Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
18 pages, 15144 KiB  
Article
Quantifying the Atmospheric Water Balance Closure over Mainland China Using Ground-Based, Satellite, and Reanalysis Datasets
by Linghao Zhou, Yunchang Cao, Chuang Shi, Hong Liang and Lei Fan
Atmosphere 2024, 15(4), 497; https://doi.org/10.3390/atmos15040497 (registering DOI) - 18 Apr 2024
Abstract
Quantifying the atmospheric water balance is critical for the study of hydrological processes in significant regions. This study quantified atmospheric water balance closure at 205 stations in mainland China on a monthly timescale from 2009 to 2018 using datasets from ground- and satellite-based [...] Read more.
Quantifying the atmospheric water balance is critical for the study of hydrological processes in significant regions. This study quantified atmospheric water balance closure at 205 stations in mainland China on a monthly timescale from 2009 to 2018 using datasets from ground- and satellite-based observations and reanalysis data. The closure performances were firstly quantified using the mean and root mean square (RMS) of the residuals, and the possible influencing factors were explored, as well as the influence of different water balance components (WBCs) using different datasets. In the closure experiment using ERA5, the mean and residuals were 6.26 and 12.39 mm/month, respectively, on average, which indicated a closure uncertainty of 12.8%. Using ERA5 analysis as a reference, the closure experiment using different combinations revealed average mean residuals of 8.73, 11.50, and 15.89 mm/month, indicating a precipitation closure uncertainty of 22.0, 23.7, and 24.4% for the ground- and satellite-based observations and reanalysis data, respectively. Two possible influencing factors, station latitude and the climatic zone in which the station is located, were shown to be related to closure performance. Finally, the analysis of the impact from different WBCs showed that precipitation tended to have the most significant impact, which may have been due to larger observation uncertainties. Generally, the atmospheric water balance in mainland China can be closed using datasets from different observational techniques. Full article
Show Figures

Figure 1

17 pages, 383 KiB  
Review
Health Effects of Ionizing Radiation on the Human Body
by Jasminka Talapko, Domagoj Talapko, Darko Katalinić, Ivan Kotris, Ivan Erić, Dino Belić, Mila Vasilj Mihaljević, Ana Vasilj, Suzana Erić, Josipa Flam, Sanja Bekić, Suzana Matić and Ivana Škrlec
Medicina 2024, 60(4), 653; https://doi.org/10.3390/medicina60040653 (registering DOI) - 18 Apr 2024
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) [...] Read more.
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms—human beings—in the course of evolution have not acquired receptors for the direct “capture” of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively—bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin. Full article
(This article belongs to the Section Epidemiology & Public Health)
4 pages, 244 KiB  
Editorial
Advances in Nano-Electrochemical Materials and Devices
by Mei Wang, Xuyuan Chen and Nabin Aryal
Nanomaterials 2024, 14(8), 712; https://doi.org/10.3390/nano14080712 (registering DOI) - 18 Apr 2024
Abstract
Nano-electrochemical materials and devices are at the frontier of research and development, advancing electrochemistry and its applications in energy storage, sensing, electrochemical processing, etc. [...] Full article
(This article belongs to the Special Issue Advances in Nano-Electrochemical Materials and Devices)
29 pages, 3424 KiB  
Article
Debris Flow Risk Assessment for the Large-Scale Temporary Work Site of Railways—A Case Study of Jinjia Gully, Tianquan County
by Yunpu Wu, Yu Lei and Haihua Gu
Water 2024, 16(8), 1152; https://doi.org/10.3390/w16081152 (registering DOI) - 18 Apr 2024
Abstract
Temporary works are necessary to ensure the construction and operation of railways. These works are characterized by their large scale, numerous locations, and long construction periods. However, suitable land resources for such purposes are extremely limited in mountainous railway areas. Additionally, the selection [...] Read more.
Temporary works are necessary to ensure the construction and operation of railways. These works are characterized by their large scale, numerous locations, and long construction periods. However, suitable land resources for such purposes are extremely limited in mountainous railway areas. Additionally, the selection of sites for these works often overlaps with areas affected by debris flow, leading to high potential risks from geological disasters. Taking the Jinjia Gully watershed as an example, this paper explores a method for assessing debris flow risks in single gullies, including the zoning of debris flow danger areas, vulnerability analysis, and risk assessment. Based on the data obtained from field surveys, they utilize ArcGIS and the Analytic Hierarchy Process (AHP), combined with numerical simulations and indoor experiments, to establish a quantitative risk assessment method for large-scale temporary works. The results indicate that (1) the area of debris flow hazard zones decreases with increasing rainfall frequency, and (2) the vulnerability assessment model can not only reflect the types of individual work, structural materials, and construction quality but also the shielding effect of building clusters. In the direction of flow, the shielding effect range of buildings on debris flow accumulation fans is approximately 37.5 times the size of the buildings. In the direction of extension, when the angle between current and rear buildings exceeds 0.674 radians, the shielding effect can be neglected. (3) At a rainfall frequency of p = 5%, more than 80% of large-scale temporary works are in extremely low or low-risk zones, indicating that the study area is at a low risk level. Full article
(This article belongs to the Special Issue Risk Analysis in Landslides and Groundwater-Related Hazards)
13 pages, 1787 KiB  
Article
Aging in First and Second Life of G/LFP 18650 Cells: Diagnosis and Evolution of the State of Health of the Cell and the Negative Electrode under Cycling
by William Wheeler, Pascal Venet, Yann Bultel, Ali Sari and Elie Riviere
Batteries 2024, 10(4), 137; https://doi.org/10.3390/batteries10040137 (registering DOI) - 18 Apr 2024
Abstract
Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the [...] Read more.
Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the establishment of a reliable prognosis, based on the aging modes involved in a cell. This paper introduces a method for characterizing specific aging phenomenon in Graphite/Lithium Iron Phosphate (G/LFP) cells. This method aims to identify aging related to the loss of active material at the negative electrode (LAMNE). The identification and tracking of the state of health (SoH) are based on Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA) peak-tracking techniques. The remaining capacity of the electrode is thus evaluated based on these diagnostic results, using a model derived from half-cell electrode characterization. The method is used on a G/LFP cell in the format 18650, with a nominal capacity of 1.1 Ah, aged from its pristine state to 40% of state of health. Full article
(This article belongs to the Special Issue Second-Life Batteries)
15 pages, 4625 KiB  
Article
Favipiravir Treatment Prolongs Survival in a Lethal BALB/c Mouse Model of Ebinur Lake Virus Infection
by Jingke Geng, Nanjie Ren, Cihan Yang, Fei Wang, Doudou Huang, Sergio Rodriguez, Zhiming Yuan and Han Xia
Viruses 2024, 16(4), 631; https://doi.org/10.3390/v16040631 (registering DOI) - 18 Apr 2024
Abstract
Orthobunyavirus is the largest and most diverse genus in the family Peribunyaviridae. Orthobunyaviruses are widely distributed globally and pose threats to human and animal health. Ebinur Lake virus (EBIV) is a newly classified Orthobunyavirus detected in China, Russia, and Kenya. This study explored [...] Read more.
Orthobunyavirus is the largest and most diverse genus in the family Peribunyaviridae. Orthobunyaviruses are widely distributed globally and pose threats to human and animal health. Ebinur Lake virus (EBIV) is a newly classified Orthobunyavirus detected in China, Russia, and Kenya. This study explored the antiviral effects of two broad-spectrum antiviral drugs, favipiravir and ribavirin, in a BALB/c mouse model. Favipiravir significantly improved the clinical symptoms of infected mice, reduced viral titer and RNA copies in serum, and extended overall survival. The median survival times of mice in the vehicle- and favipiravir-treated groups were 5 and 7 days, respectively. Favipiravir significantly reduced virus titers 10- to 100-fold in sera at all three time points compared to vehicle-treated mice. And favipiravir treatment effectively reduced the virus copies by approximately 10-fold across the three time points, relative to vehicle-treated mice. The findings expand the antiviral spectrum of favipiravir for orthobunyaviruses in vivo. Full article
(This article belongs to the Special Issue Antivirals against Arboviruses)
21 pages, 34472 KiB  
Article
Verapamil Attenuates the Severity of Tendinopathy by Mitigating Mitochondrial Dysfunction through the Activation of the Nrf2/HO-1 Pathway
by Zengguang Wang, Zhenglin Dong, Yiming Li, Xin Jiao, Yihao Liu, Hanwen Chang and Yaokai Gan
Biomedicines 2024, 12(4), 904; https://doi.org/10.3390/biomedicines12040904 (registering DOI) - 18 Apr 2024
Abstract
Tendinopathy is a prevalent condition in orthopedics patients, exerting a profound impact on tendon functionality. However, its underlying mechanism remains elusive and the efficacy of pharmacological interventions continues to be suboptimal. Verapamil is a clinically used medicine with anti-inflammation and antioxidant functions. This [...] Read more.
Tendinopathy is a prevalent condition in orthopedics patients, exerting a profound impact on tendon functionality. However, its underlying mechanism remains elusive and the efficacy of pharmacological interventions continues to be suboptimal. Verapamil is a clinically used medicine with anti-inflammation and antioxidant functions. This investigation aimed to elucidate the impact of verapamil in tendinopathy and the underlying mechanisms through which verapamil ameliorates the severity of tendinopathy. In in vitro experiments, primary tenocytes were exposed to interleukin-1 beta (IL−1β) along with verapamil at a concentration of 5 μM. In addition, an in vivo rat tendinopathy model was induced through the localized injection of collagenase into the Achilles tendons of rats, and verapamil was injected into these tendons at a concentration of 5 μM. The in vitro findings highlighted the remarkable ability of verapamil to attenuate extracellular matrix degradation and apoptosis triggered by inflammation in tenocytes stimulated by IL−1β. Furthermore, verapamil was observed to significantly suppress the inflammation-related MAPK/NFκB pathway. Subsequent investigations revealed that verapamil exerts a remediating effect on mitochondrial dysfunction, which was achieved through activation of the Nrf2/HO-1 pathway. Nevertheless, the protective effect of verapamil was nullified with the utilization of the Nrf2 inhibitor ML385. In summary, the in vivo and in vitro results indicate that the administration of verapamil profoundly mitigates the severity of tendinopathy through suppression of inflammation and activation of the Nrf2/HO-1 pathway. These findings suggest that verapamil is a promising therapeutic agent for the treatment of tendinopathy, deserving further and expanded research. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

18 pages, 3844 KiB  
Article
Compatibilization of Polyamide 6/Cyclic Olefinic Copolymer Blends for the Development of Multifunctional Thermoplastic Composites with Self-Healing Capability
by Davide Perin, Andrea Dorigato and Alessandro Pegoretti
Materials 2024, 17(8), 1880; https://doi.org/10.3390/ma17081880 (registering DOI) - 18 Apr 2024
Abstract
This study investigated the self-healing properties of PA6/COC blends, in particular, the impact of three compatibilizers on the rheological, microstructural, and thermomechanical properties. Dynamic rheological analysis revealed that ethylene glycidyl methacrylate (E-GMA) played a crucial role in reducing interfacial tension and promoting PA6 [...] Read more.
This study investigated the self-healing properties of PA6/COC blends, in particular, the impact of three compatibilizers on the rheological, microstructural, and thermomechanical properties. Dynamic rheological analysis revealed that ethylene glycidyl methacrylate (E-GMA) played a crucial role in reducing interfacial tension and promoting PA6 chain entanglement with COC domains. Mechanical tests showed that poly(ethylene)-graft-maleic anhydride (PE-g-MAH) and polyolefin elastomer-graft-maleic anhydride (POE-g-MAH) compatibilizers enhanced elongation at break, while E-GMA had a milder effect. A thermal healing process at 140 °C for 1 h was carried out on specimens broken in fracture toughness tests, performed under quasi-static and impact conditions, and healing efficiency (HE) was evaluated as the ratio of critical stress intensity factors of healed and virgin samples. All the compatibilizers increased HE, especially E-GMA, achieving 28.5% and 68% in quasi-static and impact conditions, respectively. SEM images of specimens tested in quasi-static conditions showed that all the compatibilizers induced PA6 plasticization and crack corrugation, thus hindering COC flow in the crack zone. Conversely, under impact conditions, E-GMA led to the formation of brittle fractures with planar surfaces, promoting COC flow and thus higher HE values. This study demonstrated that compatibilizers, loading mode, and fracture surface morphologies strongly influenced self-healing performance. Full article
Show Figures

Figure 1

15 pages, 794 KiB  
Article
A Year in the Life of Sea Fennel: Annual Phytochemical Variations of Major Bioactive Secondary Metabolites
by Marijana Popović, Sanja Radman, Ivana Generalić Mekinić, Tonka Ninčević Runjić, Branimir Urlić and Maja Veršić Bratinčević
Appl. Sci. 2024, 14(8), 3440; https://doi.org/10.3390/app14083440 (registering DOI) - 18 Apr 2024
Abstract
Sea fennel (Crithmum maritimum L.) is one of the most abundant and widespread Mediterranean halophytes, traditionally harvested and used in the summer months. As the plant bioactive metabolites are strongly influenced by the plant vegetation period and environmental conditions, we investigated some [...] Read more.
Sea fennel (Crithmum maritimum L.) is one of the most abundant and widespread Mediterranean halophytes, traditionally harvested and used in the summer months. As the plant bioactive metabolites are strongly influenced by the plant vegetation period and environmental conditions, we investigated some of the main bioactive compounds from sea fennel leaves over a one-year period to gain a deeper insight into their annual changes. A comprehensive phytochemical analysis of the essential oils using GC-MS, as well as the major phenolic and carotenoid compounds using HPLC, was performed. The results showed a high positive correlation between temperature and all major bioactive compounds, especially phenolic acids, cryptochlorogenic acid, and chlorogenic acid (r = 0.887, p = 0.0001 and r = 0.794, p = 0.002, respectively), as well as the limonene content in the essential oil (r = 0.694, p = 0.012). PCA analysis clearly distinguishes the period from February to April from the rest of the year, which contained the least bioactive metabolites overall. The overall data analyzed show great variations in sea fennel phytochemicals during the period of a year, with β-carotene content being the least effected. Therefore, it can be concluded that the plant can be used as a functional food or in other industries, such as the cosmetic and/or pharmaceutic industries, beyond its typical harvest period (early to midsummer). Full article
13 pages, 445 KiB  
Article
Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics
by Maria Totan, Ioana-Octavia Matacuta-Bogdan, Adrian Hasegan and Ionela Maniu
Biomedicines 2024, 12(4), 905; https://doi.org/10.3390/biomedicines12040905 (registering DOI) - 18 Apr 2024
Abstract
25-hydroxyvitamin D [25(OH)D] is a marker with an important role in regulating the inflammatory response. Low concentrations of this vitamin are often found among the population, correlated with increased risk of respiratory tract infections. The aim of the study is to evaluate the [...] Read more.
25-hydroxyvitamin D [25(OH)D] is a marker with an important role in regulating the inflammatory response. Low concentrations of this vitamin are often found among the population, correlated with increased risk of respiratory tract infections. The aim of the study is to evaluate the relationship between vitamin D levels and clinical and laboratory markers in children and adolescents hospitalized with and without COVID-19. A retrospective study, including all patients tested for SARS-CoV-2 and having vitamin D measured, was performed. All included hospitalized cases, 78 COVID-19 patients and 162 NonCOVID-19 patients, were divided into subgroups according to their 25(OH)D serum levels (<20 ng/mL—deficiency, 20–30 ng/mL—insufficiency, ≥30 ng/mL—normal or <30 ng/mL, ≥30 ng/mL) and age (≤2 years, >2 years). Vitamin D deficiency and insufficiency increased with age, in both COVID-19 and NonCOVID-19 groups. All symptoms were encountered more frequently in cases of pediatric patients with COVID-19 in comparison with NonCOVID-19 cases. The most frequently encountered symptoms in the COVID-19 group were fever, loss of appetite, and nasal congestion. In the NonCOVID-19 group, serum 25(OH)D concentrations were positively correlated with leukocytes, lymphocytes, and LMR and negatively correlated with neutrophils, NLR, and PLR while no significant correlation was observed in the case of COVID-19 group. Differences between vitamin D status and clinical and laboratory parameters were observed, but their clinical significance should be interpreted with caution. The results of this study may offer further support for future studies exploring the mechanisms of the relationship between vitamin D and clinical and laboratory markers as well as for studies investigating the implications of vitamin D deficiency/supplementation on overall health/clinical outcomes of patients with/without COVID-19. Full article
(This article belongs to the Section Molecular and Translational Medicine)
25 pages, 6681 KiB  
Article
In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titanium
by Diana M. Vranceanu, Elena Ungureanu, Ionut C. Ionescu, Anca C. Parau, Vasile Pruna, Irina Titorencu, Mihaela Badea, Cristina-Ștefania Gălbău, Mihaela Idomir, Mihaela Dinu, Alina Vladescu (Dragomir) and Cosmin M. Cotrut
Biomimetics 2024, 9(4), 244; https://doi.org/10.3390/biomimetics9040244 (registering DOI) - 18 Apr 2024
Abstract
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this [...] Read more.
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency. Full article
(This article belongs to the Special Issue Bioinspired Surfaces and Functions: 2nd Edition)
34 pages, 4201 KiB  
Review
Statistical Tools to Optimize the Recovery of Bioactive Compounds from Marine Byproducts
by Zenebe Tadesse Tsegay, Sofia Agriopoulou, Moufida Chaari, Slim Smaoui and Theodoros Varzakas
Mar. Drugs 2024, 22(4), 182; https://doi.org/10.3390/md22040182 (registering DOI) - 18 Apr 2024
Abstract
Techniques for extracting important bioactive molecules from seafood byproducts, viz., bones, heads, skin, frames, fins, shells, guts, and viscera, are receiving emphasis due to the need for better valorization. Employing green extraction technologies for efficient and quality production of these bioactive molecules is [...] Read more.
Techniques for extracting important bioactive molecules from seafood byproducts, viz., bones, heads, skin, frames, fins, shells, guts, and viscera, are receiving emphasis due to the need for better valorization. Employing green extraction technologies for efficient and quality production of these bioactive molecules is also strictly required. Hence, understanding the extraction process parameters to effectively design an applicable optimization strategy could enable these improvements. In this review, statistical optimization strategies applied for the extraction process parameters of obtaining bioactive molecules from seafood byproducts are focused upon. The type of experimental designs and techniques applied to criticize and validate the effects of independent variables on the extraction output are addressed. Dominant parameters studied were the enzyme/substrate ratio, pH, time, temperature, and power of extraction instruments. The yield of bioactive compounds, including long-chain polyunsaturated fatty acids, amino acids, peptides, enzymes, gelatine, collagen, chitin, vitamins, polyphenolic constituents, carotenoids, etc., were the most studied responses. Efficiency and/or economic and quality considerations and their selected optimization strategies that favor the production of potential bioactive molecules were also reviewed. Full article
Show Figures

Figure 1

12 pages, 773 KiB  
Article
Transcriptome Analysis Provides Insights into Water Immersion Promoting the Decocooning of Osmia excavata Alfken
by Guiping Wang, Guangzhao Wang, Jiale Li, Yixiang Ma, Yinwei You, Zizhang Zhou, Yunhe Zhao, Xingyuan Men, Yingying Song and Yi Yu
Insects 2024, 15(4), 288; https://doi.org/10.3390/insects15040288 (registering DOI) - 18 Apr 2024
Abstract
The timing of decocooning and nesting during the flowering period are crucial for the reproduction and pollination activities of Osmia excavata. In order to improve the pollination efficiency of O. excavata, it is crucial to find a way to break [...] Read more.
The timing of decocooning and nesting during the flowering period are crucial for the reproduction and pollination activities of Osmia excavata. In order to improve the pollination efficiency of O. excavata, it is crucial to find a way to break the cocoon quickly. Our results showed that the decocooning rates at 6, 12, 24, 36, 48, and 72 h after 30 min of water immersion (WI) were 28.67%, 37.33%, 37.33%, 41.33%, 44.33%, and 53.00%, respectively. The decocooning rate fold of 6 h was 14.33 compared with the control group. Transcriptome sequencing resulted in 273 differentially expressed genes (DEGs) being identified between the WI and control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that muscle-related functions play important roles in O. excavata decocooning in response to WI. Cluster analysis also showed that DEGs in cardiac muscle contraction and adrenergic signaling in cardiomyocytes were up-regulated in response to WI-promoted decocooning. In conclusion, the rate of decocooning can be improved by WI in a short time. During WI-promoted decocooning, muscle-related pathways play an important role. Therefore, the application of this technology will improve the pollination effect of O. excavata. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
22 pages, 1156 KiB  
Review
The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway
by Vasiliki Zoi, Athanassios P. Kyritsis, Vasiliki Galani, Diamanto Lazari, Chrissa Sioka, Spyridon Voulgaris and Georgios A. Alexiou
Cancers 2024, 16(8), 1554; https://doi.org/10.3390/cancers16081554 (registering DOI) - 18 Apr 2024
Abstract
Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer [...] Read more.
Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer properties. Curcumin is a polyphenol isolated from the rhizomes of Curcuma longa and has been widely studied for its anti-inflammatory, anti-oxidant, and anti-cancer effects. Curcumin acts on the regulation of different aspects of cancer development, including initiation, metastasis, angiogenesis, and progression. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is a key target in cancer therapy, since it is implicated in initiation, proliferation, and cancer cell survival. Curcumin has been found to inhibit the PI3K/Akt pathway in tumor cells, primarily via the regulation of different key mediators, including growth factors, protein kinases, and cytokines. This review presents the therapeutic potential of curcumin in different malignancies, such as glioblastoma, prostate and breast cancer, and head and neck cancers, through the targeting of the PI3K/Akt signaling pathway. Full article
Show Figures

Figure 1

11 pages, 1350 KiB  
Article
Oocyte Competence of Prepubertal Sheep and Goat Oocytes: An Assessment of Large-Scale Chromatin Configuration and Epidermal Growth Factor Receptor Expression in Oocytes and Cumulus Cells
by Mònica Ferrer-Roda, Dolors Izquierdo, Ana Gil, Maria Emilia Franco Oliveira and Maria-Teresa Paramio
Int. J. Mol. Sci. 2024, 25(8), 4474; https://doi.org/10.3390/ijms25084474 (registering DOI) - 18 Apr 2024
Abstract
The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to [...] Read more.
The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults. GV chromatin was classified from diffuse to condensed as GV1, GVn, and GVc for goats and NSN, SN, and SNE for sheep. EGFR was quantified in cumulus cells (CCs) by Western blotting and in oocytes by immunofluorescence. Oocytes from prepubertal large follicles and adults exhibited highly condensed chromatin in goats (71% and 69% in GVc, respectively) and sheep (59% and 75% in SNE, respectively). In both species, EGFR expression in CCs and oocytes was higher in prepubertal large follicles than in small ones. In adult females, EGFR expression in oocytes was higher than in prepubertal large follicles. In conclusion, GV configuration and EGFR expression in CCs and oocytes were higher in the large than small follicles of prepubertal females. Full article
(This article belongs to the Section Molecular Biology)
10 pages, 593 KiB  
Article
Sex- and Gender-Based Analysis on Norepinephrine Use in Septic Shock: Why Is It Still a Male World?
by Benedetta Perna, Valeria Raparelli, Federica Tordo Caprioli, Oana Teodora Blanaru, Cecilia Malacarne, Cecilia Crosetti, Andrea Portoraro, Alex Zanotto, Francesco Maria Strocchi, Alessandro Rapino, Anna Costanzini, Martina Maritati, Roberto Lazzari, Michele Domenico Spampinato, Carlo Contini, Roberto De Giorgio and Matteo Guarino
Microorganisms 2024, 12(4), 821; https://doi.org/10.3390/microorganisms12040821 (registering DOI) - 18 Apr 2024
Abstract
Sex and gender are fundamental health determinants and their role as modifiers of treatment response is increasingly recognized. Norepinephrine is a cornerstone of septic shock management and its use is based on the highest level of evidence compared to dopamine. The related 2021 [...] Read more.
Sex and gender are fundamental health determinants and their role as modifiers of treatment response is increasingly recognized. Norepinephrine is a cornerstone of septic shock management and its use is based on the highest level of evidence compared to dopamine. The related 2021 Surviving Sepsis Campaign (SCC) recommendation is presumably applicable to both females and males; however, a sex- and gender-based analysis is lacking, thus not allowing generalizable conclusions. This paper was aimed at exploring whether sex- and gender-disaggregated data are available in the evidence supporting this recommendation. For all the studies underpinning it, four pairs of authors, including a woman and a man, extracted data concerning sex and gender, according to the Sex and Gender Equity in Research guidelines. Nine manuscripts were included with an overall population of 2126 patients, of which 43.2% were females. No sex analysis was performed and gender was never reported. In conclusion, the present manuscript highlighted that the clinical studies underlying the SCC recommendation of NE administration in septic shock have neglected the likely role of sex and gender as modifiers of treatment response, thus missing the opportunity of sex- and gender-specific guidelines. Full article
(This article belongs to the Special Issue Overview of Sepsis and Septic Shock)
Show Figures

Figure 1

14 pages, 835 KiB  
Article
Effects of the Neuropeptides Pituitary Adenylate Cyclase Activating Polypeptide and Vasoactive Intestinal Peptide in Male Fertility
by Roba Bdeir, Maha S. Al-Keilani and Khaldoun Khamaiseh
Medicina 2024, 60(4), 652; https://doi.org/10.3390/medicina60040652 (registering DOI) - 18 Apr 2024
Abstract
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed [...] Read more.
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males. Full article
Show Figures

Figure 1

14 pages, 3235 KiB  
Article
An Antimicrobial Copper–Plastic Composite Coating: Characterization and In Situ Study in a Hospital Environment
by Alexandre M. Emelyanenko, Fadi S. Omran, Maria A. Teplonogova, Marina Y. Chernukha, Lusine R. Avetisyan, Eugenia G. Tselikina, Gleb A. Putsman, Sergey K. Zyryanov, Olga I. Butranova, Kirill A. Emelyanenko and Ludmila B. Boinovich
Int. J. Mol. Sci. 2024, 25(8), 4471; https://doi.org/10.3390/ijms25084471 (registering DOI) - 18 Apr 2024
Abstract
A method has been proposed for creating an operationally durable copper coating with antimicrobial properties for the buttons of electrical switches based on the gas dynamic spray deposition of copper on acrylonitrile butadiene styrene (ABS) plastic. It is shown that during the coating [...] Read more.
A method has been proposed for creating an operationally durable copper coating with antimicrobial properties for the buttons of electrical switches based on the gas dynamic spray deposition of copper on acrylonitrile butadiene styrene (ABS) plastic. It is shown that during the coating process, a polymer film is formed on top of the copper layer. Comparative in situ studies of microbial contamination have shown that the copper-coated buttons have a significant antimicrobial effect compared to standard buttons. Analysis of swabs over a 22-week study in a hospital environment showed that the frequency of contamination for a copper-coated button with various microorganisms was 2.7 times lower than that of a control button. The presented results allow us to consider the developed copper coating for plastic switches an effective alternative method in the fight against healthcare-associated infections. Full article
(This article belongs to the Special Issue Antimicrobial Agents and Resistance Mechanisms)
Show Figures

Figure 1

15 pages, 6668 KiB  
Article
Establishment and Characterization of SV40 T-Antigen Immortalized Porcine Muscle Satellite Cell
by Mengru Ni, Jingqing He, Tao Li, Gan Zhao, Zhengyu Ji, Fada Ren, Jianxin Leng, Mengyan Wu, Ruihua Huang, Pinghua Li and Liming Hou
Cells 2024, 13(8), 703; https://doi.org/10.3390/cells13080703 (registering DOI) - 18 Apr 2024
Abstract
Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig’s muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual [...] Read more.
Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig’s muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-β-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation. Full article
(This article belongs to the Special Issue Stem Cell, Differentiation, Regeneration and Diseases)
26 pages, 7000 KiB  
Article
A Gaussian-Process-Based Model Predictive Control Approach for Trajectory Tracking and Obstacle Avoidance in Autonomous Underwater Vehicles
by Tao Liu, Jintao Zhao and Junhao Huang
J. Mar. Sci. Eng. 2024, 12(4), 676; https://doi.org/10.3390/jmse12040676 (registering DOI) - 18 Apr 2024
Abstract
To achieve the efficient and precise control of autonomous underwater vehicles (AUVs) in dynamic ocean environments, this paper proposes an innovative Gaussian-Process-based Model Predictive Control (GP-MPC) method. This method combines the advantages of Gaussian process regression in modeling uncertainties in nonlinear systems, and [...] Read more.
To achieve the efficient and precise control of autonomous underwater vehicles (AUVs) in dynamic ocean environments, this paper proposes an innovative Gaussian-Process-based Model Predictive Control (GP-MPC) method. This method combines the advantages of Gaussian process regression in modeling uncertainties in nonlinear systems, and MPC’s constraint optimization and real-time control abilities. To validate the effectiveness of the proposed GP-MPC method, its performance is first evaluated for trajectory tracking control tasks through numerical simulations based on a 6-degrees-of-freedom, fully actuated, AUV dynamics model. Subsequently, for 3D scenarios involving static and dynamic obstacles, an AUV horizontal plane decoupled motion model is constructed to verify the method’s obstacle avoidance capability. Extensive simulation studies demonstrate that the proposed GP-MPC method can effectively manage the nonlinear motion constraints faced by AUVs, significantly enhancing their intelligent obstacle avoidance performance in complex dynamic environments. By effectively handling model uncertainties and satisfying motion constraints, the GP-MPC method provides an innovative and efficient solution for the design of AUV control systems, substantially improving the control performance of AUVs. Full article
(This article belongs to the Special Issue Advancements in New Concepts of Underwater Robotics)
Show Figures

Figure 1

15 pages, 3570 KiB  
Article
Grape SnRK2.7 Positively Regulates Drought Tolerance in Transgenic Arabidopsis
by Guanquecailang Lan, Weifeng Ma, Guojie Nai, Guoping Liang, Shixiong Lu, Zonghuan Ma, Juan Mao and Baihong Chen
Int. J. Mol. Sci. 2024, 25(8), 4473; https://doi.org/10.3390/ijms25084473 (registering DOI) - 18 Apr 2024
Abstract
In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. [...] Read more.
In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. Ultimately, VvSnRK2.7 was heterologously expressed in Arabidopsis thaliana, and the relative conductivity, MDA content, antioxidant enzyme activity, and sugar content of the transgenic plants were determined under drought treatment. In addition, the expression levels of VvSnRK2.7 in Arabidopsis were analyzed. The results showed that the VvSnRK2.7-EGFP fusion protein was mainly located in the cell membrane and nucleus of tobacco leaves. In addition, the VvSnRK2.7 protein had an interactive relationship with the VvbZIP protein during the Y2H assay. The expression levels of VvSnRK2.7 and the antioxidant enzyme activities and sugar contents of the transgenic lines were higher than those of the wild type under drought treatment. Moreover, the relative conductivity and MDA content were lower than those of the wild type. The results indicate that VvSnRK2.7 may activate the enzyme activity of the antioxidant enzyme system, maintain normal cellular physiological metabolism, stabilize the berry sugar metabolism pathway under drought stress, and promote sugar accumulation to improve plant resistance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 831 KiB  
Article
Possessing 21st-Century Skills and Building Sustainable Careers: Early-Career Social Sciences Graduates’ Perspectives
by Ayşegül Karaca-Atik, Marjan J. Gorgievski, Marieke Meeuwisse and Guus Smeets
Sustainability 2024, 16(8), 3409; https://doi.org/10.3390/su16083409 (registering DOI) - 18 Apr 2024
Abstract
In today’s complex labor market, social sciences graduates encounter various challenges and negative experiences in their current jobs and job transitions, which may threaten the sustainability of their careers. Possessing 21st-century skills is considered important in supporting their career sustainability. Employing a cross-sectional [...] Read more.
In today’s complex labor market, social sciences graduates encounter various challenges and negative experiences in their current jobs and job transitions, which may threaten the sustainability of their careers. Possessing 21st-century skills is considered important in supporting their career sustainability. Employing a cross-sectional survey design, this study investigated which 21st-century skills help social sciences graduates build a sustainable career after their graduation. The sample consisted of 129 early-career social sciences graduates. We utilized both a variable-centered (path analysis) and a person-centered (latent profile) approach to data analysis. The path-analysis results showed that collaboration, creativity, and problem solving, but not communication and critical thinking, related to career sustainability. The results also revealed a suppressor effect of problem solving on the positive relationships between creativity and health-related problems, suggesting that problem solving may prevent creative individuals from developing health-related issues. Furthermore, latent-profile analysis demonstrated two profiles: sustainable and non-sustainable careers. While both profiles exhibited similar productivity levels, individuals from the non-sustainable profile reported lower happiness and higher health problems. Partly corroborating the path-analysis results, graduates with sustainable careers differed in communication and collaboration skills. This study enhances the understanding of 21st-century skills’ role in career sustainability and validates the model of sustainable careers. Full article
(This article belongs to the Special Issue Occupational Psychology and Sustainable Career Development)
15 pages, 3798 KiB  
Article
The Effect of Demolition Concrete Waste on the Physical, Mechanical, and Durability Characteristics of Concrete
by Jian Tang, Jingying Cao, Hua Luo, Weihua Chen, Zhiyou Jia, Sandra Cunha and José Aguiar
Buildings 2024, 14(4), 1148; https://doi.org/10.3390/buildings14041148 (registering DOI) - 18 Apr 2024
Abstract
With the development of urbanization, more and more construction and demolition waste (CDW) is generated. To enhance the mechanical properties and durability of concrete through the incorporation of recycled aggregate, the water/cement ratio was controlled to optimize the properties of concrete. In this [...] Read more.
With the development of urbanization, more and more construction and demolition waste (CDW) is generated. To enhance the mechanical properties and durability of concrete through the incorporation of recycled aggregate, the water/cement ratio was controlled to optimize the properties of concrete. In this work, one reference concrete with a water/cement ratio of 0.5 was prepared. The demolition concrete waste from East China was used, and 50% and 100% of the natural aggregates of the reference concrete were substituted. Furthermore, the water/cement ratio of concrete with 50% and 100% CDW was reduced to 0.3, and the superplasticizer was used to justify the workability of fresh concrete. Finally, the workability of fresh concrete was determined. After curing for 28 days, the density, water absorption, and resistance to chloride penetration of concrete were realized. The compressive and flexural strength were examined at 14 and 28 days, and the electrical resistivity test was conducted at 7, 14, and 28 days. The results indicate that with increasing CDW content, the mechanical properties and durability of concrete decreased. However, when the water/cement ratio decreased to 0.3, the concrete properties were optimized, such as the compressive strength and resistance to chloride penetration of concrete with 50% CDW increased by 74.2% and 28%, respectively. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop