Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
27 pages, 33432 KiB  
Article
A Multi-Faceted Approach to Determining the Provenance of the Lacustrine Rift Basin in the Initial Rifting Stage: A Case Study of the Paleocene Qintong Sag, Subei Basin, East China
by Rui Jiang, Zhen Liu, Shiqiang Xia, Maolin Zhu, Jianxin Tang, Gongyi Wu and Wei Wu
Minerals 2024, 14(4), 420; https://doi.org/10.3390/min14040420 (registering DOI) - 18 Apr 2024
Abstract
Research on the provenance of sedimentary systems is key to better understanding the sedimentary framework and improving exploration-associated decision-making and deployment. With regard to the provenance of sedimentary systems, there is still poor understanding in the initial rifting stage due to imbalanced and [...] Read more.
Research on the provenance of sedimentary systems is key to better understanding the sedimentary framework and improving exploration-associated decision-making and deployment. With regard to the provenance of sedimentary systems, there is still poor understanding in the initial rifting stage due to imbalanced and insufficient exploration and a common lack of seismic data, which have seriously hindered oil exploration in the Qintong Sag, Subei Basin. This study aimed at investigating the provenance in the direction of the fault-terrace zone in the southeast part of the Qintong Sag and aimed to examine whether large-scale sedimentary systems are formed by these sediment sources. Integrated analysis of heavy minerals, sandstone petrologic maturity, drilling cutting dates, 3D seismic data, and well logs was employed to identify the provenance. This study is the first time that large-scale provenance from the direction of the fault-terrace zone has been discovered in the third member of the Paleocene Funing Formation (referred to as the third Mbr of the Funing Fm in this paper) in the Subei Basin, east China. The documentation shows that sediments from the northwest Wubao Low Uplift and the southeast Taizhou Uplift can be distinguished in the Qintong Sag, with the large-scale delta system in the central and eastern part of the Qintong Sag comprising sediments from the Taizhou Uplift, improving upon previous understanding of the sedimentary framework. The deposition formed by the Taizhou Uplift provenance system was characterized by gradual weakening of the hydrodynamic forces, a decreasing sediment supply, and shrinking of the retrogradational delta depositional systems with good reservoir qualities, which are characterized by high-quality source–reservoir–cap combinations and are likely to develop into a hydrocarbon-rich belt. The discovery of the Taizhou Uplift provenance proves that there may be major provenance and large-scale sedimentary systems from the fault-terrace zone of the rift basins in the initial rifting stage. The experience of rapid retrogradation showed that these large-scale delta systems are likely to only flourish in the initial rifting stage. This study is helpful for improving the understanding of sediment provenance and the sedimentary framework of lacustrine rift basins in the initial rifting stage. Full article
(This article belongs to the Topic Petroleum Geology and Geochemistry of Sedimentary Basins)
Show Figures

Graphical abstract

16 pages, 1429 KiB  
Article
Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin
by Elena Ungureanu, Costel Samuil, Denis C. Țopa, Ovidiu C. Ungureanu, Bogdan-Marian Tofanică, Maria E. Fortună and Carmen O. Brezuleanu
Crystals 2024, 14(4), 381; https://doi.org/10.3390/cryst14040381 (registering DOI) - 18 Apr 2024
Abstract
Heavy metals are pollutants that pose a risk to living systems due to their high toxicity and ability to accumulate and contaminate. This study proposes an alternative approach to the static adsorption of Ni(II) from aqueous media using Sarkanda grass lignin crystals, the [...] Read more.
Heavy metals are pollutants that pose a risk to living systems due to their high toxicity and ability to accumulate and contaminate. This study proposes an alternative approach to the static adsorption of Ni(II) from aqueous media using Sarkanda grass lignin crystals, the non-cellulosic aromatic component of biomass, as an adsorbent substrate. To determine the best experimental conditions, we conducted tests on several parameters, including the initial and adsorbent solution pH, the concentration of Ni(II) in the aqueous solution, the amount of adsorbent used, and the contact time at the interface. The lignin’s adsorption capacity was evaluated using the Freundlich and Langmuir models to establish equilibrium conditions. The Lagergren I and Ho–McKay II kinetic models were used to determine the adsorption mechanism based on surface analyses and biological parameters such as the number of germinated seeds, energy, and germination capacity in wheat caryopses (variety Glosa) incorporated in the contaminated lignin and in the filtrates resulting from phase separation. The results suggest that Sarkanda grass lignin is effective in adsorbing Ni(II) from aqueous media, particularly in terms of adsorbent/adsorbate dosage and interfacial contact time. Full article
12 pages, 364 KiB  
Article
Why Should Diabetic Women Be Active?—The Role of Personality, Self-Esteem, Body-Esteem, and Imagery
by Dagmara Budnik-Przybylska, Malwina Fituch and Aleksandra Kowalewska
Healthcare 2024, 12(8), 857; https://doi.org/10.3390/healthcare12080857 (registering DOI) - 18 Apr 2024
Abstract
Diabetes is one of the fastest spreading diseases in the 21st century. The aim of the study is twofold: (1) to find differences in personality traits, self-esteem, body-esteem, and imagery between healthy women and women with diabetes; (2) to verify whether there are [...] Read more.
Diabetes is one of the fastest spreading diseases in the 21st century. The aim of the study is twofold: (1) to find differences in personality traits, self-esteem, body-esteem, and imagery between healthy women and women with diabetes; (2) to verify whether there are differences in the analyzed factors among women with diabetes who engage in sports compared to those who do not. We used 3 questionnaires: Imagination in Sport—short form, Self-Esteem Scale (SES), and BFIS Personality, which were tested online. We found that women with diabetes were characterized by significantly higher neuroticism, lower extraversion, and higher conscientiousness (marginally significant). We also found that women with diabetes who practice sport rated their bodies more highly in terms of sexual attractiveness and made better use of imagined affirmations than women without diabetes who were not active. Our study provides new insights into diabetics in terms of women navigating the disease. Full article
18 pages, 2574 KiB  
Article
CCN1-Mediated Signaling in Placental Villous Tissues after SARS-CoV-2 Infection in Term Pregnant Women: Implications for Dysregulated Angiogenesis
by Yuyang Ma, Liyan Duan, Beatrix Reisch, Rainer Kimmig, Antonella Iannaccone and Alexandra Gellhaus
Curr. Issues Mol. Biol. 2024, 46(4), 3533-3550; https://doi.org/10.3390/cimb46040221 (registering DOI) - 18 Apr 2024
Abstract
The global spread of SARS-CoV-2 has increased infections among pregnant women. This study aimed to explore placental pathology alterations and angiogenic factor levels in term pregnant women after SARS-CoV-2 infection in a retrospective single-center study. Additionally, we investigated the role and underlying mechanism [...] Read more.
The global spread of SARS-CoV-2 has increased infections among pregnant women. This study aimed to explore placental pathology alterations and angiogenic factor levels in term pregnant women after SARS-CoV-2 infection in a retrospective single-center study. Additionally, we investigated the role and underlying mechanism of the vascular inflammation-promoting, cysteine-rich protein 61 (CYR61/CCN1) in this context. All analyses were performed in term pregnant women infected with or without SARS-CoV-2. The sFlt-1, PlGF, and sEng serum levels were quantified using ELISA. Placental protein expressions were examined by immunoblot and immunostaining. Additionally, the effect of CCN1 protein on SGHPL-5 trophoblast cells was examined. We found that SARS-CoV-2 activated the inflammatory response in pregnant women, leading to pronounced vascular alterations in placental villous tissues. Elevated serum anti-angiogenic factors (sFlt-1, sEng) upon SARS-CoV-2 infection may directly contribute to these pathological changes. Upregulated CCN1 and pNF-κB in placental villous tissues of infected patients are identified as crucial factors in placental alterations. As a conclusion, CCN1 was significantly elevated in the placentas of term pregnant women infected with SARS-CoV-2. By activating a cascade of inflammatory responses, CCN1 induced the production of the anti-angiogenic factors sFlt-1 and sEng, which may lead to abnormal placental vascular architecture. Full article
31 pages, 3638 KiB  
Review
Inflammasome Molecular Insights in Autoimmune Diseases
by Monica Neamțu, Veronica Bild, Alexandru Vasincu, Oana Dana Arcan, Delia Bulea, Daniela-Carmen Ababei, Răzvan-Nicolae Rusu, Ioana Macadan, Ana Maria Sciucă and Andrei Neamțu
Curr. Issues Mol. Biol. 2024, 46(4), 3502-3532; https://doi.org/10.3390/cimb46040220 (registering DOI) - 18 Apr 2024
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding [...] Read more.
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management. Full article
(This article belongs to the Special Issue Advances in Understanding Molecular Basis of Inflammatory Diseases)
Show Figures

Figure 1

18 pages, 1486 KiB  
Review
Rhoa/ROCK, mTOR and Secretome-Based Treatments for Ischemic Stroke: New Perspectives
by Elena Anca Pinoșanu, Denisa Pîrșcoveanu, Carmen Valeria Albu, Emilia Burada, Andrei Pîrvu, Roxana Surugiu, Raluca Elena Sandu and Alina Florina Serb
Curr. Issues Mol. Biol. 2024, 46(4), 3484-3501; https://doi.org/10.3390/cimb46040219 (registering DOI) - 18 Apr 2024
Abstract
Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles [...] Read more.
Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 4637 KiB  
Article
Kahweol Inhibits Pro-Inflammatory Cytokines and Chemokines in Tumor Necrosis Factor-α/Interferon-γ-Stimulated Human Keratinocyte HaCaT Cells
by Ye Jin Kwon, Hyun Hee Kwon, Jaechan Leem and Yoon Young Jang
Curr. Issues Mol. Biol. 2024, 46(4), 3470-3483; https://doi.org/10.3390/cimb46040218 (registering DOI) - 18 Apr 2024
Abstract
Atopic dermatitis (AD), marked by intense itching and eczema-like lesions, is a globally increasing chronic skin inflammation. Kahweol, a diterpene that naturally occurs in coffee beans, boasts anti-inflammatory, antioxidative, and anti-cancer properties. This research explores the anti-inflammatory action of kahweol on HaCaT human [...] Read more.
Atopic dermatitis (AD), marked by intense itching and eczema-like lesions, is a globally increasing chronic skin inflammation. Kahweol, a diterpene that naturally occurs in coffee beans, boasts anti-inflammatory, antioxidative, and anti-cancer properties. This research explores the anti-inflammatory action of kahweol on HaCaT human keratinocytes stimulated by tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), focusing on key signal transduction pathways. Our results demonstrate that kahweol markedly reduces the production of IL-1β, IL-6, C-X-C motif chemokine ligand 8, and macrophage-derived chemokine in TNF-α/IFN-γ-activated HaCaT cells. Furthermore, it curtails the phosphorylation of key proteins in the mitogen-activated protein kinase (MAPK) pathways, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38. Additionally, kahweol impedes the phosphorylation and nuclear translocation of the NF-κB p65 subunit and constrains its DNA-binding capability. It also hampers the phosphorylation, nuclear translocation, and DNA-binding activities of signal transducer and activator of transcription 1 (STAT1) and STAT3. Collectively, these findings suggest that kahweol hinders the generation of cytokines and chemokines in inflamed keratinocytes by inhibiting the MAPK, NF-κB, and STAT cascades. These insights position kahweol as a promising agent for dermatological interventions, especially in managing inflammatory skin conditions such as AD. Full article
(This article belongs to the Special Issue Natural Product in Skin Inflammation and Barrier Function Damage)
Show Figures

Figure 1

11 pages, 2481 KiB  
Article
Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images
by Tae Yong Park, Lyo Min Kwon, Jini Hyeon, Bum-Joo Cho and Bum Jun Kim
Curr. Oncol. 2024, 31(4), 2278-2288; https://doi.org/10.3390/curroncol31040169 (registering DOI) - 18 Apr 2024
Abstract
Background: Accurate detection of axillary lymph node (ALN) metastases in breast cancer is crucial for clinical staging and treatment planning. This study aims to develop a deep learning model using clinical implication-applied preprocessed computed tomography (CT) images to enhance the prediction of ALN [...] Read more.
Background: Accurate detection of axillary lymph node (ALN) metastases in breast cancer is crucial for clinical staging and treatment planning. This study aims to develop a deep learning model using clinical implication-applied preprocessed computed tomography (CT) images to enhance the prediction of ALN metastasis in breast cancer patients. Methods: A total of 1128 axial CT images of ALN (538 malignant and 590 benign lymph nodes) were collected from 523 breast cancer patients who underwent preoperative CT scans between January 2012 and July 2022 at Hallym University Medical Center. To develop an optimal deep learning model for distinguishing metastatic ALN from benign ALN, a CT image preprocessing protocol with clinical implications and two different cropping methods (fixed size crop [FSC] method and adjustable square crop [ASC] method) were employed. The images were analyzed using three different convolutional neural network (CNN) architectures (ResNet, DenseNet, and EfficientNet). Ensemble methods involving and combining the selection of the two best-performing CNN architectures from each cropping method were applied to generate the final result. Results: For the two different cropping methods, DenseNet consistently outperformed ResNet and EfficientNet. The area under the receiver operating characteristic curve (AUROC) for DenseNet, using the FSC and ASC methods, was 0.934 and 0.939, respectively. The ensemble model, which combines the performance of the DenseNet121 architecture for both cropping methods, delivered outstanding results with an AUROC of 0.968, an accuracy of 0.938, a sensitivity of 0.980, and a specificity of 0.903. Furthermore, distinct trends observed in gradient-weighted class activation mapping images with the two cropping methods suggest that our deep learning model not only evaluates the lymph node itself, but also distinguishes subtler changes in lymph node margin and adjacent soft tissue, which often elude human interpretation. Conclusions: This research demonstrates the promising performance of a deep learning model in accurately detecting malignant ALNs in breast cancer patients using CT images. The integration of clinical considerations into image processing and the utilization of ensemble methods further improved diagnostic precision. Full article
Show Figures

Figure 1

13 pages, 295 KiB  
Article
Association between Levels of Loneliness, Laboratory Measurements, and Behavioral Aspects in a Primary Care Setting in Crete, Greece
by Panagiotis Volkos, Manolis Linardakis, Panagiotis Stachteas, Foteini Anastasiou, Athina Tatsioni, Marilena Kampa and Emmanouil K. Symvoulakis
Eur. J. Investig. Health Psychol. Educ. 2024, 14(4), 1055-1067; https://doi.org/10.3390/ejihpe14040069 (registering DOI) - 18 Apr 2024
Abstract
This paper examines potential associations of loneliness with laboratory data and specific psychosocial and behavioral attitudes. The sample collection took place in an urban Primary Health Care unit between May and July 2023, consecutively, and once exclusion criteria were implemented. Participants were aged [...] Read more.
This paper examines potential associations of loneliness with laboratory data and specific psychosocial and behavioral attitudes. The sample collection took place in an urban Primary Health Care unit between May and July 2023, consecutively, and once exclusion criteria were implemented. Participants were aged between 40 and 75 years. Routine laboratory test results upon study initiation and six months before were used. The University of California, Los Angeles (UCLA), Loneliness Scale (Version 3), blood glucose, serum lipids, Fibrosis-4 index, and Creatinine Clearance (CrCl) were assessed through hierarchical multiple logistic regression analysis. Based on full model (3rd) analysis, those who were engaged in an individual sport or activity or had contacts with more friends presented significantly lower odds for increased loneliness levels (odds ratio (OR): 0.28 [95% confidence interval (CI) 0.09–0.91], p = 0.034 and OR: 0.76 [95%CI 0.66–0.88], p < 0.001, respectively). The consumption of alcohol was associated with increased loneliness (OR: 5.55 [95%CI 1.42–21.63], p = 0.014). Elevated triglyceride levels were linked with moderate or no loneliness (OR: 0.20 [95%CI 0.05–0.83], p = 0.026), while an increased LDL/HDL atherosclerotic index was related to increased subjective loneliness (OR: 4.50 [95%CI 1.12–18.13], p = 0.035). The need for holistic approaches—involving primary care personnel—in understanding and addressing loneliness, recognizing its multifaceted nature as well as the diverse factors that contribute to this issue, is considered challenging. Full article
12 pages, 1125 KiB  
Article
Perspectives of Nursing Students on Hybrid Simulation-Based Learning Clinical Experience: A Text-Mining Analysis
by Aya Saitoh, Tomoe Yokono, Momoe Sakagami, Michi Kashiwa, Hansani Madushika Abeywickrama and Mieko Uchiyama
Nurs. Rep. 2024, 14(2), 988-999; https://doi.org/10.3390/nursrep14020074 (registering DOI) - 18 Apr 2024
Abstract
Given the past limitations on clinical practice training during the COVID-19 pandemic, a hybrid format program was developed, combining a time-lapse unfolding case study and high-fidelity simulation. This study assesses the effectiveness of a new form of clinical training from the perspective of [...] Read more.
Given the past limitations on clinical practice training during the COVID-19 pandemic, a hybrid format program was developed, combining a time-lapse unfolding case study and high-fidelity simulation. This study assesses the effectiveness of a new form of clinical training from the perspective of student nurses. A questionnaire was administered to 159 second-year nursing students enrolled in the “Basic Nursing Practice II” course. Text mining was performed using quantitative text analysis for the following items: (1) aspects that were learned more deeply, (2) benefits, and (3) difficulties encountered with the new practice format. The new clinical practice format enhanced participants’ learning related to the daily changes required in nursing care and improved their nursing competency through simulated patient interactions. However, the participants faced difficulties dealing with patients accompanied by secular changes. Moreover, they found remote group work challenging. These findings can be applied to the development of new educational strategies. Full article
Show Figures

Figure 1

52 pages, 6842 KiB  
Review
Porous Inorganic Nanomaterials: Their Evolution towards Hierarchical Porous Nanostructures
by Anitta Jose, Tom Mathew, Nora Fernández-Navas and Christine Joy Querebillo
Micro 2024, 4(2), 229-280; https://doi.org/10.3390/micro4020016 (registering DOI) - 18 Apr 2024
Abstract
The advancement of both porous materials and nanomaterials has brought about porous nanomaterials. These new materials present advantages both due to their porosity and nano-size: small size apt for micro/nano device integration or in vivo transport, large surface area for guest/target molecule adsorption [...] Read more.
The advancement of both porous materials and nanomaterials has brought about porous nanomaterials. These new materials present advantages both due to their porosity and nano-size: small size apt for micro/nano device integration or in vivo transport, large surface area for guest/target molecule adsorption and interaction, porous channels providing accessibility to active/surface sites, and exposed reactive surface/active sites induced by uncoordinated bonds. These properties prove useful for the development of different porous composition types (metal oxides, silica, zeolites, amorphous oxides, nanoarrays, precious metals, non-precious metals, MOFs, carbon nanostructures, MXenes, and others) through different synthetic procedures—templating, colloidal synthesis, hydrothermal approach, sol-gel route, self-assembly, dealloying, galvanostatic replacement, and so—for different applications, such as catalysis (water-splitting, etc.), biosensing, energy storage (batteries, supercapacitors), actuators, SERS, and bio applications. Here, these are presented according to different material types showing the evolution of the structure design and development towards the formation of hierarchical porous structures, emphasizing that the formation of porous nanostructures came about out of the desire and need to form hierarchical porous nanostructures. Common trends observed across these different composition types include similar (aforementioned) applications and the use of porous nanomaterials as templates/precursors to create novel ones. Towards the end, a discussion on the link between technological advancements and the development of porous nanomaterials paves the way to present future perspectives on these nanomaterials and their hierarchical porous architectures. Together with a summary, these are given in the conclusion. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

23 pages, 7625 KiB  
Article
Proposal of Practical Sound Source Localization Method Using Histogram and Frequency Information of Spatial Spectrum for Drone Audition
by Kotaro Hoshiba, Izumi Komatsuzaki and Nobuyuki Iwatsuki
Drones 2024, 8(4), 159; https://doi.org/10.3390/drones8040159 (registering DOI) - 18 Apr 2024
Abstract
A technology to search for victims in disaster areas by localizing human-related sound sources, such as voices and emergency whistles, using a drone-embedded microphone array was researched. One of the challenges is the development of sound source localization methods. Such a sound-based search [...] Read more.
A technology to search for victims in disaster areas by localizing human-related sound sources, such as voices and emergency whistles, using a drone-embedded microphone array was researched. One of the challenges is the development of sound source localization methods. Such a sound-based search method requires a high resolution, a high tolerance for quickly changing dynamic ego-noise, a large search range, high real-time performance, and high versatility. In this paper, we propose a novel sound source localization method based on multiple signal classification for victim search using a drone-embedded microphone array to satisfy these requirements. In the proposed method, the ego-noise and target sound components are extracted using the histogram information of the three-dimensional spatial spectrum (azimuth, elevation, and frequency) at the current time, and they are separated using continuity. The direction of arrival of the target sound is estimated from the separated target sound component. Since this method is processed with only simple calculations and does not use previous information, all requirements can be satisfied simultaneously. Evaluation experiments using recorded sound in a real outdoor environment show that the localization performance of the proposed method was higher than that of the existing and previously proposed methods, indicating the usefulness of the proposed method. Full article
(This article belongs to the Special Issue Technologies and Applications for Drone Audition)
Show Figures

Figure 1

14 pages, 835 KiB  
Article
Effects of the Neuropeptides Pituitary Adenylate Cyclase Activating Polypeptide and Vasoactive Intestinal Peptide in Male Fertility
by Roba Bdeir, Maha S. Al-Keilani and Khaldoun Khamaiseh
Medicina 2024, 60(4), 652; https://doi.org/10.3390/medicina60040652 (registering DOI) - 18 Apr 2024
Abstract
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed [...] Read more.
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males. Full article
Show Figures

Figure 1

17 pages, 383 KiB  
Review
Health Effects of Ionizing Radiation on the Human Body
by Jasminka Talapko, Domagoj Talapko, Darko Katalinić, Ivan Kotris, Ivan Erić, Dino Belić, Mila Vasilj Mihaljević, Ana Vasilj, Suzana Erić, Josipa Flam, Sanja Bekić, Suzana Matić and Ivana Škrlec
Medicina 2024, 60(4), 653; https://doi.org/10.3390/medicina60040653 (registering DOI) - 18 Apr 2024
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) [...] Read more.
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms—human beings—in the course of evolution have not acquired receptors for the direct “capture” of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively—bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin. Full article
(This article belongs to the Section Epidemiology & Public Health)
25 pages, 6681 KiB  
Article
In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titanium
by Diana M. Vranceanu, Elena Ungureanu, Ionut C. Ionescu, Anca C. Parau, Vasile Pruna, Irina Titorencu, Mihaela Badea, Cristina-Ștefania Gălbău, Mihaela Idomir, Mihaela Dinu, Alina Vladescu (Dragomir) and Cosmin M. Cotrut
Biomimetics 2024, 9(4), 244; https://doi.org/10.3390/biomimetics9040244 (registering DOI) - 18 Apr 2024
Abstract
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this [...] Read more.
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency. Full article
(This article belongs to the Special Issue Bioinspired Surfaces and Functions: 2nd Edition)
13 pages, 1787 KiB  
Article
Aging in First and Second Life of G/LFP 18650 Cells: Diagnosis and Evolution of the State of Health of the Cell and the Negative Electrode under Cycling
by William Wheeler, Pascal Venet, Yann Bultel, Ali Sari and Elie Riviere
Batteries 2024, 10(4), 137; https://doi.org/10.3390/batteries10040137 (registering DOI) - 18 Apr 2024
Abstract
Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the [...] Read more.
Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the establishment of a reliable prognosis, based on the aging modes involved in a cell. This paper introduces a method for characterizing specific aging phenomenon in Graphite/Lithium Iron Phosphate (G/LFP) cells. This method aims to identify aging related to the loss of active material at the negative electrode (LAMNE). The identification and tracking of the state of health (SoH) are based on Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA) peak-tracking techniques. The remaining capacity of the electrode is thus evaluated based on these diagnostic results, using a model derived from half-cell electrode characterization. The method is used on a G/LFP cell in the format 18650, with a nominal capacity of 1.1 Ah, aged from its pristine state to 40% of state of health. Full article
(This article belongs to the Special Issue Second-Life Batteries)
14 pages, 3474 KiB  
Article
Oleanolic Acid Acetate Alleviates Cisplatin-Induced Nephrotoxicity via Inhibition of Apoptosis and Necroptosis In Vitro and In Vivo
by Bori Lee, Yeon-Yong Kim, Seungwon Jeong, Seung Woong Lee, Seung-Jae Lee, Mun-Chual Rho, Sang-Hyun Kim and Soyoung Lee
Toxics 2024, 12(4), 301; https://doi.org/10.3390/toxics12040301 (registering DOI) - 18 Apr 2024
Abstract
Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. [...] Read more.
Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model. In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3 expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as an anti-cancer adjuvant. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

20 pages, 5337 KiB  
Article
Photoautotrophic Production of Docosahexaenoic Acid- and Eicosapentaenoic Acid-Enriched Biomass by Co-Culturing Golden-Brown and Green Microalgae
by Anna-Lena Thurn, Josef Schobel and Dirk Weuster-Botz
Fermentation 2024, 10(4), 220; https://doi.org/10.3390/fermentation10040220 (registering DOI) - 18 Apr 2024
Abstract
Marine microalgae offer a sustainable alternative source for the human diet’s essential omega-3-fatty acids, including docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, none of them can produce DHA and EPA in a nutritionally balanced ratio of 1:1. As shown recently, [...] Read more.
Marine microalgae offer a sustainable alternative source for the human diet’s essential omega-3-fatty acids, including docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5). However, none of them can produce DHA and EPA in a nutritionally balanced ratio of 1:1. As shown recently, the phototrophic co-cultivation of the golden-brown microalgae Tisochrysis lutea (DHA producer) with the green microalgae Microchloropsis salina (EPA producer) can provide microalgae biomass with a balanced DHA-to-EPA ratio with increased productivity compared to monocultures. This study evaluates whether other golden-brown (Isochrysis galbana) and green microalgae (Nannochloropsis oceanica, Microchloropsis gaditana) can enable the phototrophic batch production of omega-3 fatty acids in a nutritionally balanced ratio in co-culture. All co-cultivations applying a physically dynamic climate simulation of a repeated sunny summer day in Australia in LED-illuminated flat-plate gas lift photobioreactors resulted in increased biomass concentrations compared to their respective monocultures, achieving balanced DHA-to-EPA ratios of almost 1:1. Using urea instead of nitrate as a nitrogen source increased the EPA content by up to 80% in all co-cultures. Light spectra measurements on the light-adverted side of the photobioreactor showed that increased biomass concentrations in co-cultures could have been related to enhanced light use due to the utilization of different wavelengths of the two microalgae strains, especially with the use of green light (500–580 nm) primarily by golden-brown microalgae (I. galbana) and orange light (600–620 nm) predominantly used by green microalgae (N. oceanica). Phototrophic co-cultivation processes thus promise higher areal biomass yields if microalgae are combined with complimentary light-harvesting features. Full article
12 pages, 897 KiB  
Article
High Sensitivity Hydrogen Sensor via the Coupling of Tamm Plasmon Polaritons and Defect Mode
by Feng Zhang, Weifeng Yin and Jianxia Zhang
Chemosensors 2024, 12(4), 67; https://doi.org/10.3390/chemosensors12040067 (registering DOI) - 18 Apr 2024
Abstract
Optical hydrogen sensors offer high sensitivity, high accuracy, and non-invasive sensing capabilities, making them promising devices in various fields, including the construction of hydrogen fuel cells, storage and transportation, and aerospace. However, to achieve better sensitivity and faster reaction times, such sensors are [...] Read more.
Optical hydrogen sensors offer high sensitivity, high accuracy, and non-invasive sensing capabilities, making them promising devices in various fields, including the construction of hydrogen fuel cells, storage and transportation, and aerospace. However, to achieve better sensitivity and faster reaction times, such sensors are often constructed as nano-arrays or nano-gratings, leading to increased manufacturing costs and complexity. In this study, we propose and demonstrate a highly sensitive hydrogen sensor based on a multilayer structure. The proposed structure consists of a Pd metal film and a photonic crystal with a defect layer, in which the photonic crystal is designed by an alternating arrangement of Ta2O5 and SiO2, and the material comprising the defect layer is SiO2. With a sensitivity of up to 16,020 at 670 nm, the proposed sensor relies on the coupling of Tamm plasmon polaritons and defect modes. The electric field distribution inside the structure is also provided in order to reveal its physical mechanism. Furthermore, we investigate the effects of the thickness of the defect layer and the angle of incident light on the sensor’s performance. The study results show that the sensor has good fault tolerance in either scenario. The findings of this study open up new possibilities for hydrogen sensor applications. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
12 pages, 6255 KiB  
Article
Finite Element Analysis of Fixed Orthodontic Retainers
by Sebastian Hetzler, Stefan Rues, Andreas Zenthöfer, Peter Rammelsberg, Christopher J. Lux and Christoph J. Roser
Bioengineering 2024, 11(4), 394; https://doi.org/10.3390/bioengineering11040394 (registering DOI) - 18 Apr 2024
Abstract
The efficacy of retainers is a pivotal concern in orthodontic care. This study examined the biomechanical behaviour of retainers, particularly the influence of retainer stiffness and tooth resilience on force transmission and stress distribution. To do this, a finite element model was created [...] Read more.
The efficacy of retainers is a pivotal concern in orthodontic care. This study examined the biomechanical behaviour of retainers, particularly the influence of retainer stiffness and tooth resilience on force transmission and stress distribution. To do this, a finite element model was created of the lower jaw from the left to the right canine with a retainer attached on the oral side. Three levels of tooth resilience and variable retainer bending stiffness (influenced by retainer type, retainer diameter, and retainer material) were simulated. Applying axial or oblique (45° tilt) loads on a central incisor, the force transmission increased from 2% to 65% with increasing tooth resilience and retainer stiffness. Additionally, a smaller retainer diameter reduced the uniformity of the stress distribution in the bonding interfaces, causing concentrated stress peaks within a small field of the bonding area. An increase in retainer stiffness and in tooth resilience as well as a more oblique load direction all lead to higher overall stress in the adhesive bonding area associated with a higher risk of retainer bonding failure. Therefore, it might be recommended to avoid the use of retainers that are excessively stiff, especially in cases with high tooth resilience. Full article
(This article belongs to the Special Issue Application of Bioengineering to Clinical Orthodontics)
Show Figures

Figure 1

12 pages, 559 KiB  
Article
Production and Characterization of Downgraded Maple Syrup-Based Synbiotic Containing Bacillus velezensis FZB42 for Animal Nutrition
by Gautier Decabooter, Mariem Theiri, Denis Groleau, Marie Filteau and Ismail Fliss
Fermentation 2024, 10(4), 221; https://doi.org/10.3390/fermentation10040221 (registering DOI) - 18 Apr 2024
Abstract
The use of antibiotics to promote growth and prevent diarrhea in livestock production has raised concerns about the emergence of antibiotic-resistant bacteria. Probiotics, live microorganisms that confer health benefits, have been proposed as alternatives to antibiotics. In this study, we produced and characterized [...] Read more.
The use of antibiotics to promote growth and prevent diarrhea in livestock production has raised concerns about the emergence of antibiotic-resistant bacteria. Probiotics, live microorganisms that confer health benefits, have been proposed as alternatives to antibiotics. In this study, we produced and characterized a downgraded maple syrup-based feed supplement containing Bacillus velezensis FZB42 as a potential synbiotic for animal nutrition. An optimized fermentation medium was developed through a central composite design to produce B. velezensis FZB42 at both the laboratory and pilot scale, reaching a concentration of 6.15 ± 0.46 × 109 CFU/mL. Subsequently, B. velezensis FZB42 was incorporated into a protective whey permeate matrix and spray-dried, resulting in a 31.4% yield with a moisture content of 4.38%. The survival of B. velezensis FZB42 in a simulated gastrointestinal tract was evaluated using the TIM-1 system, revealing a survival rate of 16.05% after passage through the gastric, duodenal, jejunal, and ileal compartments. These findings highlight the possibility of B. velezensis FZB42 being an economically viable and possibly functional synbiotic supplement and effective alternative to antibiotic growth promoters in livestock production. Full article
(This article belongs to the Special Issue Bioconversion of Agricultural Wastes into High-Nutrition Animal Feed)
11 pages, 5060 KiB  
Article
Flexible Modulation of Perfect Vortex Beams by Combining Coherent Beams
by Bowang Shu, Yuqiu Zhang, Hongxiang Chang, Shiqing Tang, Jinyong Leng, Jiangming Xu and Pu Zhou
Photonics 2024, 11(4), 385; https://doi.org/10.3390/photonics11040385 (registering DOI) - 18 Apr 2024
Abstract
Perfect vortex beams (PVBs) possess the advantage of a stable light field distribution regardless of their topological charges, and thus they are extensively utilized in various applications, such as free-space optical communication, optical tweezers and laser processing. Herein, we report a new strategy [...] Read more.
Perfect vortex beams (PVBs) possess the advantage of a stable light field distribution regardless of their topological charges, and thus they are extensively utilized in various applications, such as free-space optical communication, optical tweezers and laser processing. Herein, we report a new strategy to generate and modulate PVBs using coherent beam combining (CBC) technology. Both piston phase and tilting phase controlling methods have been successfully employed, and the corresponding properties of the generated PVBs have been fully investigated. Moreover, the number and position of the gaps in fractional perfect vortex beams (FPVBs) could be precisely controlled, and the relationships between these modulated parameters and the performance of FPVBs are uncovered. These simulation analysis results demonstrate the potential for flexible modulation of PVBs or FPVBs in the CBC system, indicating promising prospects for coherent beam arrays (CBAs) in laser beam shaping and achieving high-power structured light. Full article
(This article belongs to the Special Issue Recent Advances in Laser Beams)
Show Figures

Figure 1

20 pages, 1762 KiB  
Article
Artificial Intelligence Chatbots in Chemical Information Seeking: Narrative Educational Insights via a SWOT Analysis
by Johannes Pernaa, Topias Ikävalko, Aleksi Takala, Emmi Vuorio, Reija Pesonen and Outi Haatainen
Informatics 2024, 11(2), 20; https://doi.org/10.3390/informatics11020020 (registering DOI) - 18 Apr 2024
Abstract
Artificial intelligence (AI) chatbots are next-word predictors built on large language models (LLMs). There is great interest within the educational field for this new technology because AI chatbots can be used to generate information. In this theoretical article, we provide educational insights into [...] Read more.
Artificial intelligence (AI) chatbots are next-word predictors built on large language models (LLMs). There is great interest within the educational field for this new technology because AI chatbots can be used to generate information. In this theoretical article, we provide educational insights into the possibilities and challenges of using AI chatbots. These insights were produced by designing chemical information-seeking activities for chemistry teacher education which were analyzed via the SWOT approach. The analysis revealed several internal and external possibilities and challenges. The key insight is that AI chatbots will change the way learners interact with information. For example, they enable the building of personal learning environments with ubiquitous access to information and AI tutors. Their ability to support chemistry learning is impressive. However, the processing of chemical information reveals the limitations of current AI chatbots not being able to process multimodal chemical information. There are also ethical issues to address. Despite the benefits, wider educational adoption will take time. The diffusion can be supported by integrating LLMs into curricula, relying on open-source solutions, and training teachers with modern information literacy skills. This research presents theory-grounded examples of how to support the development of modern information literacy skills in the context of chemistry teacher education. Full article
(This article belongs to the Topic AI Chatbots: Threat or Opportunity?)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop