The 2023 MDPI Annual Report has
been released!
 
22 pages, 682 KiB  
Article
Application of Fuzzy Control and Neural Network Control in the Commercial Development of Sustainable Energy System
by Fanbao Xie, Xin Guan, Xiaoyan Peng, Yanzhao Zeng, Zeyu Wang and Tianqiao Qin
Sustainability 2024, 16(9), 3823; https://doi.org/10.3390/su16093823 (registering DOI) - 02 May 2024
Abstract
Sustainable energy systems (SESs) occupy a prominent position in the modern global energy landscape. The purpose of this study is to explore the application of fuzzy control and neural network control in photovoltaic systems to improve the power generation efficiency and stability of [...] Read more.
Sustainable energy systems (SESs) occupy a prominent position in the modern global energy landscape. The purpose of this study is to explore the application of fuzzy control and neural network control in photovoltaic systems to improve the power generation efficiency and stability of the system. By establishing the mathematical model of a photovoltaic system, the nonlinear and uncertain characteristics of photovoltaic system are considered. Fuzzy control and neural network control are used to control the system, and their performance is verified by experiments. The experimental results show that under the conditions of low light and moderate temperature, the fuzzy neural network control achieves a 3.33% improvement in power generation efficiency compared with the single control strategy. Meanwhile, the system can still maintain relatively stable operation under different environmental conditions under this comprehensive control. This shows that fuzzy neural network control has significant advantages in improving power generation efficiency and provides beneficial technical support and guidance for the commercial development of SESs. Full article
13 pages, 4598 KiB  
Article
Li4SiO4-Based Heat Carrier Derived from Different Silica Sources for Thermochemical Energy Storage
by Xicheng Wang, Wentao Xia, Wenlong Xu, Zengqiao Chen, Xiaohan Ren and Yuandong Yang
Energies 2024, 17(9), 2180; https://doi.org/10.3390/en17092180 (registering DOI) - 02 May 2024
Abstract
Thermochemical energy storage (TCES) is one of the key technologies facilitating the integration of renewable energy sources and mitigating the climate crisis. Recently, Li4SiO4 has been reported to be a promising heat carrier material for TCES applications, owing to its [...] Read more.
Thermochemical energy storage (TCES) is one of the key technologies facilitating the integration of renewable energy sources and mitigating the climate crisis. Recently, Li4SiO4 has been reported to be a promising heat carrier material for TCES applications, owing to its moderate operation temperature and stability. During the synthetic processes, the properties of the Si source used directly influence the performance of derived Li4SiO4 materials; however, the internal relations and effects are not yet clear. Hence, in this work, six kinds of SiO2 sources with different phases, morphology, particle size, and surface area were selected to synthesize a Li4SiO4-based TCES heat carrier. The physicochemical properties of the SiO2 and the corresponding derived Li4SiO4 were characterized, and the comprehensive performance (e.g., heat storage/releasing capacity, rate, and cyclic stability) of the Li4SiO4 samples was systematically tested. It was found that the silica microspheres (SPs), which possess an amorphous phase, uniform micro-scale structure, and small particle size, could generate Li4SiO4 TCES materials with a highest initial capacity of 777.7 kJ/kg at 720 °C/900 °C under pure CO2. As a result, the SP-L showed an excellent cumulative heat storage amount of 5.84 MJ/kg within 10 heat-releasing/storage cycles, which was nearly 1.5 times greater than the value of Li4SiO4 derived from commonly used silicon dioxide. Furthermore, the effects of the utilized Si source on the performance of as-prepared Li4SiO4 and corresponding mechanisms were discussed, which offers guidance for the future selection of Si sources to produce high-performance Li4SiO4-based TCES heat carriers. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

12 pages, 3242 KiB  
Article
Characterization of Chitosan Hydrogels Obtained through Phenol and Tripolyphosphate Anionic Crosslinking
by Mitsuyuki Hidaka, Masaru Kojima, Shinji Sakai and Cédric Delattre
Polymers 2024, 16(9), 1274; https://doi.org/10.3390/polym16091274 (registering DOI) - 02 May 2024
Abstract
Chitosan is a deacetylated polymer of chitin that is extracted mainly from the exoskeleton of crustaceans and is the second-most abundant polymer in nature. Chitosan hydrogels are preferred for a variety of applications in bio-related fields due to their functional properties, such as [...] Read more.
Chitosan is a deacetylated polymer of chitin that is extracted mainly from the exoskeleton of crustaceans and is the second-most abundant polymer in nature. Chitosan hydrogels are preferred for a variety of applications in bio-related fields due to their functional properties, such as antimicrobial activity and wound healing effects; however, the existing hydrogelation methods require toxic reagents and exhibit slow gelation times, which limit their application in biological fields. Therefore, a mild and rapid gelation method is necessary. We previously demonstrated that the visible light-induced gelation of chitosan obtained through phenol crosslinking (ChPh) is a rapid gelation method. To further advance this method (<10 s), we propose a dual-crosslinked chitosan hydrogel obtained by crosslinking phenol groups and crosslinking sodium tripolyphosphate (TPP) and the amino groups of chitosan. The chitosan hydrogel was prepared by immersing the ChPh hydrogel in a TPP solution after phenol crosslinking via exposure to visible light. The physicochemical properties of the dual-crosslinked hydrogels, including Young’s moduli and water retentions, were subsequently investigated. Young’s moduli of the dual-crosslinked hydrogels were 20 times higher than those of the hydrogels without TPP ion crosslinking. The stiffness could be manipulated by varying the immersion time, and the water retention properties of the ChPh hydrogel were improved by TPP crosslinking. Ion crosslinking could be reversed using an iron chloride solution. This method facilitates chitosan hydrogel use for various applications, particularly tissue engineering and drug delivery. Full article
Show Figures

Figure 1

14 pages, 2093 KiB  
Article
A Double-Threshold Cooperative Spectrum Sensing Algorithm in the Internet of Vehicles
by Hong Du and Yuhan Wang
World Electr. Veh. J. 2024, 15(5), 195; https://doi.org/10.3390/wevj15050195 (registering DOI) - 02 May 2024
Abstract
To address the shortage of wireless spectrum resources caused by the rapid development of the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm is introduced. [...] Read more.
To address the shortage of wireless spectrum resources caused by the rapid development of the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm is introduced. This algorithm enhances traditional energy detection technology to mitigate the high sensitivity to noise interference in the Internet of Vehicles environment. A double-threshold judgment mechanism can be established based on the uncertainty of noise. Varying fusion rules are implemented in the collaborative spectrum sensing scheme according to the density of vehicles and the spectrum resource demand. Simulation results demonstrate that the performance of the double-threshold cooperative spectrum sensing algorithm surpasses that of the traditional single-threshold energy detection scheme, particularly evident under lower Signal-to-Noise Ratio (SNR) conditions. Moreover, the proposed algorithm exhibits superior sensing performance in environments characterized by higher noise uncertainty. Full article
Show Figures

Figure 1

24 pages, 15240 KiB  
Article
Enhancing Seismic Landslide Susceptibility Analysis for Sustainable Disaster Risk Management through Machine Learning
by Hailang He, Weiwei Wang, Zhengxing Wang, Shu Li and Jianguo Chen
Sustainability 2024, 16(9), 3828; https://doi.org/10.3390/su16093828 (registering DOI) - 02 May 2024
Abstract
The accuracy of Seismic Landslide Susceptibility Maps (SLSMs) is imperative for the prevention of seismic landslide disasters. This study enhances the precision of SLSMs by integrating nine distinct machine learning methodologies with the GeoDetector version 0.0.4 tool to filter both numerical and physical [...] Read more.
The accuracy of Seismic Landslide Susceptibility Maps (SLSMs) is imperative for the prevention of seismic landslide disasters. This study enhances the precision of SLSMs by integrating nine distinct machine learning methodologies with the GeoDetector version 0.0.4 tool to filter both numerical and physical factors contributing to landslide susceptibility. The dataset comprises 2317 landslide instances triggered by the 2013 Minxian Ms = 6.6 earthquake, from which redundant factors were pruned using the Recursive Feature Elimination technique. Subsequent evaluations of the optimized factors, both individually and in combination, were conducted through Frequency Ratio analysis and Factor Interaction assessment. The study juxtaposes the Area Under the Receiver Operating Characteristic Curve (AUC) and the accuracy of nine machine learning models before and after factor optimization. The findings indicate an increase in AUC from a maximum of 0.989 to 0.992 in the Random Forest model, and an 8.37% increase in AUC for the SVM model, signifying a notable enhancement in the stability across all models. The establishment of the SLSM notably elevated the frequency ratio in high-risk zones from 50.40 to 85.14, underscoring the efficacy of combining machine learning and detector optimization techniques in sustainable practices. This research proposes a universal framework aimed at eliminating redundancy and noise in SLSMs and hazard risk assessments, thereby facilitating sustainable geological disaster risk management. Full article
19 pages, 6386 KiB  
Article
Directional Multi-Resonant Micro-Electromechanical System Acoustic Sensor for Low Frequency Detection
by Justin Ivancic and Fabio Alves
Sensors 2024, 24(9), 2908; https://doi.org/10.3390/s24092908 (registering DOI) - 02 May 2024
Abstract
This paper reports on the design, modeling, and characterization of a multi-resonant, directional, MEMS acoustic sensor. The design builds on previous resonant MEMS sensor designs to broaden the sensor’s usable bandwidth while maintaining a high signal-to-noise ratio (SNR). These improvements make the sensor [...] Read more.
This paper reports on the design, modeling, and characterization of a multi-resonant, directional, MEMS acoustic sensor. The design builds on previous resonant MEMS sensor designs to broaden the sensor’s usable bandwidth while maintaining a high signal-to-noise ratio (SNR). These improvements make the sensor more attractive for detecting and tracking sound sources with acoustic signatures that are broader than discrete tones. In-air sensor characterization was conducted in an anechoic chamber. The sensor was characterized underwater in a semi-anechoic pool and in a standing wave tube. The sensor demonstrated a cosine-like directionality, a maximum acoustic sensitivity of 47.6 V/Pa, and a maximum SNR of 88.6 dB, for 1 Pa sound pressure, over the bandwidth of the sensor circuitry (100 Hz–3 kHz). The presented design represents a significant improvement in sensor performance compared to similar resonant MEMS sensor designs. Increasing the sensitivity of a single-resonator design is typically associated with a decrease in bandwidth. This multi-resonant design overcomes that limitation. Full article
(This article belongs to the Special Issue Acoustic Sensing and Monitoring in Urban and Natural Environments)
Show Figures

Figure 1

16 pages, 2400 KiB  
Article
Impact of Silver Nanoparticles on Arbuscular Mycorrhizal Fungi and Glomalin-Related Soil Proteins in the Rhizosphere of Maize Seedlings
by Haiying Zhao, Zhiyuan Liu, Yu Han and Jiling Cao
Diversity 2024, 16(5), 273; https://doi.org/10.3390/d16050273 (registering DOI) - 02 May 2024
Abstract
Glomalin-related soil protein (GRSP), an important arbuscular mycorrhizal (AM) fungal by-product, plays a key role in preserving or sequestrating soil organic carbon (C). Silver nanoparticles (AgNPs) have become an emerging contaminant and their impacts on soil ecosystems attract increasing concerns. The dynamics of [...] Read more.
Glomalin-related soil protein (GRSP), an important arbuscular mycorrhizal (AM) fungal by-product, plays a key role in preserving or sequestrating soil organic carbon (C). Silver nanoparticles (AgNPs) have become an emerging contaminant and their impacts on soil ecosystems attract increasing concerns. The dynamics of AM fungi and GRSP could therefore form the basis for an in-depth exploration of the influences of AgNPs on soil ecosystems. This study investigated the effects of AgNPs on mycorrhizal growth and AM fungal communities, as well as the GRSP contents in maize (Zea mays L.) soils, with a pot experiment. The contributions of GRSP to soil organic C and the correlations of GRSP with soil organic C were also evaluated. The results indicated that AgNPs decreased the mycorrhizal colonization, AM fungal biomass, and diversity indices, and strongly shifted the community composition of AM fungi with a reduction in Acaulosporaceae and an enrichment in Glomeraceae. Additionally, AgNPs also decreased the soil’s easily extractable (EE) GRSP and total (T) GRSP contents, resulting in lower contributions of EE-GRSP-C and T-GRSP-C to the soil organic C. Linkage analyses revealed that AM fungal abundances have positive correlations with EE- and T-GRSP, and EE- and T-GRSP also positively correlated with soil organic C, indicating that the negative effects of AgNPs on AM fungal abundances and communities were extended to AM-fungal-associated C processes. Altogether, our study found that AgNPs decreased the AM fungal abundances shaped AM fungal communities, and reduced the soil GRSP content, which might subsequently be unfavorable for soil C storage. Full article
Show Figures

Figure 1

18 pages, 14203 KiB  
Article
A Microstructural Study of Cu-10Al-7Ag Shape Memory Alloy in As-Cast and Quenched Conditions
by Lovro Liverić, Wojciech Sitek, Przemysław Snopiński, Wojciech Maziarz and Tamara Holjevac Grgurić
Symmetry 2024, 16(5), 545; https://doi.org/10.3390/sym16050545 (registering DOI) - 02 May 2024
Abstract
Shape memory alloys (SMAs) represent an exceptional class of smart materials as they are able to recover their shape after mechanical deformation, making them suitable for use in actuators, sensors and smart devices. These unique properties are due to the thermoelastic martensitic transformation [...] Read more.
Shape memory alloys (SMAs) represent an exceptional class of smart materials as they are able to recover their shape after mechanical deformation, making them suitable for use in actuators, sensors and smart devices. These unique properties are due to the thermoelastic martensitic transformation that can occur during both thermal and mechanical deformation. Cu-based SMAs, especially those incorporating Al and Ag, are attracting much attention due to their facile production and cost-effectiveness. Among them, Cu-Al-Ag SMAs stand out due to their notably high temperature range for martensitic transformation. In this study, a Cu-based SMA with a new ternary composition of Cu-10Al-7Ag wt.% was prepared by arc melting and the samples cut from this casting alloy were quenched in water. Subsequently, the phase composition and the development of the microstructure were investigated. In addition, the morphology of the martensite was studied using advanced techniques such as electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The analyzes confirmed the presence of martensitic structures in both samples; mainly 18R (b1′) martensite was present but a small volume fraction of (γ1′) martensite also was noticed in the as-quenched sample. The observation of fine, twinned martensite plates in the SMA alloy with symmetrically occurring basal plane traces between the twin variants underlines the inherent correlation between microstructural symmetry and the properties of the material and provides valuable insights into its behavior. The hardness of the quenched sample was found to be lower than the as-cast counterpart, which can be linked to the solutioning of Ag particles during the heat treatment. Full article
(This article belongs to the Special Issue Symmetry in Mechanical Engineering: Properties and Applications)
34 pages, 6746 KiB  
Article
Design Optimization of Printed Multi-layered Electroactive Actuators Used for Steerable Guidewire in Micro-Invasive Surgery
by Simon Toinet, Mohammed Benwadih, Helga Szambolics, Christine Revenant, David Alincant, Marine Bordet, Jean-Fabien Capsal, Nellie Della-Schiava, Minh-Quyen Le and Pierre-Jean Cottinet
Materials 2024, 17(9), 2135; https://doi.org/10.3390/ma17092135 (registering DOI) - 02 May 2024
Abstract
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with [...] Read more.
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with numerous bifurcations and angulations. To reach a target artery, surgeons frequently opt for several tools (guidewires with different size integrated into angulated catheters) that might provoke arterial complications such as perforation or dissection. Steerable guidewires would, therefore, be of high interest to reduce surgical morbidity and mortality for patients as well as to simplify procedure for surgeons, thereby saving time and health costs. Regarding these reasons, our research involves the development of a smart steerable guidewire using electroactive polymer (EAP) capable of bending when subjected to an input voltage. The actuation performance of the developed device is assessed through the curvature behavior (i.e., the displacement and the angle of the bending) of a cantilever beam structure, consisting of single- or multi-stack EAP printed on a substrate. Compared to the single-stack architecture, the multi-stack gives rise to a significant increase in curvature, even when subjected to a moderate control voltage. As suggested by the design framework, the intrinsic physical properties (dielectric, electrical, and mechanical) of the EAP layer, together with the nature and thickness of all materials (EAP and substrate), do have strong effect on the bending response of the device. The analyses propose a comprehensive guideline to optimize the actuator performance based on an adequate selection of the relevant materials and geometric parameters. An analytical model together with a finite element model (FEM) are investigated to validate the experimental tests. Finally, the design guideline leads to an innovative structure (composed of a 10-stack active layer screen-printed on a thin substrate) capable of generating a large range of bending angle (up to 190°) under an acceptable input level of 550 V, which perfectly matches the standard of medical tools used for cardiovascular surgery. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

4 pages, 512 KiB  
Editorial
New Trends in the Use of Catalysts for Biofuel and Bioproduct Generation
by José María Encinar Martín and Sergio Nogales-Delgado
Catalysts 2024, 14(5), 301; https://doi.org/10.3390/catal14050301 (registering DOI) - 02 May 2024
Abstract
Green technologies are gaining a vital role in the energy and industrial fields, as society faces challenges such as geopolitical conflicts and pollution related to the exploitation of petroleum resources [...] Full article
Show Figures

Figure 1

28 pages, 2643 KiB  
Article
Susceptibility of Melanoma Cells to Targeted Therapy Correlates with Protection by Blood Neutrophils
by Simone Wendlinger, Jonas Wohlfarth, Claudia Siedel, Sophia Kreft, Teresa Kilian, Sarah Junker, Luisa Schmid, Tobias Sinnberg, Ulrich Dischinger, Markus V. Heppt, Kilian Wistuba-Hamprecht, Friedegund Meier, Luise Erpenbeck, Elsa Neubert, Matthias Goebeler, Anja Gesierich, David Schrama, Corinna Kosnopfel and Bastian Schilling
Cancers 2024, 16(9), 1767; https://doi.org/10.3390/cancers16091767 (registering DOI) - 02 May 2024
Abstract
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma [...] Read more.
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell–cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection. Full article
(This article belongs to the Special Issue Melanoma: Pathology and Translational Research)
Show Figures

Figure 1

14 pages, 820 KiB  
Article
Elevated Bile Acid 3β,5α,6β-Trihydroxycholanoyl Glycine in a Subset of Adult Ataxias Including Niemann–Pick Type C
by Nazgol Motamed-Gorji, Youssef Khalil, Cristina Gonzalez-Robles, Shamsher Khan, Philippa Mills, Hector Garcia-Moreno, Heather Ging, Ambreen Tariq, Peter T. Clayton and Paola Giunti
Antioxidants 2024, 13(5), 561; https://doi.org/10.3390/antiox13050561 (registering DOI) - 02 May 2024
Abstract
Ataxia is a common neurological feature of Niemann–Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. [...] Read more.
Ataxia is a common neurological feature of Niemann–Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. These bile acids have been suggested as useful biomarkers to detect NPC. Concentrations of 3β,5α,6β-trihydroxycholanyl glycine (3β,5α,6β-triOH-Gly) and 3β,7β-dihydroxy-5-cholenyl glycine (3β,7β-diOH-Δ5-Gly) were measured in plasma of 184 adults with idiopathic ataxia. All patients were tested with whole genome sequencing containing hereditary ataxia panels, which include NPC1 and NPC2 mutations and other genetic causes of ataxia. Plasma 3β,5α,6β-triOH-Gly above normal (>90 nM) was found in 8 out of 184 patients. One patient was homozygous for the p.(Val1165Met) mutation in the NPC1 gene. The remaining seven included one patient with Friedreich’s ataxia and three patients with autoimmune diseases. Oxidative stress is known to be increased in Friedreich’s ataxia and in autoimmune diseases. Therefore, this subset of patients possibly shares a common mechanism that determines the increase of this bile acid. In a large cohort of adults with ataxia, plasma 3β,5α,6β-triOH-Gly was able to detect the one patient in the cohort with NPC1 disease, but also detected oxidation of cholesterol by ROS in other disorders. Plasma 3β,7β-diOH-Δ5-Gly is not a potential biomarker for NPC1. Full article
Show Figures

Figure 1

20 pages, 1412 KiB  
Review
Exploring the Enigma: The Role of the Epithelial Protein Lost in Neoplasm in Normal Physiology and Cancer Pathogenesis
by Emma Lindell and Xiaonan Zhang
Int. J. Mol. Sci. 2024, 25(9), 4970; https://doi.org/10.3390/ijms25094970 (registering DOI) - 02 May 2024
Abstract
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of [...] Read more.
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies. Full article
(This article belongs to the Special Issue Molecular Advances in Cancer and Cell Metabolism)
14 pages, 3286 KiB  
Article
Structural and Immunological Features of PR-10 Allergens: Focusing on the Major Alder Pollen Allergen Aln g 1
by Daria N. Melnikova, Ekaterina I. Finkina, Andrey E. Potapov, Yulia D. Danilova, Ilia Y. Toropygin, Natalia S. Matveevskaya, Tatiana V. Ovchinnikova and Ivan V. Bogdanov
Int. J. Mol. Sci. 2024, 25(9), 4965; https://doi.org/10.3390/ijms25094965 (registering DOI) - 02 May 2024
Abstract
Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 [...] Read more.
Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Allergic Reactions)
Show Figures

Figure 1

23 pages, 1924 KiB  
Article
HomeOSD: Appliance Operating-Status Detection Using mmWave Radar
by Yinhe Sheng, Jiao Li, Yongyu Ma and Jin Zhang
Sensors 2024, 24(9), 2911; https://doi.org/10.3390/s24092911 (registering DOI) - 02 May 2024
Abstract
Within the context of a smart home, detecting the operating status of appliances in the environment plays a pivotal role, estimating power consumption, issuing overuse reminders, and identifying faults. The traditional contact-based approaches require equipment updates such as incorporating smart sockets or high-precision [...] Read more.
Within the context of a smart home, detecting the operating status of appliances in the environment plays a pivotal role, estimating power consumption, issuing overuse reminders, and identifying faults. The traditional contact-based approaches require equipment updates such as incorporating smart sockets or high-precision electric meters. Non-constant approaches involve the use of technologies like laser and Ultra-Wideband (UWB) radar. The former can only monitor one appliance at a time, and the latter is unable to detect appliances with extremely tiny vibrations and tends to be susceptible to interference from human activities. To address these challenges, we introduce HomeOSD, an advanced appliance status-detection system that uses mmWave radar. This innovative solution simultaneously tracks multiple appliances without human activity interference by measuring their extremely tiny vibrations. To reduce interference from other moving objects, like people, we introduce a Vibration-Intensity Metric based on periodic signal characteristics. We present the Adaptive Weighted Minimum Distance Classifier (AWMDC) to counteract appliance vibration fluctuations. Finally, we develop a system using a common mmWave radar and carry out real-world experiments to evaluate HomeOSD’s performance. The detection accuracy is 95.58%, and the promising results demonstrate the feasibility and reliability of our proposed system. Full article
(This article belongs to the Special Issue Sensors for Smart Environments)
18 pages, 3500 KiB  
Article
Electronic Structure Calculations of Rare-Earth-Doped Magnesium Oxide Based on Density Functional Theory
by Yanfeng Zhao, Alastair N. Cormack and Yiquan Wu
Crystals 2024, 14(5), 435; https://doi.org/10.3390/cryst14050435 (registering DOI) - 02 May 2024
Abstract
In this paper, the electronic structures of rare earth (Nd, Er)-doped MgO were investigated using density functional theory (DFT), with Hubbard on-site corrections (Ueff) applied to rare earth elements. Li was considered a co-dopant. Defect complexes were involved, instead of a [...] Read more.
In this paper, the electronic structures of rare earth (Nd, Er)-doped MgO were investigated using density functional theory (DFT), with Hubbard on-site corrections (Ueff) applied to rare earth elements. Li was considered a co-dopant. Defect complexes were involved, instead of a single dopant atom, in the supercell. The splitting and distribution of the 4f ground states of Nd and Er dopants in the band gap changed by co-doping Li. The calculation results provide insights into the influences of Li on the optical properties of rare-earth-doped MgO. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

17 pages, 767 KiB  
Article
Approximation Conjugate Gradient Method for Low-Rank Matrix Recovery
by Zhilong Chen, Peng Wang and Detong Zhu
Symmetry 2024, 16(5), 547; https://doi.org/10.3390/sym16050547 (registering DOI) - 02 May 2024
Abstract
Large-scale symmetric and asymmetric matrices have emerged in predicting the relationship between genes and diseases. The emergence of large-scale matrices increases the computational complexity of the problem. Therefore, using low-rank matrices instead of original symmetric and asymmetric matrices can greatly reduce computational complexity. [...] Read more.
Large-scale symmetric and asymmetric matrices have emerged in predicting the relationship between genes and diseases. The emergence of large-scale matrices increases the computational complexity of the problem. Therefore, using low-rank matrices instead of original symmetric and asymmetric matrices can greatly reduce computational complexity. In this paper, we propose an approximation conjugate gradient method for solving the low-rank matrix recovery problem, i.e., the low-rank matrix is obtained to replace the original symmetric and asymmetric matrices such that the approximation error is the smallest. The conjugate gradient search direction is given through matrix addition and matrix multiplication. The new conjugate gradient update parameter is given by the F-norm of matrix and the trace inner product of matrices. The conjugate gradient generated by the algorithm avoids SVD decomposition. The backtracking linear search is used so that the approximation conjugate gradient direction is computed only once, which ensures that the objective function decreases monotonically. The global convergence and local superlinear convergence of the algorithm are given. The numerical results are reported and show the effectiveness of the algorithm. Full article
(This article belongs to the Special Issue Nonlinear Science and Numerical Simulation with Symmetry)
Show Figures

Figure 1

19 pages, 421 KiB  
Review
Pathological and Molecular Diagnosis of Uveal Melanoma
by Mihai Adrian Păsărică, Paul Filip Curcă, Christiana Diana Maria Dragosloveanu, Alexandru Călin Grigorescu and Cosmin Ionuț Nisipașu
Diagnostics 2024, 14(9), 958; https://doi.org/10.3390/diagnostics14090958 (registering DOI) - 02 May 2024
Abstract
(1) Background: Uveal melanoma (UM) is a common malignant intraocular tumor that presents with significant genetic differences to cutaneous melanoma and has a high genetic burden in terms of prognosis. (2) Methods: A systematic literature search of several repositories on uveal melanoma diagnosis, [...] Read more.
(1) Background: Uveal melanoma (UM) is a common malignant intraocular tumor that presents with significant genetic differences to cutaneous melanoma and has a high genetic burden in terms of prognosis. (2) Methods: A systematic literature search of several repositories on uveal melanoma diagnosis, prognosis, molecular analysis, and treatment was conducted. (3) Results: Recent genetic understanding of oncogene-initiation mutations in GNAQ, GNA11, PLCB4, and CYSLTR2 and secondary progression drivers of BAP1 inactivation and SF3B1 and EIF1AX mutations offers an appealing explanation to the high prognostic impact of adding genetic profiling to clinical UM classification. Genetic information could help better explain peculiarities in uveal melanoma, such as the low long-term survival despite effective primary tumor treatment, the overwhelming propensity to metastasize to the liver, and possibly therapeutic behaviors. (4) Conclusions: Understanding of uveal melanoma has improved step-by-step from histopathology to clinical classification to more recent genetic understanding of oncogenic initiation and progression. Full article
(This article belongs to the Special Issue Pathological and Molecular Diagnosis of Melanoma)
28 pages, 3437 KiB  
Review
Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy
by Domiziana Masci, Michela Puxeddu, Romano Silvestri and Giuseppe La Regina
Molecules 2024, 29(9), 2110; https://doi.org/10.3390/molecules29092110 (registering DOI) - 02 May 2024
Abstract
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for [...] Read more.
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment. Full article
(This article belongs to the Special Issue Cancer Metabolism as a Target for New Oncological Drugs)
Show Figures

Figure 1

12 pages, 2275 KiB  
Article
Chemical and Thermal Analysis of Fly Ash-Reinforced Aluminum Matrix Composites (AMCs)
by Siti Syazwani Nordin, Ervina Efzan Mhd Noor and Palanisamy Chockalingam
J. Compos. Sci. 2024, 8(5), 170; https://doi.org/10.3390/jcs8050170 (registering DOI) - 02 May 2024
Abstract
Fly ash has been utilized as a reinforcing material in the production of aluminum matrix composites, and in this investigation, Al-Si (LM6) fly ash composites were fabricated using the compocasting method. Various compositions of fly ash were incorporated into the samples (4, 5 [...] Read more.
Fly ash has been utilized as a reinforcing material in the production of aluminum matrix composites, and in this investigation, Al-Si (LM6) fly ash composites were fabricated using the compocasting method. Various compositions of fly ash were incorporated into the samples (4, 5 and 6 wt%), and the preparation temperature ranged from 560 to 800°C. This study investigated the thermal (CTE and DTA) and chemical properties (XRD) of fly ash reinforcement and the aluminum melt in the composites. The results revealed that composites with 5 wt% of fly ash exhibited the lowest CTE value compared to those with 4 and 6 wt%. This observation was corroborated by XRD analysis, indicating a reaction between the fly ash particles and the aluminum melt. However, the DTA analysis did not find a significant impact of the addition of fly ash on the melting temperature of the prepared composites. In contrast, this study identified and investigated the existence of reaction effects between the fly ash particles and the aluminum melt. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
11 pages, 616 KiB  
Article
3D-Volumetric Shunt Measurement for Detection of High-Risk Esophageal Varices in Liver Cirrhosis
by Kathleen Glückert, Alexandra Decker, Jörn Arne Meier, Sebastian Nowak, Feras Sanoubara, Juliana Gödiker, Sara Noemi Reinartz Groba, Markus Kimmann, Julian A. Luetkens, Johannes Chang, Alois M. Sprinkart and Michael Praktiknjo
J. Clin. Med. 2024, 13(9), 2678; https://doi.org/10.3390/jcm13092678 (registering DOI) - 02 May 2024
Abstract
Esophageal varices (EV) and variceal hemorrhages are major causes of mortality in liver cirrhosis patients. Detecting EVs early is crucial for effective management. Computed tomography (CT) scans, commonly performed for various liver-related indications, provide an opportunity for non-invasive EV assessment. However, previous CT [...] Read more.
Esophageal varices (EV) and variceal hemorrhages are major causes of mortality in liver cirrhosis patients. Detecting EVs early is crucial for effective management. Computed tomography (CT) scans, commonly performed for various liver-related indications, provide an opportunity for non-invasive EV assessment. However, previous CT studies focused on variceal diameter, neglecting the three-dimensional (3D) nature of varices and shunt vessels. This study aims to evaluate the potential of 3D volumetric shunt-vessel measurements from routine CT scans for detecting high-risk esophageal varices in portal hypertension. Methods: 3D volumetric measurements of esophageal varices were conducted using routine CT scans and compared to endoscopic variceal grading. Receiver operating characteristic (ROC) analyses were performed to determine the optimal cutoff value for identifying high-risk varices based on shunt volume. The study included 142 patients who underwent both esophagogastroduodenoscopy (EGD) and contrast-enhanced CT within six months. Results: The study established a cutoff value for identifying high-risk varices. The CT measurements exhibited a significant correlation with endoscopic EV grading (correlation coefficient r = 0.417, p < 0.001). A CT cutoff value of 2060 mm3 for variceal volume showed a sensitivity of 72.1% and a specificity of 65.5% for detecting high-risk varices during endoscopy. Conclusions: This study demonstrates the feasibility of opportunistically measuring variceal volumes from routine CT scans. CT volumetry for assessing EVs may have prognostic value, especially in cirrhosis patients who are not suitable candidates for endoscopy. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
20 pages, 2938 KiB  
Article
Protective Effects of Pear Extract on Skin from In Vitro and In Vivo UVA-Induced Damage
by Thomas W. Chu, Ching-Chih Ho, Yu-Jou Hsu, Yuan-Hsin Lo, Nan-Lin Wu, Yuan-Bin Cheng, Mao-Xuan Hong, Der-Chen Chang and Chi-Feng Hung
Pharmaceuticals 2024, 17(5), 583; https://doi.org/10.3390/ph17050583 (registering DOI) - 02 May 2024
Abstract
The ancient Chinese medical book “Compendium of Materia Medica” records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus [...] Read more.
The ancient Chinese medical book “Compendium of Materia Medica” records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus pyrifolia (Burm.f.) Nakai seed components have not been studied. Ultraviolet light (UV) causes skin inflammation, damages the skin barrier, and is an important cause of skin photoaging. Therefore, UV light with a wavelength of 365 nm was used to irradiate HaCaT and mice. Western blot, real-time quantitative polymerase chain reaction, and fluorescence imaging system were used to explore its anti-UVA mechanism. Dialysis membrane and nuclear magnetic resonance were used for the chemical constituent analysis of pear seed water extract (PSWE). We found that PSWE can significantly reduce UVA-induced skin cell death and mitogen-activated protein kinase phosphorylation and can inhibit the mRNA expression of UVA-induced cytokines (including IL-1β, IL-6, and TNF-α). In addition, PSWE can also reduce the generation of oxidative stress within skin cells. In vivo experimental studies found that PSWE pretreatment effectively reduced transepidermal water loss, inflammation, redness, and dryness in hairless mice. The molecular weight of the active part of pear water extract is approximately 384. Based on the above results, we first found that pear seeds can effectively inhibit oxidative stress and damage caused by UVA. It is a natural extract with antioxidant properties and anti-aging activity that protects skin cells and strengthens the skin barrier. Full article
(This article belongs to the Section Biopharmaceuticals)
16 pages, 1436 KiB  
Review
Updates on the Care of Cloacal Exstrophy
by Claire A. Ostertag-Hill, Patrick T. Delaplain, Ted Lee and Belinda H. Dickie
Children 2024, 11(5), 544; https://doi.org/10.3390/children11050544 (registering DOI) - 02 May 2024
Abstract
Cloacal exstrophy is the most severe congenital anomaly of the exstrophy–epispadias complex and is characterized by gastrointestinal, genitourinary, neurospinal, and musculoskeletal malformations. Individualized surgical reconstruction by a multidisciplinary team is required for these complex patients. Not infrequently, patients need staged surgical procedures throughout [...] Read more.
Cloacal exstrophy is the most severe congenital anomaly of the exstrophy–epispadias complex and is characterized by gastrointestinal, genitourinary, neurospinal, and musculoskeletal malformations. Individualized surgical reconstruction by a multidisciplinary team is required for these complex patients. Not infrequently, patients need staged surgical procedures throughout childhood and adolescence. Following significant improvements in medical care and surgical reconstructive techniques, nearly all patients with cloacal exstrophy now survive, leading to an increased emphasis on quality of life. Increased attention is given to gender identity and the implications of reconstructive decisions. Long-term sequelae of cloacal exstrophy, including functional continence and sexual dysfunction, are recognized, and many patients require ongoing complex care into adulthood. Full article
(This article belongs to the Special Issue Recent Advances in Pediatric Colorectal Surgery)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop