The 2023 MDPI Annual Report has
been released!
 
11 pages, 1787 KiB  
Article
Evaluation of the Quality of Recovery from General Anesthesia in Dogs with Two Different Low Doses of Dexmedetomidine
by Chiara Di Franco, Irene Nocera, Pierre Melanie and Angela Briganti
Animals 2024, 14(9), 1383; https://doi.org/10.3390/ani14091383 (registering DOI) - 05 May 2024
Abstract
The purpose of this study was to evaluate the quality of recovery from general anesthesia with the administration of two low doses of dexmedetomidine in canine patients. For this blind randomized clinical trial study, 30 dogs undergoing general anesthesia for diagnostic procedures or [...] Read more.
The purpose of this study was to evaluate the quality of recovery from general anesthesia with the administration of two low doses of dexmedetomidine in canine patients. For this blind randomized clinical trial study, 30 dogs undergoing general anesthesia for diagnostic procedures or elective surgery (ovariectomy/castration) were included. The patients were randomly divided into three groups, and at the end of anesthesia, they received a bolus of dexmedetomidine at 1 mcg/kg IV (D1), or a bolus of dexmedetomidine at 0.5 mcg/kg (D0.5), or a bolus of NaCl, in a total of 0.5 mL of solution for all three groups. After administration of the bolus, the anesthetist monitored the patients every 5 min by measuring heart rate, systolic and mean blood pressure, respiratory rate, and oxygen saturation. The quality of recovery was also assessed using 4 different scales. The extubation time, time of headlift, and standing position were also recorded. Both groups receiving dexmedetomidine had better awakening and a lower incidence of delirium when compared to saline administration. The heart rate was lower, while the systolic pressure was higher in the two groups D1 and D0.5 compared to the NaCl with a low presence of atrioventricular blocks. The extubation time resulted significantly higher in the D1 (17 ± 6 min) compared to the D0.5 (10 ± 4 min) and NaCl (8 ± 3 min) (p < 0.0001); the headlift time D1 (25 ± 10 min) resulted significantly longer than the NaCl group (11 ± 5 min) (p = 0.0023) but not than the D0.5 (18 ± 9 min). No significant differences were found among the three groups for standing positioning (D1 50 ± 18 min, D0.5 39 ± 22 min, NaCl 28 ± 17 min). The preventive administration of a bolus of dexmedetomidine at a dosage of 0.5 mcg/kg or 1 mcg/kg IV during the recovery phase improves the quality of recovery in patients undergoing general anesthesia. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

18 pages, 842 KiB  
Article
The Enabling Effect of Digital Economy on High-Quality Agricultural Development-Evidence from China
by Junguo Hua, Jijie Yu, Yu Song, Qi Xue and Yujia Zhou
Sustainability 2024, 16(9), 3859; https://doi.org/10.3390/su16093859 (registering DOI) - 05 May 2024
Abstract
In recent years, the digital economy has shown great potential in regard to in driving social production and development. In the context of the construction of digital villages, the deep integration of the digital economy and agricultural development has injected new vitality into [...] Read more.
In recent years, the digital economy has shown great potential in regard to in driving social production and development. In the context of the construction of digital villages, the deep integration of the digital economy and agricultural development has injected new vitality into improving the quality and efficiency of agricultural production, becoming an important way to promote sustainable agricultural development. Based on the panel data of 31 provinces in China from 2012 to 2021, the study utilizes the entropy method to measure the level of the digital economy and the high-quality development of agriculture. Additionally, this study explores the impact and mechanism of the digital economy on the high-quality development of agriculture by the fixed effect, mediation effect, and the spatial spillover models. In summary, the digital economy can significantly drive the high-quality development of agriculture, which is still valid after considering endogeneity and robustness. Mechanistically, the rationalization of industrial structure is an important path for the digital economy in regard to driving the high-quality development of agriculture. Regionally, the dividends of the digital economy for high-quality agricultural development in the central and western regions are greater than those in the eastern region. Spatially, the digital economy has a spatial spillover effect on the high-quality development of agriculture. Moreover, it can promote the synergistic development of adjoining regions. Therefore, policy recommendations are made in terms of strengthening rural infrastructure, emphasizing the development of regional shortcomings, and strengthening internal with external regional linkages. Full article
Show Figures

Figure 1

20 pages, 1686 KiB  
Article
Advanced Uncertainty Quantification for Flood Inundation Modelling
by Gordon Aitken, Lindsay Beevers and Mike A. Christie
Water 2024, 16(9), 1309; https://doi.org/10.3390/w16091309 (registering DOI) - 05 May 2024
Abstract
Flood hazards present a significant risk to the UK, with homes, businesses and critical infrastructure exposed to a mixture of fluvial, surface water and coastal flooding. Climate change is expected to influence river flows, changing the frequency and magnitude of future flood events. [...] Read more.
Flood hazards present a significant risk to the UK, with homes, businesses and critical infrastructure exposed to a mixture of fluvial, surface water and coastal flooding. Climate change is expected to influence river flows, changing the frequency and magnitude of future flood events. Flood hazard assessments are used by decision-makers to implement policies and engineering interventions to reduce the impacts of these flood events. Probabilistic flood modelling can explore input and parameter uncertainties in flood models to fully quantify inundation uncertainty. However, probabilistic methods require large computational costs—limiting their application. This paper investigates a range of advanced uncertainty quantification methods (traditional Monte Carlo (FMC), Kriging and multi-fidelity Monte Carlo (MFMC)) to reduce the dichotomy between accuracy and costs. Results suggest that Kriging can reduce computational costs by 99.9% over FMC. The significantly increased efficiency has the potential to improve future policy and engineering decisions, reducing the impacts of future flood events. Full article
15 pages, 2344 KiB  
Article
Piceatannol Upregulates SIRT1 Expression in Skeletal Muscle Cells and in Human Whole Blood: In Vitro Assay and a Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial
by Kenta Tanaka, Shinpei Kawakami, Sadao Mori, Takumi Yamaguchi, Eriko Saito, Yuko Setoguchi, Yuko Matsui, Eisaku Nishimura, Shukuko Ebihara and Toshihiro Kawama
Life 2024, 14(5), 589; https://doi.org/10.3390/life14050589 (registering DOI) - 05 May 2024
Abstract
Piceatannol (PIC), a polyphenol abundant in passion fruit seeds, is reported to promote fat metabolism. This study investigated whether PIC affects sirtuin 1 (SIRT1) expression and metabolic factors in C2C12 skeletal muscle cells. C2C12 myotubes were stimulated with PIC, and alterations in gene [...] Read more.
Piceatannol (PIC), a polyphenol abundant in passion fruit seeds, is reported to promote fat metabolism. This study investigated whether PIC affects sirtuin 1 (SIRT1) expression and metabolic factors in C2C12 skeletal muscle cells. C2C12 myotubes were stimulated with PIC, and alterations in gene expression, protein levels, mitochondrial DNA content, and fatty acid levels were assessed using real-time PCR, Western blotting, and Nile red staining. Furthermore, we examined changes in SIRT1 expression following the consumption of a test food containing 100 mg PIC for 2 weeks among adults with varying age and body mass index ranges. Both PIC and passion fruit seed extract induced SIRT1 expression in C2C12 myotubes to a greater extent than resveratrol. PIC also increased the expression of genes associated with mitochondrial biogenesis and fatty acid utilization, increased mitochondrial DNA content, and suppressed oleic acid-induced fat accumulation. Moreover, participants who consumed PIC exhibited significantly higher SIRT1 mRNA expression in whole blood compared to those in the placebo group. These findings suggest that PIC induces SIRT1 expression both in vitro and in the human body, which may promote mitochondrial biosynthesis and fat metabolism. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

12 pages, 664 KiB  
Article
The Aerodynamics of New Design Soccer Balls Using a Three-Dimensional Printer
by Sungchan Hong, John Eric Goff and Takeshi Asai
Appl. Sci. 2024, 14(9), 3932; https://doi.org/10.3390/app14093932 (registering DOI) - 05 May 2024
Abstract
Eight balls were manufactured with a 3D printer to resemble various types of 32-panel soccer balls. One ball was completely smooth, whereas the other seven possessed various dimple patterns on their surface panels. Seam width and seam depth were also varied. Wind-tunnel experiments [...] Read more.
Eight balls were manufactured with a 3D printer to resemble various types of 32-panel soccer balls. One ball was completely smooth, whereas the other seven possessed various dimple patterns on their surface panels. Seam width and seam depth were also varied. Wind-tunnel experiments were performed to extract aerodynamic coefficients, and also to determine the critical Reynolds number for each manufactured ball. A new surface roughness parameter is introduced, and a fitting formula is presented, which allows for the prediction of the critical Reynolds number if the new parameter is known. Full article
(This article belongs to the Special Issue Advances in Unsteady Aerodynamics and Aeroelasticity)
Show Figures

Figure 1

15 pages, 12453 KiB  
Article
A Study on the Mechanical Characteristics and Wheel–Rail Contact Simulation of a Welded Joint for a Large Radio Telescope Azimuth Track
by Xiao Chen, Ruihua Yin, Zaitun Yang, Huiqing Lan and Qian Xu
Buildings 2024, 14(5), 1300; https://doi.org/10.3390/buildings14051300 (registering DOI) - 05 May 2024
Abstract
The azimuth track is an important component of the radio telescope wheel–rail system. During operation, the azimuth track is inevitably subject to phenomena such as track wear, track fatigue cracks, and impact damage to welded joints, which can affect observation accuracy. The 110 [...] Read more.
The azimuth track is an important component of the radio telescope wheel–rail system. During operation, the azimuth track is inevitably subject to phenomena such as track wear, track fatigue cracks, and impact damage to welded joints, which can affect observation accuracy. The 110 m QiTai radio telescope (QTT) studied in this paper is the world’s largest fully steerable radio telescope at present, and its track will bear the largest load ever. Since the welded joint of an azimuth track is the weakest part, an innovative welding method (multi-layer and multi-pass weld) is adopted for the thick welding section. Therefore, it is necessary to study the contact mechanical properties between the wheel and the azimuth track in this welded joint. In this study, tensile tests based on digital image correlation technology (DIC) and Vickers hardness tests are carried out in the metal zone (BM), heat-affected zone (HAZ), modified layer, and weld zone (WZ) of the welded joint, and the measured data are used to fit the elastic–plastic constitutive model for the different zones of the welded joint in the azimuth track. Based on the constitutive model established, a nonlinear finite element model is built and used to simulate the rolling mechanical performance between the wheel and azimuth track. Through the analysis of simulated data, we obtained the stress distribution of the track under different pre-designed loads and identified the locations most susceptible to damage during ordinary working conditions, braking conditions, and start-up conditions. The result can provide a significant theoretical basis for future research and for the monitoring of large track damage. Full article
Show Figures

Figure 1

19 pages, 5598 KiB  
Article
Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates
by Yadya M. Chawla, Prashant Bajpai, Keshav Saini, Elluri Seetharami Reddy, Ashok Kumar Patel, Kaja Murali-Krishna and Anmol Chandele
Viruses 2024, 16(5), 730; https://doi.org/10.3390/v16050730 (registering DOI) - 05 May 2024
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes [...] Read more.
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
25 pages, 985 KiB  
Article
Marine Renewable-Driven Green Hydrogen Production toward a Sustainable Solution and a Low-Carbon Future in Morocco
by Khadija Taroual, Mourad Nachtane, Marwane Rouway, Mostapha Tarfaoui, Abdessamad Faik, Viorel Mînzu, Karim Hilmi and Dennoun Saifaoui
J. Mar. Sci. Eng. 2024, 12(5), 774; https://doi.org/10.3390/jmse12050774 (registering DOI) - 05 May 2024
Abstract
Oceanic energy sources, notably offshore wind and wave power, present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production, which can be efficiently transported through existing pipelines and stored in various forms, offering a versatile [...] Read more.
Oceanic energy sources, notably offshore wind and wave power, present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production, which can be efficiently transported through existing pipelines and stored in various forms, offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune, Agadir, Essaouira, Eljadida, Casablanca and Larache. Our proposed system integrates offshore wind turbines, oscillating water column wave energy converters, and PEM electrolyzers, to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions, ranging from 14 MW to 20 MW. Additionally, encouraging annual estimates of hydrogen production, varying between 20 and 40 tonnes for specific locations, showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates, ranging from 13% to 18%, while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio, bolster water resilience, and foster sustainable development. Ultimately, this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments, positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies. Full article
13 pages, 3060 KiB  
Article
Straw from Different Crop Species Recruits Different Communities of Lignocellulose-Degrading Microorganisms in Black Soil
by Chunling Chang, Yue Guo, Kuanqiang Tang, Yunlong Hu, Weihui Xu, Wenjing Chen, Neil McLaughlin and Zhigang Wang
Microorganisms 2024, 12(5), 938; https://doi.org/10.3390/microorganisms12050938 (registering DOI) - 05 May 2024
Abstract
The biological degradation of plant residues in the soil or on the soil surface is an integral part of the natural life cycle of annual plants and does not have adverse effects on the environment. Crop straw is characterized by a complex structure [...] Read more.
The biological degradation of plant residues in the soil or on the soil surface is an integral part of the natural life cycle of annual plants and does not have adverse effects on the environment. Crop straw is characterized by a complex structure and exhibits stability and resistance to rapid microbial decomposition. In this study, we conducted a microcosm experiment to investigate the dynamic succession of the soil microbial community and the functional characteristics associated with lignocellulose-degrading pathways. Additionally, we aimed to identify lignocellulose-degrading microorganisms from the straw of three crop species prevalent in Northeast China: soybean (Glycine max Merr.), rice (Oryza sativa L.), and maize (Zea mays L.). Our findings revealed that both the type of straw and the degradation time influenced the bacterial and fungal community structure and composition. Metagenome sequencing results demonstrated that during degradation, different straw types assembled carbohydrate-active enzymes (CAZymes) and KEGG pathways in distinct manners, contributing to lignocellulose and hemicellulose degradation. Furthermore, isolation of lignocellulose-degrading microbes yielded 59 bacterial and 14 fungal strains contributing to straw degradation, with fungi generally exhibiting superior lignocellulose-degrading enzyme production compared to bacteria. Experiments were conducted to assess the potential synergistic effects of synthetic microbial communities (SynComs) comprising both fungi and bacteria. These SynComs resulted in a straw weight loss of 42% at 15 days post-inoculation, representing a 22% increase compared to conditions without any SynComs. In summary, our study provides novel ecological insights into crop straw degradation by microbes. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
23 pages, 7534 KiB  
Review
Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection
by Panagiotis Keramidas, Maria Pitou, Eleni Papachristou and Theodora Choli-Papadopoulou
Curr. Issues Mol. Biol. 2024, 46(5), 4286-4308; https://doi.org/10.3390/cimb46050261 (registering DOI) - 05 May 2024
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells [...] Read more.
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER’s ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy. Full article
(This article belongs to the Special Issue Research on Virus-Induced Cellular and Molecular Responses)
Show Figures

Figure 1

24 pages, 3420 KiB  
Article
Scientific and Practical Challenges for the Development of a New Approach to the Simulation of Remanufacturing
by Pawel Pawlewski
Sustainability 2024, 16(9), 3857; https://doi.org/10.3390/su16093857 (registering DOI) - 05 May 2024
Abstract
This article explores the scientific and practical challenges associated with developing simulation modeling methods for remanufacturing within a circular economy framework. It aims to define this concept and identify the key hurdles that need to be overcome for its successful implementation. According to [...] Read more.
This article explores the scientific and practical challenges associated with developing simulation modeling methods for remanufacturing within a circular economy framework. It aims to define this concept and identify the key hurdles that need to be overcome for its successful implementation. According to the six principles of sustainable development, the key pillar is remanufacturing. Remanufacturing helps the environment in several different ways, including: saving energy, the conservation of raw materials, the conservation of space, landfills, the reduction of air pollution, and greater fuel efficiency. This process closes the loop in the supply chain, exemplifying the principles of a circular economy. The research methods used are primarily the analysis and criticism of literature, document examination—especially in relation to existing simulation programs and analysis—the logical construction method, and the heuristic method, used to define concept of simulation modelling. In response to scientific and practical challenges, the concept of a new modeling method was defined and presented. This concept uses the legacy of Lean and the author’s original ideas regarding the structuring of the remanufacturing factory and processes. The main contribution of this study is integration, embedding this concept into the simulation software. A comparison with existing solutions and the advantages of the new concept are also included in the article. Full article
Show Figures

Figure 1

9 pages, 638 KiB  
Review
Serum Calprotectin in the Evaluation of Gastrointestinal Diseases: An Ace up Your Sleeve?
by Angela Saviano, Alessio Migneco, Mattia Brigida, Carmine Petruzziello, Christian Zanza, Gabriele Savioli, Francesco Franceschi and Veronica Ojetti
Medicina 2024, 60(5), 762; https://doi.org/10.3390/medicina60050762 (registering DOI) - 05 May 2024
Abstract
Background: Calprotectin (CP) is a calcium- and zinc-binding protein that plays a key role in innate immunity and in the recruitment of inflammatory cells. CP can be detected both in serum and in fecal samples. Serum CP (sCP) is more specific for [...] Read more.
Background: Calprotectin (CP) is a calcium- and zinc-binding protein that plays a key role in innate immunity and in the recruitment of inflammatory cells. CP can be detected both in serum and in fecal samples. Serum CP (sCP) is more specific for autoimmune diseases, while fecal CP (fCP) has been well investigated for gastrointestinal diseases. Few studies have shown the clinical effectiveness of sCP as an acute-phase biomarker for gastrointestinal diseases. Aim: The aim of this narrative review is to discuss the role of sCP as a useful alternative biomarker of the acute-phase activity of gastrointestinal diseases and as a possible tool for screening and monitoring these diseases. Material and Methods: We searched original articles, abstracts, reviews, case reports, and clinical trials on PubMed®, Up-to-Date®, and Medscape® in the last ten years. Conclusion: We found that sCP could represent a useful biomarker in the evaluation of the inflammatory stage in patients with immune-mediated gastrointestinal diseases, but more studies are needed to promote its routine use in clinical practice as a diagnostic and prognostic biomarker as a replacement for fCP. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

18 pages, 872 KiB  
Review
Immunogenetics of Systemic Sclerosis
by Olga Gumkowska-Sroka, Kacper Kotyla and Przemysław Kotyla
Genes 2024, 15(5), 586; https://doi.org/10.3390/genes15050586 (registering DOI) - 05 May 2024
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as [...] Read more.
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as primarily a “hyperfibrotic” state towards a recognition of systemic sclerosis as an immune-mediated disease. Consequently, the search for genetic markers has transitioned from focusing on fibrotic mechanisms to exploring immune regulatory pathways. Immunogenetics, an emerging field at the intersection of immunology, molecular biology, and genetics has provided valuable insights into inherited factors that influence immunity. Data from genetic studies conducted thus far indicate that alterations in genetic messages can significantly impact disease risk and progression. While certain genetic variations may confer protective effects, others may exacerbate disease susceptibility. This paper presents a comprehensive review of the most relevant genetic changes that influence both the risk and course of systemic sclerosis. Special emphasis is placed on factors regulating the immune response, recognizing their pivotal role in the pathogenesis of the disease. Full article
(This article belongs to the Special Issue New Advances in Immunogenetics of Disease)
Show Figures

Figure 1

13 pages, 6713 KiB  
Article
Microstructure and Properties of Pressureless-Sintered Zirconium Carbide Ceramics with MoSi2 Addition
by Xiuzheng Chen, Haibo Wu, Huan Liu, Yitian Yang, Bingbing Pei, Jianshen Han, Zehua Liu, Xishi Wu and Zhengren Huang
Materials 2024, 17(9), 2155; https://doi.org/10.3390/ma17092155 (registering DOI) - 05 May 2024
Abstract
Zirconium carbide (ZrC) ceramics have a high melting point, low neutron absorption cross section, and excellent resistance to the impact of fission products and are considered to be one of the best candidate materials for fourth-generation nuclear energy systems. ZrC ceramics with a [...] Read more.
Zirconium carbide (ZrC) ceramics have a high melting point, low neutron absorption cross section, and excellent resistance to the impact of fission products and are considered to be one of the best candidate materials for fourth-generation nuclear energy systems. ZrC ceramics with a high relative density of 99.1% were successfully prepared via pressureless sintering using a small amount of MoSi2 as an additive. The influence of the MoSi2 content on the densification behavior, microstructure, mechanical properties, and thermal properties of ZrC ceramics was systematically investigated. The results show that the densification of ZrC was significantly enhanced by the introduction of MoSi2 due to the formation of a liquid phase during sintering. In addition, the ZrC grains were refined due to the pinning effect of the generated silicon carbide. The flexural strength and Vickers hardness of ZrC ceramics with 2.5 vol% MoSi2 sintered at 1850 °C were 408 ± 12 MPa and 17.1 GPa, respectively, which were approximately 30% and 10% higher compared to the samples without the addition of MoSi2. The improved mechanical properties were mainly attributed to the high relative density (99.1%) and refined microstructure. Full article
Show Figures

Figure 1

12 pages, 2980 KiB  
Article
Highly Biocompatible Hemoglobin-Stabilized Gold Nanoparticles for an Enhanced Catalytic Reduction of 4-Nitrophenol
by Yanshuai Cui, Shukai Li, Ning Yu, Xiaodong Yu, Xianbing Ji and Longgang Wang
Inorganics 2024, 12(5), 136; https://doi.org/10.3390/inorganics12050136 (registering DOI) - 05 May 2024
Abstract
4-nitrophenol (4-NP) is a frequently encountered toxic phenolic organic pollutant in water. It is important to develop a simple method to treat 4-NP. Small and monodispersed gold nanoparticles often have good catalytic performance of 4-NP. Hemoglobin (Hb) is a kind of common and [...] Read more.
4-nitrophenol (4-NP) is a frequently encountered toxic phenolic organic pollutant in water. It is important to develop a simple method to treat 4-NP. Small and monodispersed gold nanoparticles often have good catalytic performance of 4-NP. Hemoglobin (Hb) is a kind of common and important protein in organisms. Herein, highly biocompatible bovine hemoglobin-stabilized gold nanoparticles (Aun-Hb NPs) were synthesized using hemoglobin as a biological template. Then, the size, zeta potential, and composition of Aun-Hb NPs were investigated by transmission electron microscopy, dynamic light scattering, and X-ray photoelectron spectroscopy. The Aun-Hb NPs with small gold nanoparticles of about 1.4–2.4 nm had good catalytic capabilities in reducing 4-NP to form 4-aminophenol. Au20-Hb NPs demonstrated superior catalytic efficiency in the reduction of 4-NP when compared to other nanoparticles. Moreover, as-synthesized Au20-Hb NPs exhibited excellent biocompatibility through the MTT experiment. The method of preparation of gold nanoparticles offers one way to prepare metal nanoparticles for good potential catalytic applications of gold nanoparticles. Full article
Show Figures

Figure 1

17 pages, 1103 KiB  
Article
From Formulation to Application: Effects of Plasticizer on the Printability of Fluoro Elastomer Compounds and Additive Manufacturing of Specialized Seals
by Mookkan Periyasamy, AA Mubasshir, Stiven Kodra, Sangeetham Chandramouli, Ronald Campbell, David O. Kazmer and Joey L. Mead
Micromachines 2024, 15(5), 622; https://doi.org/10.3390/mi15050622 (registering DOI) - 05 May 2024
Abstract
This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a [...] Read more.
This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a custom-designed ram material extruder, Additive Ram Material Extruder (ARME), for printing fully compounded thermoset elastomers. The plasticizer’s effectiveness was assessed based on its ability to address challenges such as high compound viscosity and post-print shrinkage, as well as its impact on interlayer adhesion. The addition of the PFPE plasticizer significantly reduced the FKM compound’s viscosity (by 70%) and post-print shrinkage (by 65%). While the addition of the plasticizer decreased the tensile strength of the control compound, specimens printed with the plasticized FKM retained 34% of the tensile strength of compression-molded samples, compared to only 23% for the unplasticized compound. Finally, the feasibility of seals and gaskets manufacturing using both conventional and unconventional additive manufacturing (AM) approaches was explored. A hybrid method combining AM and soft tooling for compression molding emerged as the optimal method for seal and gasket fabrication. Full article
16 pages, 3025 KiB  
Article
Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Reverse Directional Ligation
by Derek W. Nelson, Alexander Connor, Yu Shen and Ryan J. Gilbert
SynBio 2024, 2(2), 174-189; https://doi.org/10.3390/synbio2020010 (registering DOI) - 05 May 2024
Abstract
Elastin-like polypeptides (ELPs) are popular biomaterials due to their reversible, temperature-dependent phase separation and their tunability, which is achievable by evolving procedures in recombinant technology. In particular, reverse direction ligation by plasmid reconstruction (PRe-RDL) is the predominant cloning technique used to generate ELPs [...] Read more.
Elastin-like polypeptides (ELPs) are popular biomaterials due to their reversible, temperature-dependent phase separation and their tunability, which is achievable by evolving procedures in recombinant technology. In particular, reverse direction ligation by plasmid reconstruction (PRe-RDL) is the predominant cloning technique used to generate ELPs of varying lengths. Pre-RDL provides precise control over the number of (VPGXG)n repeat units in an ELP due to the selection of type IIS restriction enzyme (REs) sites in the reconstructed pET expression plasmid, which is a low-to-medium copy number plasmid. While Pre-RDL can be used to seamlessly repeat essentially any gene sequence and overcome limitations of previous cloning practices, we modified the Pre-RDL technique, where a high copy number plasmid (pBluescript II SK(+)—using a new library of type IIS REs) was used instead of a pET plasmid. The modified technique successfully produced a diblock ELP gene of 240 pentapeptide repeats from 30 pentapeptide “monomers” composed of alanine, tyrosine, and leucine X residues. This study found that the large, GC-rich ELP gene compromised plasmid yields in pBluescript II SK(+) and favored higher plasmid yields in the pET19b expression plasmid. Additionally, the BL21 E. coli strain expression consistently provided a higher transformation efficiency and higher plasmid yield than the high cloning efficiency strain TOP10 E. coli. We hypothesize that the plasmid/high GC gene ratio may play a significant role in these observations, and not the total plasmid size or the total plasmid GC content. While expression of the final gene resulted in a diblock ELP with a phase separation temperature of 34.5 °C, future work will need to investigate RDL techniques in additional plasmids to understand the primary driving factors for improving yields of plasmids with large ELP-encoding genes. Full article
Show Figures

Figure 1

8 pages, 3815 KiB  
Article
Study on Anomalous Hall Effect and Spin–Orbit Torque Effect of TbCo-Based Multilayer Films
by Menglu Yang, Yuanjing Qu, Tao He, Xiong He, Yunli Xu, Lizhi Yi, Liqing Pan and Guangduo Lu
Nanomaterials 2024, 14(9), 801; https://doi.org/10.3390/nano14090801 (registering DOI) - 05 May 2024
Abstract
The anomalous Hall effect and spin–orbit torque of TbCo-based multilayer films have been methodically studied in recent years. Many properties of the films can be obtained by the anomalous Hall resistance loops of the samples. We report on the effects of a structure [...] Read more.
The anomalous Hall effect and spin–orbit torque of TbCo-based multilayer films have been methodically studied in recent years. Many properties of the films can be obtained by the anomalous Hall resistance loops of the samples. We report on the effects of a structure composed of two heavy metals as the buffer layers on the anomalous Hall resistance loops of TbCo-based multilayers at different temperatures. The results showed that the coercivity increases dramatically with decreasing temperature, and the samples without perpendicular magnetic anisotropy at room temperature showed perpendicular magnetic anisotropy at low temperatures. We quantified the spin–orbit torque efficiency and Dzyaloshinskii–Moriya interaction effective field size of the films W/Pt/TbCo/Pt at room temperature by measuring the loop shift of anomalous Hall resistance. The results showed that the study of anomalous Hall resistance loops plays an important role in the study of spintronics, which can not only show the basic properties of the sample, but can also obtain other information about the sample through the shift of the loops. Full article
Show Figures

Figure 1

21 pages, 4445 KiB  
Article
Failure Behavior and Vulnerability of Containment Structures Subjected to Overpressure Loads Considering Different Failure Criteria
by Junying Guo, Xinbo Li and Jinxin Gong
Buildings 2024, 14(5), 1299; https://doi.org/10.3390/buildings14051299 (registering DOI) - 05 May 2024
Abstract
This paper investigates the failure behavior and vulnerability of the containment structure (CS) under internal pressure according to different functional and structural failure criteria. Through nonlinear numerical analysis, the deformation of the structure, degree of concrete cracking, and the distribution of stresses and [...] Read more.
This paper investigates the failure behavior and vulnerability of the containment structure (CS) under internal pressure according to different functional and structural failure criteria. Through nonlinear numerical analysis, the deformation of the structure, degree of concrete cracking, and the distribution of stresses and strains in the prestressing tendons and steel liner under different failure criteria are compared. Combined with probabilistic analysis methods, the vulnerability curves, HCLPF capacities, and total failure probabilities of CS determined by different failure criteria are systematically discussed. Results show that there are some differences in the failure behavior and pressure capacity of CS under different failure criteria for both functional and structural failure modes. Under the same failure mode, the variability of the pressure capacities obtained using different criteria is relatively small. Generally, the total failure probabilities of CS subjected to overpressure loads determined by different failure criteria exhibit significant differences. If it is considered that all the investigated failure criteria have a certain ability to predict containment failure, the probabilistic assessment results derived from the functional failure criterion based on the fracture strain of steel liners and the structural failure criterion based on the global strain are deemed to be more reasonable. Full article
(This article belongs to the Section Building Structures)
16 pages, 3522 KiB  
Article
Impact of Nebulization on the Physicochemical Properties of Polymer–Lipid Hybrid Nanoparticles for Pulmonary Drug Delivery
by Andrea Gonsalves and Jyothi U. Menon
Int. J. Mol. Sci. 2024, 25(9), 5028; https://doi.org/10.3390/ijms25095028 (registering DOI) - 05 May 2024
Abstract
Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to [...] Read more.
Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to lung diseases. However, there are limited studies evaluating the physicochemical properties of NPs after they are passed through a nebulizer. High shear stress generated during nebulization could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously developed by us after passing through a commercial Aeroneb® vibrating-mesh nebulizer. Nebulization did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the intended medical application. The cellular uptake studies demonstrated that both nebulized and non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics. Full article
(This article belongs to the Special Issue Pharmaceutical Nanoimaging and Nanoengineering)
Show Figures

Figure 1

12 pages, 2969 KiB  
Article
Addressing the Concern of Orange-Yellow Fungus Growth on Palm Kernel Cake: Safeguarding Dairy Cattle Diets for Mycotoxin-Producing Fungi
by Carlos Bastidas-Caldes, David Vasco-Julio, Maria Huilca-Ibarra, Salomé Guerrero-Freire, Yanua Ledesma-Bravo and Jacobus H. de Waard
Microorganisms 2024, 12(5), 937; https://doi.org/10.3390/microorganisms12050937 (registering DOI) - 05 May 2024
Abstract
Palm kernel cake (PKC), a byproduct of palm oil extraction, serves an important role in Ecuador’s animal feed industry. The emergence of yellow-orange fungal growth in PKC on some cattle farms in Ecuador sparked concerns within the cattle industry regarding a potential mycotoxin-producing [...] Read more.
Palm kernel cake (PKC), a byproduct of palm oil extraction, serves an important role in Ecuador’s animal feed industry. The emergence of yellow-orange fungal growth in PKC on some cattle farms in Ecuador sparked concerns within the cattle industry regarding a potential mycotoxin-producing fungus on this substrate. Due to the limited availability of analytical chemistry techniques in Ecuador for mycotoxin detection, we chose to isolate and identify the fungus to determine its association with mycotoxin-producing genera. Through molecular identification via ITS region sequencing, we identified the yellow-orange fungus as the yeast Candida ethanolica. Furthermore, we isolated two other fungi—the yeast Pichia kudriavzevii, and the fungus Geotrichum candidum. Molecular identification confirmed that all three species are not classified as mycotoxin-producing fungi but in contrast, the literature indicates that all three have demonstrated antifungal activity against Aspergillus and Penicillium species, genera associated with mycotoxin production. This suggests their potential use in biocontrol to counter the colonization of harmful fungi. We discuss preventive measures against the fungal invasion of PKC and emphasize the importance of promptly identifying fungi on this substrate. Rapid recognition of mycotoxin-producing and pathogenic genera holds the promise of mitigating cattle intoxication and the dissemination of mycotoxins throughout the food chain. Full article
(This article belongs to the Special Issue Food Microbiota and Food Safety)
Show Figures

Figure 1

12 pages, 777 KiB  
Review
The Intrarenal Reflux Diagnosed by Contrast-Enhanced Voiding Urosonography (ceVUS): A Reason for the Reclassification of Vesicoureteral Reflux and New Therapeutic Approach?
by Marijan Saraga, Mirna Saraga-Babić, Adela Arapović, Katarina Vukojević, Zenon Pogorelić and Ana Simičić Majce
Biomedicines 2024, 12(5), 1015; https://doi.org/10.3390/biomedicines12051015 (registering DOI) - 05 May 2024
Abstract
Vesicoureteral reflux (VUR) is defined as the urine backflow from the urinary bladder to the pyelo-caliceal system. In contrast, intrarenal reflux (IRR) is the backflow of urine from the renal calyces into the tubulointerstitial space. VURs, particularly those associated with IRR can result [...] Read more.
Vesicoureteral reflux (VUR) is defined as the urine backflow from the urinary bladder to the pyelo-caliceal system. In contrast, intrarenal reflux (IRR) is the backflow of urine from the renal calyces into the tubulointerstitial space. VURs, particularly those associated with IRR can result in reflux nephropathy when accompanied by urinary tract infection (UTI). The prevalence of IRR in patients with diagnosed VUR is 1–11% when using voiding cystourethrography (VCUG), while 11.9–61% when applying the contrast-enhanced voiding urosonography (ceVUS). The presence of IRR diagnosed by VCUG often correlates with parenchymal scars, when diagnosed by a 99mTc dimercaptosuccinic acid scan (DMSA scan), mostly in kidneys with high-grade VURs, and when diagnosed by ceVUS, it correlates with the wide spectrum of parenchymal changes on DMSA scan. The study performed by both ceVUS and DMSA scans showed IRRs associated with non-dilated VURs in 21% of all detected VURs. A significant difference regarding the existence of parenchymal damage was disclosed between the IRR-associated and IRR-non-associated VURs. A higher portion of parenchymal changes existed in the IRR-associated VURs, regardless of the VUR grade. That means that kidneys with IRR-associated VURs represent the high-risk group of VURs, which must be considered in the future classification of VURs. When using ceVUS, 62% of places where IRR was found were still unaffected by parenchymal changes. That was the basis for our recommendation of preventive use of long-term antibiotic prophylaxis until the IRR disappearance, regardless of the VUR grade. We propose a new classification of VURs using the ceVUS method, in which each VUR grade is subdivided based on the presence of an IRR. Full article
(This article belongs to the Special Issue Recent Advances in Kidney Disease in Children)
Show Figures

Figure 1

76 pages, 1071 KiB  
Article
The Impact of AI in Sustainable Development Goal Implementation: A Delphi Study
by Simon Ofori Ametepey, Clinton Aigbavboa, Wellington Didibhuku Thwala and Hutton Addy
Sustainability 2024, 16(9), 3858; https://doi.org/10.3390/su16093858 (registering DOI) - 05 May 2024
Abstract
Artificial intelligence emerges as a powerful catalyst poised to reshape the global sustainability landscape by facilitating the attainment of Sustainable Development Goals (SDGs). This comprehensive Delphi study meticulously probes the insights of domain experts, shedding light on the strategic utilization of AI to [...] Read more.
Artificial intelligence emerges as a powerful catalyst poised to reshape the global sustainability landscape by facilitating the attainment of Sustainable Development Goals (SDGs). This comprehensive Delphi study meticulously probes the insights of domain experts, shedding light on the strategic utilization of AI to advance these critical sustainability objectives. Employing rigorous statistical techniques, encompassing measures of central tendency and interquartile deviation, this research scrutinizes consensus dynamics among experts and elucidates potential variations in their viewpoints. The findings resoundingly convey experts’ collective positive perspective regarding AI’s pivotal role in propelling the SDGs forward. Through two iterative rounds of extensive discussions, a compelling consensus crystallizes—AI indeed exerts an overall positive impact, exemplified by a robust mean score of 78.8%. Intriguingly, distinct SDGs manifest varied propensities toward AI intervention, with Goals 6, 7, 8, 9, 11, 13, 14, and 15 basking in the radiance of highly positive impacts. Goals 1, 2, 3, 4, 5, 10, and 12 exhibit positive impact scores, indicating a juncture ripe for positive advancements. Meanwhile, Goal 16 and Goal 17 languish with neutral scores, signifying a juncture demanding nuanced deliberations about AI’s impact on peace, justice, and strong institutions as well as on partnerships for the goals, respectively. This paper underscores AI as a formidable instrument poised to address humanity’s most pressing challenges while harmonizing seamlessly with the overarching SDG objectives. It gracefully dovetails into established practices across pivotal domains such as health, education, and resilient infrastructures, amplifying the collective global endeavor to navigate the path toward a more sustainable future. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop