensive Review of In Situ Measurement Techniques for Evaluating the Electro-Chemo-Mechanical Behaviors of Battery Electrodes
by Hainan Jiang, Jie Chen, Xiaolin Li, Zhiyao Jin, Tianjun Chen, Jiahui Liu and Dawei Li
Molecules 2024, 29(8), 1873; https://doi.org/10.3390/molecules29081873 (registering DOI) - 19 Apr 2024
Abstract
The global production landscape exhibits a substantial need for efficient and clean energy. Enhancing and advancing energy storage systems are a crucial avenue to optimize energy utilization and mitigate costs. Lithium batteries are the most effective and impressive energy utilization system at present, [...] Read more.
The global production landscape exhibits a substantial need for efficient and clean energy. Enhancing and advancing energy storage systems are a crucial avenue to optimize energy utilization and mitigate costs. Lithium batteries are the most effective and impressive energy utilization system at present, with good safety, high energy density, excellent cycle performance, and other advantages, occupying most of the market. However, due to the defects in the electrode material of the battery itself, the electrode will undergo the process of expansion, stress evolution, and electrode damage during electro-chemical cycling, which will degrade battery performance. Therefore, the detection of property changes in the electrode during electro-chemical cycling, such as the evolution of stress and the modulus change, are useful for preventing the degradation of lithium-ion batteries. This review presents a current overview of measurement systems applied to the performance detection of batteries’ electrodes, including the multi-beam optical stress sensor (MOSS) measurement system, the digital image correlation (DIC) measurement system, and the bending curvature measurement system (BCMS), which aims to highlight the measurement principles and advantages of the different systems, summarizes a part of the research methods by using each system, and discusses an effective way to improve the battery performance. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices)
19 pages, 1171 KiB  
Article
Why Are PPP Projects Stagnating in China? An Evolutionary Analysis of China’s PPP Policies
by Yougui Li, Erman Xu, Zhuoyou Zhang, Shuxian He, Xiaoyan Jiang and Martin Skitmore
Buildings 2024, 14(4), 1160; https://doi.org/10.3390/buildings14041160 (registering DOI) - 19 Apr 2024
Abstract
The Public–Private Partnership (PPP) model has significantly contributed to global infrastructure and public service provision. The evolution of the PPP model closely aligns with policy directives. China’s PPP policy evolution has included five stages: budding (1986–2000), fluctuating (2001–2008), steady (2009–2012), expanding (2013–2018), and [...] Read more.
The Public–Private Partnership (PPP) model has significantly contributed to global infrastructure and public service provision. The evolution of the PPP model closely aligns with policy directives. China’s PPP policy evolution has included five stages: budding (1986–2000), fluctuating (2001–2008), steady (2009–2012), expanding (2013–2018), and stagnating (2019–present). This study employs bibliometric analysis and co-word analysis to examine 407 policies enacted by the Chinese government from 1986 to 2018. By extracting policy text keywords at various stages and constructing a co-word network matrix, this study delineates the distinctive characteristics of Chinese PPP policies across different epochs. It can be found that critical areas such as “government credit”, “contract spirit”, and “power supervision” are still underappreciated. The challenges confronting China’s PPP model are multifaceted, stemming from policy gaps that have led to substantial project difficulties. Although the government proposed a new mechanism for franchising in 2023, the new mechanism is only for new PPP projects, and the difficulties of existing PPP projects have not been solved. This study advocates for enhancements in project bankability, regulatory clarity, institutional environment improvement, contract spirit defense, and the development of the PPP-REITs model to address these issues. Full article
19 pages, 1576 KiB  
Article
Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy
by Daihua Hu, Yulin Wang, Fanshu Kong, Danni Wang, Chingyuan Hu, Xu Yang, Xiaohua Chen, Wang Chen and Zili Feng
Molecules 2024, 29(8), 1872; https://doi.org/10.3390/molecules29081872 (registering DOI) - 19 Apr 2024
Abstract
Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms’ (Lentinus edodes) volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was [...] Read more.
Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms’ (Lentinus edodes) volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was conducted using gas chromatography–ion mobility spectrometry (GC-IMS) and sensory analysis. Sixty-three volatile compounds were identified in shiitake mushrooms. The fresh shiitake mushrooms were characterized by the highest values of raw mushroom odors. After UVC-LED treatment, the content of C8 alcohols decreased, especially that of 1-octen-3-ol, while the content of aldehydes increased, especially the content of nonanal and decanal. The score of fatty and green odors was enhanced. For fresh samples, the mushroom odors decreased and the mushroom-like odors weakened more sharply when treated in ethanol suspension than when treated with direct irradiation. The fruit odors were enhanced using direct UVC-LED irradiation for fresh mushroom samples and the onion flavor decreased. As for shiitake mushroom powder in ethanol suspension treated with UVC-LED, the sweaty and almond odor scores decreased and the vitamin D2 content in mushroom caps and stems reached 668.79 μg/g (dw) and 399.45 μg/g (dw), respectively. The results obtained from this study demonstrate that UVC-LED treatment produced rich-flavored, quality mushroom products. Full article
14 pages, 1702 KiB  
Review
Nuclear Phospholipids and Signaling: An Update of the Story
by Irene Casalin, Eleonora Ceneri, Stefano Ratti, Lucia Manzoli, Lucio Cocco and Matilde Y. Follo
Cells 2024, 13(8), 713; https://doi.org/10.3390/cells13080713 (registering DOI) - 19 Apr 2024
Abstract
In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main [...] Read more.
In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions. Full article
Show Figures

Figure 1

25 pages, 4022 KiB  
Article
Atomistic Simulations of Defect Structures in Rare-Earth-Doped Magnesium Oxide
by Yanfeng Zhao, Alastair N. Cormack and Yiquan Wu
Crystals 2024, 14(4), 384; https://doi.org/10.3390/cryst14040384 (registering DOI) - 19 Apr 2024
Abstract
Point defects induced by doping rare earth elements (RE) (Nd and Er) into a magnesium oxide host were investigated via classical atomistic simulations utilising the General Utility Lattice Program (GULP). Formation and association energies were calculated for the potential defect structures. Both isolated [...] Read more.
Point defects induced by doping rare earth elements (RE) (Nd and Er) into a magnesium oxide host were investigated via classical atomistic simulations utilising the General Utility Lattice Program (GULP). Formation and association energies were calculated for the potential defect structures. Both isolated defects and defect complexes were considered. The most energetically favourable structures of defect complexes were found for rare-earth-doped and Li co-doped systems. The correlation between the association energy and the structure of the defect complex was investigated. The influences of Li were revealed with respect to energy and structure. The simulation results contribute to the understanding of the point defects of doped MgO and how Li influences the doping of rare earth elements in the MgO host. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

37 pages, 2549 KiB  
Review
Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance
by Anna Fateeva, Kevinn Eddy and Suzie Chen
Cancers 2024, 16(8), 1571; https://doi.org/10.3390/cancers16081571 (registering DOI) - 19 Apr 2024
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches [...] Read more.
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles. Full article
(This article belongs to the Section Cancer Therapy)
19 pages, 6697 KiB  
Article
Changes in the Quality and Microbial Communities of Precooked Seasoned Crayfish Tail Treated with Microwave and Biological Preservatives during Room Temperature Storage
by Banghong Wei, Yan Gao, Yao Zheng, Jinxiang Yu, Xuejun Fu, Hairong Bao, Quanyou Guo and Huogen Hu
Foods 2024, 13(8), 1256; https://doi.org/10.3390/foods13081256 (registering DOI) - 19 Apr 2024
Abstract
The qualities of precooked foods can be significantly changed by the microorganisms produced during room temperature storage. This work assessed the effects of different antibacterial treatments (CK, without any treatment; microwave treatment, MS; microwave treatment and biological preservatives, MSBP) on the physicochemical properties [...] Read more.
The qualities of precooked foods can be significantly changed by the microorganisms produced during room temperature storage. This work assessed the effects of different antibacterial treatments (CK, without any treatment; microwave treatment, MS; microwave treatment and biological preservatives, MSBP) on the physicochemical properties and microbial communities of precooked crayfish tails during room temperature storage. Only the combination of microwave sterilization and biological preservatives significantly inhibited spoilage, as evidenced by the total viable count (4.15 log CFU/g) after 3 days of room temperature storage, which satisfied the transit time of most logistics companies in China. Changes in pH and TVB-N were also significantly inhibited in the MSBP group compared with those in the CK and MS groups. More than 30 new volatile compounds were produced in the CK groups during room temperature storage. However, in the MSBP groups, the volatile compounds were almost unchanged. The correlations between the microbial composition and volatile compounds suggested that specific bacterial species with metabolic activities related to amino acid, energy, cofactor, and vitamin metabolism, as well as xenobiotics biodegradation and metabolism, were responsible for the changes in volatile compounds. These bacteria included Psychrobacter, Arthrobacter, Facklamia, Leucobacter, Corynebacterium, Erysipelothrix, Devosia, Dietzia, and Acidovorax. Overall, our findings provide a foundation for the development of strategies to inhibit spoilage in precooked crayfish tails stored at room temperature. Full article
(This article belongs to the Section Food Packaging and Preservation)
19 pages, 2418 KiB  
Article
Interaction of Soybean (Glycine max (L.) Merr.) Class II ACBPs with MPK2 and SAPK2 Kinases: New Insights into the Regulatory Mechanisms of Plant ACBPs
by Atieh Moradi, Shiu-Cheung Lung and Mee-Len Chye
Plants 2024, 13(8), 1146; https://doi.org/10.3390/plants13081146 (registering DOI) - 19 Apr 2024
Abstract
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence [...] Read more.
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC). The results revealed that both GmACBP3.1 and GmACBP4.1 interact with two soybean kinases, a mitogen-activated protein kinase MPK2, and a serine/threonine-protein kinase SAPK2, highlighting the significance of the ankyrin-repeat (ANK) domain in facilitating protein–protein interactions. Moreover, an in vitro kinase assay and subsequent Phos-tag SDS-PAGE determined that GmMPK2 and GmSAPK2 possess the ability to phosphorylate Class II GmACBPs. Additionally, the kinase-specific phosphosites for Class II GmACBPs were predicted using databases. The HDOCK server was also utilized to predict the binding models of Class II GmACBPs with these two kinases, and the results indicated that the affected residues were located in the ANK region of Class II GmACBPs in both docking models, aligning with the findings of the Y2H and BiFC experiments. This is the first report describing the interaction between Class II GmACBPs and kinases, suggesting that Class II GmACBPs have potential as phospho-proteins that impact signaling pathways. Full article
(This article belongs to the Special Issue Plant Protein Biochemistry and Biomolecular Interactions)
11 pages, 411 KiB  
Review
On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny
by Klas Norrby
Int. J. Mol. Sci. 2024, 25(8), 4499; https://doi.org/10.3390/ijms25084499 (registering DOI) - 19 Apr 2024
Abstract
The connective tissue mast cell (MC), a sentinel tissue-residing secretory immune cell, has been preserved in all vertebrate classes since approximately 500 million years. No physiological role of the MC has yet been established. Considering the power of natural selection of cells during [...] Read more.
The connective tissue mast cell (MC), a sentinel tissue-residing secretory immune cell, has been preserved in all vertebrate classes since approximately 500 million years. No physiological role of the MC has yet been established. Considering the power of natural selection of cells during evolution, it is likely that the MCs exert essential yet unidentified life-promoting actions. All vertebrates feature a circulatory system, and the MCs interact readily with the vasculature. It is notable that embryonic MC progenitors are generated from endothelial cells. The MC hosts many surface receptors, enabling its activation via a vast variety of potentially harmful exogenous and endogenous molecules and via reproductive hormones in the female sex organs. Activated MCs release a unique composition of preformed and newly synthesized bioactive molecules, like heparin, histamine, serotonin, proteolytic enzymes, cytokines, chemokines, and growth factors. MCs play important roles in immune responses, tissue remodeling, cell proliferation, angiogenesis, inflammation, wound healing, tissue homeostasis, health, and reproduction. As recently suggested, MCs enable perpetuation of the vertebrates because of key effects—spanning generations—in ovulation and pregnancy, as in life-preserving activities in inflammation and wound healing from birth till reproductive age, thus creating a permanent life-sustaining loop. Here, we present recent advances that further indicate that the MC is a specific life-supporting and progeny-safeguarding cell. Full article
15 pages, 3262 KiB  
Article
Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete
by Yingwu Zhou, Jiahao Zhuang, Wenwei Lin, Wenzhuo Xu and Rui Hu
Materials 2024, 17(8), 1904; https://doi.org/10.3390/ma17081904 (registering DOI) - 19 Apr 2024
Abstract
The poor performance of recycled concrete aggregate (RCA) leads to greater creep in recycled aggregate concrete (RAC) compared to natural aggregate concrete (NAC). To enhance the quality of RCA, this paper utilizes a 2% concentration of a nano-SiO2 (NS) solution for pre-soaking [...] Read more.
The poor performance of recycled concrete aggregate (RCA) leads to greater creep in recycled aggregate concrete (RAC) compared to natural aggregate concrete (NAC). To enhance the quality of RCA, this paper utilizes a 2% concentration of a nano-SiO2 (NS) solution for pre-soaking RCA. This study aims to replace natural aggregate (NA) with NS-modified recycled aggregate (SRCA) and investigate the creep and shrinkage properties of NS-modified recycled aggregate concrete (SRAC) at various SRCA replacement rates. Subsequently, the creep and shrinkage strains of NAC, SRAC, and RAC are simulated using the finite element method. Finally, a comparative analysis is conducted with the predicted creep and shrinkage strains from CEB-FIP, ACI, B3, and GL2000 models. The experimental results indicate that the creep and shrinkage deformation of SRAC increases with the SRCA replacement rate. Compared to NAC, the creep and shrinkage deformation of SRAC at replacement rates of 30%, 50%, 70%, and 100% increased by 2%, 7%, 13%, and 30%, respectively. However, when 100% of the natural aggregate is replaced with SRCA, the creep and shrinkage deformation decreases by 7% compared to RAC. Moreover, the CEB-FIP and ACI models can predict the creep and shrinkage deformation of concrete reasonably well. Full article
Show Figures

Figure 1

19 pages, 3116 KiB  
Article
An Adaptive Multi-D-Norm-Driven Sparse Unfolding Deconvolutional Network for Bearing Fault Diagnosis
by Jianbo Lin, Han Zhang, Yunfei Li and Zhaohui Du
Sensors 2024, 24(8), 2624; https://doi.org/10.3390/s24082624 (registering DOI) - 19 Apr 2024
Abstract
Impulsive blind deconvolution (IBD) is a popular method to recover impulsive sources for bearing fault diagnosis. Its underpinnings are in the design of objective functions based on prior knowledge of impulsive sources and a transfer function to describe transmission path influences. However, popular [...] Read more.
Impulsive blind deconvolution (IBD) is a popular method to recover impulsive sources for bearing fault diagnosis. Its underpinnings are in the design of objective functions based on prior knowledge of impulsive sources and a transfer function to describe transmission path influences. However, popular objective functions cannot retain waveform impulsiveness and periodicity cyclostationarity simultaneously, and the single convolution operation of IBD methods is insufficient to describe transmission paths composed of multiple linear and nonlinear units. Inspired by the MaxPooling period modulation intensity (MPMI) and convolutional sparse learning (CSL), an adaptive multi-D-norm-driven sparse unfolding deconvolution network (AMD-SUDN) is proposed in this paper. The core strategy is that one target vector with simultaneous impulsiveness and cyclostationarity is constructed automatically through the MPMI; then, this vector is substituted into the multi D-norm to design objective functions. Moreover, an iterative soft threshold algorithm (ISTA) for the CSL model is derived, and its iterative steps are unfolded into one deconvolution network. The algorithm’s performance and the hyperparameter configuration are investigated by a set of numerical simulations. Finally, the proposed AMD-SUDN is applied to detect the impulsive features of bearing faults. All comparative results verify that the proposed AMD-SUDN achieves a better deconvolution accuracy than state-of-the-art IBD methods. Full article
(This article belongs to the Special Issue Signal Processing and Sensing Technologies for Fault Diagnosis)
16 pages, 36305 KiB  
Article
Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma
by Aleksey V. Chaplygin, Elizaveta P. Simonenko, Mikhail A. Kotov, Vladimir I. Sakharov, Ilya V. Lukomskii, Semen S. Galkin, Anatoly F. Kolesnikov, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Nikolay P. Simonenko, Nikolay T. Kuznetsov, Mikhail Y. Yakimov, Andrey N. Shemyakin and Nikolay G. Solovyov
Plasma 2024, 7(2), 300-315; https://doi.org/10.3390/plasma7020017 (registering DOI) - 19 Apr 2024
Abstract
The short-term (5 min) exposure to the supersonic flow of carbon dioxide plasma on ultrahigh-temperature ceramics of HfB2-30vol.%SiC composition has been studied. It was shown that, when established on the surface at a temperature of 1615–1655 °C, the beginning of the [...] Read more.
The short-term (5 min) exposure to the supersonic flow of carbon dioxide plasma on ultrahigh-temperature ceramics of HfB2-30vol.%SiC composition has been studied. It was shown that, when established on the surface at a temperature of 1615–1655 °C, the beginning of the formation of an oxidized layer takes place. Raman spectroscopy and scanning electron microscopy studies showed that the formation of a porous SiC-depleted region is not possible under the HfO2-SiO2 surface oxide layer. Numerical modeling based on the Navier–Stokes equations and experimental probe measurements of the test conditions were performed. The desirability of continuing systematic studies on the behavior of ultrahigh-temperature ZrB2/HfB2-SiC ceramics, including those doped with various components under the influence of high-enthalpy gas flows, was noted. Full article
Show Figures

Figure 1

19 pages, 5530 KiB  
Article
Precision Identification of Locally Advanced Rectal Cancer in Denoised CT Scans Using EfficientNet and Voting System Algorithms
by Chun-Yu Lin, Jacky Chung-Hao Wu, Yen-Ming Kuan, Yi-Chun Liu, Pi-Yi Chang, Jun-Peng Chen, Henry Horng-Shing Lu and Oscar Kuang-Sheng Lee
Bioengineering 2024, 11(4), 399; https://doi.org/10.3390/bioengineering11040399 (registering DOI) - 19 Apr 2024
Abstract
Background and objective: Local advanced rectal cancer (LARC) poses significant treatment challenges due to its location and high recurrence rates. Accurate early detection is vital for treatment planning. With magnetic resonance imaging (MRI) being resource-intensive, this study explores using artificial intelligence (AI) to [...] Read more.
Background and objective: Local advanced rectal cancer (LARC) poses significant treatment challenges due to its location and high recurrence rates. Accurate early detection is vital for treatment planning. With magnetic resonance imaging (MRI) being resource-intensive, this study explores using artificial intelligence (AI) to interpret computed tomography (CT) scans as an alternative, providing a quicker, more accessible diagnostic tool for LARC. Methods: In this retrospective study, CT images of 1070 T3–4 rectal cancer patients from 2010 to 2022 were analyzed. AI models, trained on 739 cases, were validated using two test sets of 134 and 197 cases. By utilizing techniques such as nonlocal mean filtering, dynamic histogram equalization, and the EfficientNetB0 algorithm, we identified images featuring characteristics of a positive circumferential resection margin (CRM) for the diagnosis of locally advanced rectal cancer (LARC). Importantly, this study employs an innovative approach by using both hard and soft voting systems in the second stage to ascertain the LARC status of cases, thus emphasizing the novelty of the soft voting system for improved case identification accuracy. The local recurrence rates and overall survival of the cases predicted by our model were assessed to underscore its clinical value. Results: The AI model exhibited high accuracy in identifying CRM-positive images, achieving an area under the curve (AUC) of 0.89 in the first test set and 0.86 in the second. In a patient-based analysis, the model reached AUCs of 0.84 and 0.79 using a hard voting system. Employing a soft voting system, the model attained AUCs of 0.93 and 0.88, respectively. Notably, AI-identified LARC cases exhibited a significantly higher five-year local recurrence rate and displayed a trend towards increased mortality across various thresholds. Furthermore, the model’s capability to predict adverse clinical outcomes was superior to those of traditional assessments. Conclusion: AI can precisely identify CRM-positive LARC cases from CT images, signaling an increased local recurrence and mortality rate. Our study presents a swifter and more reliable method for detecting LARC compared to traditional CT or MRI techniques. Full article
(This article belongs to the Special Issue Application of Deep Learning in Medical Diagnosis)
Show Figures

Graphical abstract

17 pages, 2992 KiB  
Article
Hydrophilic Modification of Polytetrafluoroethylene (PTFE) Capillary Membranes with Chemical Resistance by Constructing Three-Dimensional Hydrophilic Networks
by Mingpeng Hou, Qiuying Li and Yanchao Che
Polymers 2024, 16(8), 1154; https://doi.org/10.3390/polym16081154 (registering DOI) - 19 Apr 2024
Abstract
Polytetrafluoroethylene (PTFE) capillary membranes, known for the great chemical resistance and thermal stability, are commonly used in membrane separation technologies. However, the strong hydrophobic property of PTFE limits its application in water filtration. This study introduces a method whereby acrylamide (AM), N, N-methylene [...] Read more.
Polytetrafluoroethylene (PTFE) capillary membranes, known for the great chemical resistance and thermal stability, are commonly used in membrane separation technologies. However, the strong hydrophobic property of PTFE limits its application in water filtration. This study introduces a method whereby acrylamide (AM), N, N-methylene bisacrylamide (MBA), and vinyltriethoxysilane (VTES) undergo free radical copolymerization, followed by the hydrolysis-condensation of silane bonds, resulting in the formation of hydrophilic three-dimensional networks physically intertwined with the PTFE capillary membranes. The modified PTFE capillary membranes prepared through this method exhibit excellent hydrophilic properties, whose water contact angles are decreased by 24.3–61.2%, and increasing pure water flux from 0 to 1732.7–2666.0 L/m2·h. The enhancement in hydrophilicity of the modified PTFE capillary membranes is attributed to the introduction of hydrophilic groups such as amide bonds and siloxane bonds, along with an increase in surface roughness. Moreover, the modified PTFE capillary membranes exhibit chemical resistance, maintaining the hydrophilicity even after immersion in strong acidic (3 wt% HCl), alkaline (3 wt% NaOH), and oxidative (3 wt% NaClO) solutions for 2 weeks. In conclusion, this promising method yields modified PTFE capillary membranes with great hydrophilicity and chemical resistance, presenting substantial potential for applications in the field of water filtration. Full article
(This article belongs to the Special Issue Progress in Polymer Thin Films and Surface Modification)
Show Figures

Figure 1

16 pages, 5402 KiB  
Article
Identification of New Microfoci and Genetic Characterization of Tick-Borne Encephalitis Virus Isolates from Eastern Germany and Western Poland
by Nina Król, Lidia Chitimia-Dobler, Gerhard Dobler, Dorota Kiewra, Aleksandra Czułowska, Anna Obiegala, Joanna Zajkowska, Thomas Juretzek and Martin Pfeffer
Viruses 2024, 16(4), 637; https://doi.org/10.3390/v16040637 (registering DOI) - 19 Apr 2024
Abstract
(1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus [...] Read more.
(1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus. TBEV circulates in natural foci, making it endemic to specific regions, such as southern Germany and northeastern Poland. Our study aimed to identify new TBEV natural foci and genetically characterize strains in ticks in previously nonendemic areas in Eastern Germany and Western Poland. (2) Methods: Ticks were collected from vegetation in areas reported by TBE patients. After identification, ticks were tested for TBEV in pools of a maximum of 10 specimens using real-time RT-PCR. From the positive TBEV samples, E genes were sequenced. (3) Results: Among 8400 ticks from 19 sites, I. ricinus (n = 4784; 56.9%) was predominant, followed by D. reticulatus (n = 3506; 41.7%), Haemaphysalis concinna (n = 108; 1.3%), and I. frontalis (n = 2; <0.1%). TBEV was detected in 19 pools originating in six sites. The phylogenetic analyses revealed that TBEV strains from Germany and Poland clustered with other German strains, as well as those from Finland and Estonia. (4) Conclusions: Although there are still only a few cases are reported from these areas, people spending much time outdoors should consider TBE vaccination. Full article
(This article belongs to the Section Insect Viruses)
Show Figures

Figure 1

19 pages, 487 KiB  
Article
Impact of Selected Yeast Strains on Quality Parameters of Obtained Sauerkraut
by Paweł Satora and Szymon Strnad
Appl. Sci. 2024, 14(8), 3462; https://doi.org/10.3390/app14083462 (registering DOI) - 19 Apr 2024
Abstract
The aim of this research was to determine the influence of yeast strains (previously isolated from the fermentation process) on selected quality parameters of sauerkraut. For this purpose, shredded and salted (2.5% w/w) cabbage of the Galaxy variety was fermented [...] Read more.
The aim of this research was to determine the influence of yeast strains (previously isolated from the fermentation process) on selected quality parameters of sauerkraut. For this purpose, shredded and salted (2.5% w/w) cabbage of the Galaxy variety was fermented in the absence of oxygen with the addition of 2 × 106 cells of a selected yeast culture. The control sample was spontaneously fermented sauerkraut without yeast addition. The obtained sauerkraut was analysed in terms of the content of selected organic acids, sugars and polyols (HPLC), selected volatile compounds (HS-SPME-GC-TOFMS), colour (CieLAB) and aroma (QDA). Yeast P. fermentans, Rh. mucilaginosa and W. anomalus reduced crucial sauerkraut components such as lactic acid, glycerol, and certain volatile compounds, leading to decreased aroma intensity and acceptability. Additionally, an increase in glucosinolate decomposition products was observed. Conversely, D. hansenii positively influenced sauerkraut quality by enhancing lactic acid content and exhibiting similar volatile characteristics to those of the control. Two of the three samples fermented with D. hansenii received high sensory analysis scores akin to those of the control. Sauerkraut fermented with Cl. lusitaniae yeast contained elevated levels of volatile compounds—alcohols, esters and lactones—resulting in an intense floral aroma, albeit receiving lower overall ratings due to deviation from the typical profile. Full article
(This article belongs to the Special Issue Role of Microbes in Agriculture and Food, 2nd Edition)
16 pages, 3624 KiB  
Article
Optimization of Ultrasound-Assisted Extraction of Verbascum sinaiticum Leaves: Maximal Phenolic Yield and Antioxidant Capacity
by Alemu Belay Legesse, Shimelis Admassu Emire, Minbale Gashu Tadesse, Debebe Worku Dadi, Shimelis Kebede Kassa, Timilehin Martins Oyinloye and Won Byong Yoon
Foods 2024, 13(8), 1255; https://doi.org/10.3390/foods13081255 (registering DOI) - 19 Apr 2024
Abstract
Verbascum sinaiticum (Qetetina or yeahya Joro) is a medicinal plant with secondary metabolites such as phenolics, flavonoids, glycosides, saponins, and alkaloids. This study was designed to optimize the ultrasonic-assisted extraction (UAE) parameters to enhance the phenolic content and characterize the phenolic [...] Read more.
Verbascum sinaiticum (Qetetina or yeahya Joro) is a medicinal plant with secondary metabolites such as phenolics, flavonoids, glycosides, saponins, and alkaloids. This study was designed to optimize the ultrasonic-assisted extraction (UAE) parameters to enhance the phenolic content and characterize the phenolic compounds using ultra-high-performance liquid chromatography, coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-QTOF-MS/MS), and antioxidant activities in Verbascum sinaiticum extract. Extraction time, sample-to-solvent ratio, and extraction temperature were considered for UAE optimization. It was found that UAE generated the highest extraction yield (21.6%), total phenolic content (179.8 GAE mg/g), total flavonoid content (64.49 CE mg/g), DPPH (61.85 µg/mL), and ABTS (38.89 µg/mL) when compared to maceration extraction. Metabolite analysis in this study showed the detection of 17 phenolic compounds, confirming antioxidant capacities. The optimization parameters have significant effects on phenolic compounds. Scanning electron microscopy showed the presence of structural changes when UAE was used over the maceration method. The optimized UAE parameters for extraction temperature (41.43 °C), sample-to-solvent ratio (36.32 g/mL), and extraction time (33.22 min) for TPC were obtained. This study shows the potential application for UAE of Verbascum sinaiticum leaves in the development of pharmaceutical and nutraceutical products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

8 pages, 770 KiB  
Case Report
Intraoperative Fracture during the Insertion of Advanced Locking Screws (T2 Alpha Femur Retrograde Intramedullary Nailing System): Report of Two Cases and Identifying Causes and Prevention
by Takashi Higuchi, Atsushi Taninaka, Rikuto Yoshimizu, Katsuhiro Hayashi, Shinji Miwa, Norio Yamamoto, Hiroyuki Tsuchiya and Satoru Demura
J. Clin. Med. 2024, 13(8), 2393; https://doi.org/10.3390/jcm13082393 (registering DOI) - 19 Apr 2024
Abstract
Background: Recently, the T2 alpha nailing system (Stryker, Inc.), which has advanced locking screws that can attach a screw to a rod, has been used worldwide and is expected to improve fracture fixation. We analyzed two cases of supracondylar femoral fractures in [...] Read more.
Background: Recently, the T2 alpha nailing system (Stryker, Inc.), which has advanced locking screws that can attach a screw to a rod, has been used worldwide and is expected to improve fracture fixation. We analyzed two cases of supracondylar femoral fractures in older adult patients, in which intraoperative fractures occurred during the insertion of advanced locking screws of the T2 alpha femur retrograde intramedullary nail. Case presentation: A 93-year-old and an 82-year-old woman each underwent T2 alpha femur retrograde nail fixation for supracondylar femur fractures at separate hospitals, and advanced locking screws were used as the proximal transverse locking screws. In both patients, a fracture line was observed at the proximal screw postoperatively, and the fractures were refixed with distal cable wiring and/or femoral distal plates. The patients were subsequently discharged from the same facility with no remarkable pain. Conclusions: When inserting advanced locking screws, it is necessary to enlarge the screw hole in the near-bone cortex with a counterbore drill, which might add torque to the bone cortex that could result in fractures. If the sleeve is distant from the bone, the counterbore drill will not reach the bone, the screw hole will not expand, and the insertion of advanced locking screws will apply a strong torque to the bone cortex and may result in fracture. Moreover, it is important to confirm that the counterbore drill is securely inserted under fluoroscopy and to carefully enlarge the bony foramen manually to prevent fractures during screw insertion. Full article
(This article belongs to the Special Issue Clinical Treatment and Management of Orthopedic Trauma)
28 pages, 413 KiB  
Article
Identifying Correlated Functional Brain Network Patterns Associated with Touch Discrimination in Survivors of Stroke Using Automated Machine Learning
by Alistair Walsh, Peter Goodin and Leeanne M. Carey
Appl. Sci. 2024, 14(8), 3463; https://doi.org/10.3390/app14083463 (registering DOI) - 19 Apr 2024
Abstract
Stroke recovery is multifaceted and complex. Machine learning approaches have potential to identify patterns of brain activity associated with clinical outcomes, providing new insights into recovery. We aim to use machine learning to characterise the contribution of and potential interaction between resting state [...] Read more.
Stroke recovery is multifaceted and complex. Machine learning approaches have potential to identify patterns of brain activity associated with clinical outcomes, providing new insights into recovery. We aim to use machine learning to characterise the contribution of and potential interaction between resting state functional connectivity networks in predicting touch discrimination outcomes in a well-phenotyped, but small, stroke cohort. We interrogated and compared a suite of automated machine learning approaches to identify patterns of brain activity associated with clinical outcomes. Using feature reduction, the identification of combined ‘golden features’, and five-fold cross-validation, two golden features patterns emerged. These golden features identified patterns of resting state connectivity involving interactive relationships: 1. The difference between right insula and right superior temporal lobe correlation and left cerebellum and vermis correlation; 2. The ratio between right inferior temporal lobe and left cerebellum correlation and left frontal inferior operculum and left supplementary motor area correlation. Our findings demonstrate evidence of the potential for automated machine learning to provide new insights into brain network patterns and their interactions associated with the prediction of quantitative touch discrimination outcomes, through the automated identification of robust associations and golden feature brain patterns, even in a small cohort of stroke survivors. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) in Neuroscience)
26 pages, 4051 KiB  
Article
Innovative Approach of Concentrated Solar Sphere to Generate Electrical Power
by Hassan Abdulmouti
Energies 2024, 17(8), 1956; https://doi.org/10.3390/en17081956 (registering DOI) - 19 Apr 2024
Abstract
Energy sources are crucial for the development and growth of economies and civilizations. Solar energy is an alternative energy to generate electrical power. The challenges of solar photovoltaic panels (PV) are the low output power and efficiency and the huge installation area beside [...] Read more.
Energy sources are crucial for the development and growth of economies and civilizations. Solar energy is an alternative energy to generate electrical power. The challenges of solar photovoltaic panels (PV) are the low output power and efficiency and the huge installation area beside PVs need a tracking system for better efficiency. The motivation of this paper is to design an innovative solar sphere system, which is a new concentrated photovoltaic technology that has better performance (efficiency and output power) than the normal conventional solar panel (PV) with a smaller installation area and without any tracking system. This design consists of an acrylic solar sphere entirely filled with cooking oil (sunflower or corn oil) that captures solar radiation and concentrates it on a focal point. The focal point is adjusted over a multi-junction cell that acts as a collector device (concentrator solar cell). This focused solar energy can generate a massive amount of power, which is used to produce more electricity than normal photovoltaic panels. The experiments were carried out in order to discover the best acrylic models or shape designs, which is the sphere, the best materials or media in the sphere, that is oil, the best sphere’s size and volume, and that is larger, the best sphere thickness, which at first is lower, the best fluid oil type, which is cooking oil, and finally the best fluid amount or volume inside the sphere, and this is the entire volume. Then, these factors mentioned above are compared with normal photovoltaics (PV) that have the same section area as these shapes. The results revealed that these factors have significant effects on the output power value and efficiency. It has been demonstrated that our innovative concentrated solar sphere system can produce nearly four times the output power or electricity greater than that of a conventional solar panel PV with the same cross-sectional area. This specific sort of compression is crucial because it shows that less space is required to establish this system than it would to install conventional solar panels. The performance of the system per unit of the square area it occupies was compared to the latest generation of flat panel PV available at the market performance; hence, the installation space will be decreased by 40% to 60%. Our system has about twice as much efficiency as solar PV and does not require a tracking system and maintenance. Our technology also has the benefit of not being impacted by extreme temperatures, clouds, dust, and humidity. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 2258 KiB  
Article
Targeted Metabolomics Highlights Dramatic Antioxidant Depletion, Increased Oxidative/Nitrosative Stress and Altered Purine and Pyrimidine Concentrations in Serum of Primary Myelofibrosis Patients
by Renata Mangione, Cesarina Giallongo, Andrea Duminuco, Enrico La Spina, Lucia Longhitano, Sebastiano Giallongo, Daniele Tibullo, Giuseppe Lazzarino, Miriam Wissam Saab, Arianna Sbriglione, Giuseppe A. Palumbo, Andrea Graziani, Amer M. Alanazi, Valentina Di Pietro, Barbara Tavazzi, Angela Maria Amorini and Giacomo Lazzarino
Antioxidants 2024, 13(4), 490; https://doi.org/10.3390/antiox13040490 (registering DOI) - 19 Apr 2024
Abstract
To date, little is known concerning the circulating levels of biochemically relevant metabolites (antioxidants, oxidative/nitrosative stress biomarkers, purines, and pyrimidines) in patients with primary myelofibrosis (PMF), a rare form of myeloproliferative tumor causing a dramatic decrease in erythropoiesis and angiogenesis. In this study, [...] Read more.
To date, little is known concerning the circulating levels of biochemically relevant metabolites (antioxidants, oxidative/nitrosative stress biomarkers, purines, and pyrimidines) in patients with primary myelofibrosis (PMF), a rare form of myeloproliferative tumor causing a dramatic decrease in erythropoiesis and angiogenesis. In this study, using a targeted metabolomic approach, serum samples of 22 PMF patients and of 22 control healthy donors were analyzed to quantify the circulating concentrations of hypoxanthine, xanthine, uric acid (as representative purines), uracil, β-pseudouridine, uridine (as representative pyrimidines), reduced glutathione (GSH), ascorbic acid (as two of the main water-soluble antioxidants), malondialdehyde, nitrite, nitrate (as oxidative/nitrosative stress biomarkers) and creatinine, using well-established HPLC method for their determination. Results showed that PMF patients have dramatic depletions of both ascorbic acid and GSH (37.3- and 3.81-times lower circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001), accompanied by significant increases in malondialdehyde (MDA) and nitrite + nitrate (4.73- and 1.66-times higher circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001). Additionally, PMF patients have remarkable alterations of circulating purines, pyrimidines, and creatinine, suggesting potential mitochondrial dysfunctions causing energy metabolism imbalance and consequent increases in these cell energy-related compounds. Overall, these results, besides evidencing previously unknown serum metabolic alterations in PMF patients, suggest that the determination of serum levels of the aforementioned compounds may be useful to evaluate PMF patients on hospital admission for adjunctive therapies aimed at recovering their correct antioxidant status, as well as to monitor patients’ status and potential pharmacological treatments. Full article
(This article belongs to the Special Issue Redox Balance in Hematologic Diseases)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop