The 2023 MDPI Annual Report has
been released!
 
25 pages, 9549 KiB  
Article
Multi-Regional Integrated Energy Economic Dispatch Considering Renewable Energy Uncertainty and Electric Vehicle Charging Demand Based on Dynamic Robust Optimization
by Bo Zhou and Erchao Li
Energies 2024, 17(11), 2453; https://doi.org/10.3390/en17112453 (registering DOI) - 21 May 2024
Abstract
Aiming at the problem of source-load uncertainty caused by the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs) into modern power system, a robust optimal operation scheduling algorithm for regional integrated energy systems (RIESs) with such uncertain situations [...] Read more.
Aiming at the problem of source-load uncertainty caused by the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs) into modern power system, a robust optimal operation scheduling algorithm for regional integrated energy systems (RIESs) with such uncertain situations is urgently needed. Based on this background, aiming at the problem of the irregular charging demand of EV, this paper first proposes an EV charging demand model based on the trip chain theory. Secondly, a multi-RIES optimization operation model including a shared energy storage station (SESS) and integrated demand response (IDR) is established. Aiming at the uncertainty problem of renewable energy, this paper transforms this kind of problem into a dynamic robust optimization with time-varying parameters and proposes an improved robust optimization over time (ROOT) algorithm based on the scenario method and establishes an optimal scheduling mode with the minimum daily operation cost of a multi-regional integrated energy system. Finally, the proposed uncertainty analysis method is verified by an example of multi-RIES. The simulation results show that in the case of the improved ROOT proposed in this paper to solve the robust solution of renewable energy, compared with the traditional charging load demand that regards the EVs as a whole, the EV charging load demand based on the trip chain can reduce the cost of EV charging by 3.5% and the operating cost of the multi-RIES by 11.7%. With the increasing number of EVs, the choice of the starting point of the future EV trip chain is more variable, and the choice of charging methods is more abundant. Therefore, modeling the charging demand of EVs under more complex trip chains is the work that needs to be studied in the future. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 13674 KiB  
Article
SVHRSP Alleviates Age-Related Cognitive Deficiency by Reducing Oxidative Stress and Neuroinflammation
by Yingzi Wang, Zhenhua Wang, Songyu Guo, Qifa Li, Yue Kong, Aoran Sui, Jianmei Ma, Li Lu, Jie Zhao and Shao Li
Antioxidants 2024, 13(6), 628; https://doi.org/10.3390/antiox13060628 (registering DOI) - 21 May 2024
Abstract
Background: Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. Methods: Following [...] Read more.
Background: Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. Methods: Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. Results: SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-β-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. Conclusion: SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health. Full article
Show Figures

Figure 1

13 pages, 655 KiB  
Article
Lactobacillus rhamnosus PL1 and Lactobacillus plantarum PM1 Versus Placebo as Prophylaxis for Recurrence of Urinary Tract Infections in Children
by Maria Daniel, Hanna Szymanik-Grzelak, Janusz Sierdziński and Małgorzata Pańczyk-Tomaszewska
Microorganisms 2024, 12(6), 1037; https://doi.org/10.3390/microorganisms12061037 (registering DOI) - 21 May 2024
Abstract
Urinary tract infections (UTIs) rank among the most prevalent bacterial infections in children. Probiotics appear to reduce the risk of recurrence of UTIs. This study aimed to evaluate whether probiotics containing Lactobacillus rhamnosus PL1 and Lactobacillus plantarum PM1 therapy prevent UTIs in the [...] Read more.
Urinary tract infections (UTIs) rank among the most prevalent bacterial infections in children. Probiotics appear to reduce the risk of recurrence of UTIs. This study aimed to evaluate whether probiotics containing Lactobacillus rhamnosus PL1 and Lactobacillus plantarum PM1 therapy prevent UTIs in the pediatric population compared to a placebo. A superiority, double-blind, randomized, controlled trial was conducted. In total, 54 children aged 3–18 years with recurrent UTIs or ≥one acute pyelonephritis and ≥one risk factor of recurrence of UTIs were randomly assigned (27 patients in each arm) to a 90-day probiotic or placebo arm. The age, sex, diagnosis, renal function, risk factors, and etiology of UTIs did not vary between the groups. During the intervention, 26% of children taking the probiotic had episodes of UTI, and it was not significantly less than in the placebo group. The number of UTI episodes during the intervention and the follow-up period decreased significantly in both groups, but the difference between them was insignificant. We observed a decrease in UTIs during the study of almost 50% in the probiotic group compared to the placebo group. Probiotics can be used as natural, safe prophylaxis for children with risk factors for UTIs in whom antibiotic prevention is not indicated. Full article
(This article belongs to the Special Issue Effects of Probiotics on Health, 2nd Edition)
18 pages, 4842 KiB  
Article
Coordination of SRF-PLL and Grid Forming Inverter Control in Microgrid with Solar PV and Energy Storage
by V. Vignesh Babu, J. Preetha Roselyn and Prabha Sundaravadivel
J. Low Power Electron. Appl. 2024, 14(2), 29; https://doi.org/10.3390/jlpea14020029 (registering DOI) - 21 May 2024
Abstract
Recently, there has been a huge advancement in renewable energy integration in power systems. Power converters with grid-forming or grid-following topologies are typically employed to link these decentralized power sources to the grid. However, because distributed generation has less inertia than synchronous generators, [...] Read more.
Recently, there has been a huge advancement in renewable energy integration in power systems. Power converters with grid-forming or grid-following topologies are typically employed to link these decentralized power sources to the grid. However, because distributed generation has less inertia than synchronous generators, their use of renewable energy sources threatens the electrical grid’s reliability. Suitable control approaches for ensuring frequency and voltage stability in the grid-connected form of operation are established in this study, which offers dynamic, seamless power switching in the islanded mode of operation. In this research, effective Phase Locked Loop (PLL) techniques for grid-forming (GFM) and grid-following (GFL) converters are designed to achieve a smooth transition from grid-tied to islanded mode of operation. In this work, PLL configurations are implemented while considering the active and reactive power, frequency, voltage, and current parameters of the system, and ensuring voltage and frequency stability. The simulation results in a microgrid network that ensures a smooth transition of power transfer while switching between modes of operation, and supports the voltage and frequency stability of the system. Full article
(This article belongs to the Special Issue Energy Aware Solutions for Battery Management Systems)
35 pages, 3837 KiB  
Review
Ion-Selective Electrodes in the Food Industry: Development Trends in the Potentiometric Determination of Ionic Pollutants
by Antonio Ruiz-Gonzalez
Electrochem 2024, 5(2), 178-212; https://doi.org/10.3390/electrochem5020012 (registering DOI) - 21 May 2024
Abstract
Food quality assessment is becoming a global priority due to population growth and the rise of ionic pollutants derived from anthropogenic sources. However, the current methods used to quantify toxic ions are expensive and their operation is complex. Consequently, there is a need [...] Read more.
Food quality assessment is becoming a global priority due to population growth and the rise of ionic pollutants derived from anthropogenic sources. However, the current methods used to quantify toxic ions are expensive and their operation is complex. Consequently, there is a need for affordable and accessible methods for the accurate determination of ion concentrations in food. Electrochemical sensors based on potentiometry represent a promising approach in this field, with the potential to overcome limitations of the currently available systems. This review summarizes the current advances in the electrochemical quantification of heavy metals and toxic anions in the food industry using potentiometric sensors. The healthcare impact of common heavy metal contaminants (Cd2+, Hg2+, Pb2+, As3+) and anions (ClO4, F, HPO4, SO42−, NO3, NO2) is discussed, alongside current regulations, and gold standard methods for analysis. Sensor performances are compared to current benchmarks in terms of selectivity and the limit of detection. Given the complexity of food samples, the percentage recovery values (%) and the methodologies employed for ion extraction are also described. Finally, a summary of the challenges and future directions of the field is provided. An overview of technologies that can overcome the limitations of current electrochemical sensors is shown, including new extraction methods for ions in food. Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
Show Figures

Figure 1

20 pages, 7714 KiB  
Article
Experimental Investigation of the Effect of Compressive Interface Stress on Interfaces in Reinforced Concrete Elements under Cyclic Action
by Vasiliki Palieraki, Christos Zeris and Elizabeth Vintzileou
Appl. Sci. 2024, 14(11), 4350; https://doi.org/10.3390/app14114350 (registering DOI) - 21 May 2024
Abstract
Reinforced concrete interfaces, either cracks within monolithic elements or joints between concretes cast at different times may become critical under cyclic actions, due to stiffness and interface resistance degradation. Among the numerous parameters affecting the behavior of interfaces, this paper focuses on the [...] Read more.
Reinforced concrete interfaces, either cracks within monolithic elements or joints between concretes cast at different times may become critical under cyclic actions, due to stiffness and interface resistance degradation. Among the numerous parameters affecting the behavior of interfaces, this paper focuses on the effect of externally applied compressive stress. In conjunction with this parameter, the diameter of the reinforcing bars crossing the interface, their embedment length, and the anchorage of the interface reinforcement, by bond or using epoxy resin, are investigated. Roughened concrete interfaces crossed by reinforcing bars were subjected to cyclic shear slips, with or without compressive stress normal to the interface. The presented experimental results prove the beneficial effect of the external compressive stress on the ultimate shear resistance of interfaces, accompanied by the reduction of the effect of small embedment length of the interface reinforcement, due to its reduced contribution: the externally imposed compression leads to smaller crack openings at the interface, in most cases smaller than 0.40 mm, and to reduction of the reinforcement clamping effect. The shear resistance is activated at reduced shear slip values (0.20 mm–0.40 mm compared to 0.20–0.80 mm for interfaces under zero external compression), while the interface resistance degradation is also reduced (e.g., during the second load cycle, to 15% on average, compared to 30% for interfaces under zero external compression). Finally, an equation previously proposed by the authors is applied for the prediction of the shear resistance of interfaces under normal force, leading to satisfying accuracy. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

10 pages, 496 KiB  
Article
Comparison of Greater Occipital Nerve Blockade and Sphenopalatine Ganglion Blockade in Patients with Episodic Migraine
by Hanzade Aybuke Unal, Ahmet Basarı, Opal Sezgi Celiker, Keziban Sanem Cakar Turhan, Ibrahim Asik and Gungor Enver Ozgencil
J. Clin. Med. 2024, 13(11), 3027; https://doi.org/10.3390/jcm13113027 (registering DOI) - 21 May 2024
Abstract
Objectives: Compare the effects of greater occipital nerve (GON) and sphenopalatine ganglion (SPG) blocks on headache intensity and duration, number of headache days, and disability in patients with episodic migraine. Methods: In this prospective single-blind randomized study, patients with episodic migraine [...] Read more.
Objectives: Compare the effects of greater occipital nerve (GON) and sphenopalatine ganglion (SPG) blocks on headache intensity and duration, number of headache days, and disability in patients with episodic migraine. Methods: In this prospective single-blind randomized study, patients with episodic migraine were randomly divided into two groups: GON and SPG block groups. Patients received blocks once a week for 4 weeks, and once a month for 2 months. The number of headache days, the headache duration, numeric rating scale (NRS) scores, and number of acute medical treatments were assessed before the procedures and 1 month, 2 months, and 3 months after the procedures. Disability was evaluated using the migraine disability assessment (MIDAS) questionnaire at baseline and 3 months after treatment. This study protocol is registered at ClinicalTrials.gov (NCT06243874.). Results: 19 patients in the GON block group and 18 patients in the SPG block group were evaluated. Significant improvements in pain severity, headache duration, number of headache days, and the need for acute medical treatment were observed in the 1st, 2nd, and 3rd months compared to baseline in the two groups (p < 0.001). There were significant improvements in the MIDAS scores in the third month (p < 0.001). The GON block group showed a greater reduction in headache intensity, duration, number of headache days, and MIDAS scores compared to the SPG block group in the 3rd month (p < 0.001). Conclusions: GON block reduces headache duration, intensity, the number of headache days, and the need for acute medical treatment much more than SPG block in patients with episodic migraine. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

15 pages, 2655 KiB  
Article
Strange Things in Bottom-to-Strange Decays: The Standard Model Turned Upside Down?
by Martin Andersson, Alexander Mclean Marshall, Konstantinos A. Petridis and Eluned Smith
Symmetry 2024, 16(6), 638; https://doi.org/10.3390/sym16060638 (registering DOI) - 21 May 2024
Abstract
The flavour anomalies are a set of experimental deviations from the Standard Model (SM) predictions in several observables involving decays of bottom quarks. In particular, tensions between theory and experiment in measurements involving a bottom quark decaying into a strange quark and a [...] Read more.
The flavour anomalies are a set of experimental deviations from the Standard Model (SM) predictions in several observables involving decays of bottom quarks. In particular, tensions between theory and experiment in measurements involving a bottom quark decaying into a strange quark and a pair of muons have motivated much theoretical work to explore possible new physics explanations. This review summarises the tumultuous evolution of these tensions, focusing on the most recent experimental results and their implications for physics beyond the SM. We also discuss the prospects for future measurements and tests of the flavour anomalies at the LHC and other facilities. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

12 pages, 2417 KiB  
Article
Synthesis and Mechanism Study of Carbon Nanowires, Carbon Nanotubes, and Carbon Pompons on Single-Crystal Diamonds
by Shuai Wu, Qiang Wang, Kesheng Guo, Lei Liu, Jie Bai, Zhenhuai Yang, Xin Li and Hong Liu
Crystals 2024, 14(6), 481; https://doi.org/10.3390/cryst14060481 (registering DOI) - 21 May 2024
Abstract
Carbon nanomaterials are in high demand owing to their exceptional physical and chemical properties. This study employed a mixture of CH4, H2, and N2 to create carbon nanostructures on a single-crystal diamond using microwave plasma chemical vapor deposition [...] Read more.
Carbon nanomaterials are in high demand owing to their exceptional physical and chemical properties. This study employed a mixture of CH4, H2, and N2 to create carbon nanostructures on a single-crystal diamond using microwave plasma chemical vapor deposition (MPCVD) under high-power conditions. By controlling the substrate surface and nitrogen flow rate, carbon nanowires, carbon nanotubes, and carbon pompons could be selectively deposited. The results obtained from OES, SEM, TEM, and Raman spectroscopy revealed that the nitrogen flow rate and substrate surface conditions were crucial for the growth of carbon nanostructures. The changes in the plasma shape enhanced the etching effect, promoting the growth of carbon pompons. The CN and C2 groups play vital catalytic roles in the formation of carbon nanotubes and nanowires, guiding the precipitation and composite growth of carbon atoms at the interface between the Mo metal catalysts and diamond. This study demonstrated that heterostructures of diamond–carbon nanomaterials could be produced under high-power conditions, offering a new approach to integrating diamond and carbon nanomaterials. Full article
18 pages, 1179 KiB  
Article
Two-Stage Distributed Robust Optimal Allocation of Integrated Energy Systems under Carbon Trading Mechanism
by Ruicheng Dai, Xiang Zhang and Hongbo Zou
Processes 2024, 12(6), 1044; https://doi.org/10.3390/pr12061044 (registering DOI) - 21 May 2024
Abstract
The development of renewable energy and the construction of a comprehensive energy system with multiple complementary energy sources have gradually become the main direction of China’s energy development. As the penetration rate of renewable energy increases, the intermittent and fluctuating output of wind [...] Read more.
The development of renewable energy and the construction of a comprehensive energy system with multiple complementary energy sources have gradually become the main direction of China’s energy development. As the penetration rate of renewable energy increases, the intermittent and fluctuating output of wind and solar power has a more significant impact on the system. This article conducts research on the optimization configuration of integrated energy system (IES) considering photovoltaic output uncertainty under a ladder carbon trading mechanism. Firstly, a two-stage distributed robust optimization (DRO) configuration model for integrated energy system is established. In detail, a deterministic model aimed at minimizing investment costs is given in the first stage and an uncertainty model aimed at minimizing operating costs in the probability distribution of the worst scenario is built in the second stage. Then, a data-driven distributed robust optimization method is adopted to deal with the uncertainty of photovoltaic output using MATLAB software (R2020A). Finally, the column and constraint generation (C&CG) algorithm is used to solve the problem, and the optimal investment capacity and cost results of the integrated energy system considering demand response under a ladder carbon trading mechanism are obtained. Through analysis, the proposed method achieves a 5.54% reduction in carbon emission costs while maintaining nearly unchanged investment costs, thus balancing economic and environmental benefits. Additionally, the CCG algorithm can effectively improve computational efficiency and guarantee the optimality of the solution. Full article
(This article belongs to the Section Energy Systems)
27 pages, 734 KiB  
Article
Finally Digital Natives? Changes in Media Use among Science Students during the COVID-19 Pandemic
by Anna Henne, Philipp Möhrke, Johannes Huwer and Lars-Jochen Thoms
Educ. Sci. 2024, 14(6), 555; https://doi.org/10.3390/educsci14060555 (registering DOI) - 21 May 2024
Abstract
This study examines the development of pre-experiences with digital media at school and in university, creating and entertainment-oriented media use and attitudes towards digital media in the classroom among students in the first three years of study, particularly those enrolled in science courses, [...] Read more.
This study examines the development of pre-experiences with digital media at school and in university, creating and entertainment-oriented media use and attitudes towards digital media in the classroom among students in the first three years of study, particularly those enrolled in science courses, in times of the COVID-19 pandemic. Using a questionnaire adapted from Vogelsang et al. scales were calculated and PERMANOVAs, Kruskal-Wallis tests and post-hoc Dunn tests done shedding light on the influence of graduation year and semester of study as well as the difference between the current cohort and a pre-pandemic one. Results revealed significant shifts in digital experiences, particularly among students who were still attending school during the pandemic. Compared to colleagues without school experience during the pandemic, they showed a more frequent use of digital media for communication and collaboration. Moreover, a discernible trend of increasing digital experiences with academic progression at the university level was observed. A semester-by-semester comparison between a pre-pandemic cohort and the current study also showed an increase in the use of digital media at university. However, attitudes towards digital media in teaching exhibited a slight decrease between pre-pandemic and current cohorts. These findings underscore the imperative of integrating digital tools in educational settings to bolster digital literacy and foster effective digital learning experiences, thereby equipping students with the necessary skills to navigate an increasingly digitalized world. Full article
17 pages, 2934 KiB  
Article
Parallel Inversion of 3D Airborne Transient Electromagnetic Data Using an Approximate Jacobi Matrix
by Da Lei, Hao Ren, Ruo Wang, Zhongxing Wang and Changmin Fu
Remote Sens. 2024, 16(11), 1830; https://doi.org/10.3390/rs16111830 (registering DOI) - 21 May 2024
Abstract
In geophysical inversion issues, the Jacobian matrix computation takes the greatest time, and it is the most significant factor limiting the inversion’s calculation speed. We think that the correctness of the inverse problem is determined by the difference between the inversion data and [...] Read more.
In geophysical inversion issues, the Jacobian matrix computation takes the greatest time, and it is the most significant factor limiting the inversion’s calculation speed. We think that the correctness of the inverse problem is determined by the difference between the inversion data and the real data, not the precision of the gradient solution in each iteration. Based on this, we present an approximate computation approach for the Jacobian matrix that may rapidly solve the inverse issue by estimating the gradient information. In this research, the approximate gradient information is solved in each iteration process, and the approximate gradient is utilized for computation; nevertheless, the poor fitting of the evaluation data is correctly evaluated, and the inversion model that fits the criteria is achieved. We employed this approach of estimating the Jacobian matrix to invert the 3D airborne transient electromagnetic method (ATEM) on synthetic data, and it was able to significantly minimize the time necessary for the inversion while maintaining inversion accuracy. When the model mesh is more precise, this technique outperforms the previous way of finding the exact Jacobian matrix in terms of acceleration. Full article
13 pages, 532 KiB  
Article
Elevated Cardiac Troponin I as a Mortality Predictor in Hospitalised COVID-19 Patients
by Ieva Kubiliute, Jurgita Urboniene, Fausta Majauskaite, Edgar Bobkov, Linas Svetikas and Ligita Jancoriene
Medicina 2024, 60(6), 842; https://doi.org/10.3390/medicina60060842 (registering DOI) - 21 May 2024
Abstract
Background and Objectives: SARS-CoV-2 affects multiple organ systems, including the cardiovascular system, leading to immediate and long-term cardiovascular complications. Acute myocardial injury is one of the earliest and most common cardiac issues in the acute phase of COVID-19. This study aimed to evaluate [...] Read more.
Background and Objectives: SARS-CoV-2 affects multiple organ systems, including the cardiovascular system, leading to immediate and long-term cardiovascular complications. Acute myocardial injury is one of the earliest and most common cardiac issues in the acute phase of COVID-19. This study aimed to evaluate the prognostic value of cardiac troponin I (cTnI) levels in predicting in-hospital mortality among hospitalised COVID-19 patients. Materials and Methods: A retrospective observational cohort study included 2019 adult patients hospitalised with a confirmed COVID-19 infection stratified by cTnI levels on admission into three groups: <19 ng/L (1416 patients), 19–100 ng/L (431 patients), and >100 ng/L (172 patients). Myocardial injury was defined as blood serum cTnI levels increased above the 99th percentile upper reference limit. Depersonalised datasets were extracted from digital health records. Statistical analysis included multivariable binary logistic and Cox proportional hazards regressions. Results: Overall, 29.87% of patients experienced acute myocardial injury, which development was associated with age, male sex, chronic heart failure, arterial hypertension, obesity, and chronic kidney disease. Among patients with cTnI levels of 19–100 ng/L, the odds ratio for requiring invasive mechanical ventilation was 3.18 (95% CI 2.11–4.79) and, for those with cTnI > 100 ng/L, 5.38 (95% CI 3.26–8.88). The hazard ratio for in-hospital mortality for patients with cTnI levels of 19–100 ng/L was 2.58 (95% CI 1.83–3.62) and, for those with cTnI > 100 ng/L, 2.97 (95% CI 2.01–4.39) compared to patients with normal cTnI levels. Conclusions: Increased cardiac troponin I, indicating myocardial injury, on admission is associated with a more adverse clinical disease course, including a higher likelihood of requiring invasive mechanical ventilation and increased risk of in-hospital mortality. This indicates cardiac troponin I to be a beneficial biomarker for clinicians trying to identify high-risk COVID-19 patients, choosing the optimal monitoring and treatment strategy for these patients. Full article
17 pages, 640 KiB  
Article
Navigating the New Normal: The Role of Residents’ Involvement and Support in Sustainable Tourism Recovery
by Emrullah Erul, Abdullah Uslu, Kyle Maurice Woosnam, José António C. Santos, Kayode D. Aleshinloye and Manuel Alector Ribeiro
Sustainability 2024, 16(11), 4333; https://doi.org/10.3390/su16114333 (registering DOI) - 21 May 2024
Abstract
This study seeks to provide a nuanced understanding of how residents’ views on tourism impacts and their awareness of the pandemic’s effects shape their attitudes and, consequently, influence their involvement and support for tourism by integrating emotional solidarity, the knowledge–attitude–practices theory, and social [...] Read more.
This study seeks to provide a nuanced understanding of how residents’ views on tourism impacts and their awareness of the pandemic’s effects shape their attitudes and, consequently, influence their involvement and support for tourism by integrating emotional solidarity, the knowledge–attitude–practices theory, and social exchange theory. Furthermore, the study explores potential moderating factors such as gender and professional ties to tourism. Data were gathered from 545 residents of Manavgat, Turkey, following a cluster sampling scheme, confirming all ten hypotheses. The results reveal that residents’ knowledge and perceived positive impacts of tourism significantly forecast attitudes toward tourism and tourists, which explains their involvement and support. The results also demonstrate that residents with strong ties to tourism were more positive and involved than those with limited links to tourism. The complementary merger of theoretical frameworks enriches our understanding of residents’ support and involvement in tourism, shedding light on the intricacies of these relationships. Full article
19 pages, 2288 KiB  
Article
A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs
by Nitza Kahane, Yael Zohara Dahan-Barda and Chaya Kalcheim
Int. J. Mol. Sci. 2024, 25(11), 5602; https://doi.org/10.3390/ijms25115602 (registering DOI) - 21 May 2024
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of [...] Read more.
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
22 pages, 20008 KiB  
Article
Investigation of the Influence of Powder Fraction on Tribological and Corrosion Characteristics of 86WC-10Co-4Cr Coating Obtained by HVOF Method
by Bauyrzhan Rakhadilov, Nazerke Muktanova, Dauir Kakimzhanov, Zarina Satbayeva, Leila Kassenova and Nurtoleu Magazov
Coatings 2024, 14(6), 651; https://doi.org/10.3390/coatings14060651 (registering DOI) - 21 May 2024
Abstract
Samples using powders of four different fractions, 15–20 μm, 20–30 μm, 30–40 μm and 40–45 μm, were fabricated to investigate the wear resistance, corrosion resistance and tribological properties of the 86WC-10Co-4Cr coating obtained using the HVOF method. The phase composition, microstructure and elemental [...] Read more.
Samples using powders of four different fractions, 15–20 μm, 20–30 μm, 30–40 μm and 40–45 μm, were fabricated to investigate the wear resistance, corrosion resistance and tribological properties of the 86WC-10Co-4Cr coating obtained using the HVOF method. The phase composition, microstructure and elemental distribution were analyzed using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. The hardness was measured on a Vickers microhardness tester, the friction coefficient and wear rate were investigated using a tribometer, and the corrosion resistance was evaluated on an electrochemical corrosion station. The results showed that the cross-sectional microstructure of the coating is mainly represented by multifaceted WC crystals embedded in the Co-Cr matrix and the presence of lower tungsten carbides, particularly W2C. The 15–20 μm fraction particles were subjected to superheating, contributing to the decarburization process. The 20–30 µm and 30–40 µm sized particles prevented overheating and had a more homogeneous structure. The 40–45 µm powder fractions did not reach sufficient temperature for complete melting, resulting in the formation of pores in the coating layers. The phase composition of the coatings included WC, W2C and CoO phases. According to the results of the study, it was found that the optimal powder fraction for coating the 86WC-10Co-4Cr composition with improved characteristics is the fraction of the 20–30 µm sized particles. Full article
(This article belongs to the Special Issue Applications of Ceramic and Cermet Coatings)
36 pages, 4044 KiB  
Review
The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies
by Sophie Dithmer, Ingolf E. Blasig, Paul A. Fraser, Zhihai Qin and Reiner F. Haseloff
Int. J. Mol. Sci. 2024, 25(11), 5601; https://doi.org/10.3390/ijms25115601 (registering DOI) - 21 May 2024
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and [...] Read more.
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways. Full article
(This article belongs to the Special Issue The Tight Junction and Its Proteins: From Structure to Pathologies)
Show Figures

Figure 1

13 pages, 2320 KiB  
Article
Identification and Functional Analysis of the Flower Development-Related TCP Genes in Erycina pusilla
by Yu-Huan Tang, Ying-Yin Zhong and Xia Huang
Horticulturae 2024, 10(6), 534; https://doi.org/10.3390/horticulturae10060534 (registering DOI) - 21 May 2024
Abstract
Orchid flowers have evolved in concert with pollinators to form highly specialized structures resulting in zygomorphy. In dicotyledons, it is widely accepted that CYC-like genes are involved in the dorsoventral polarity establishment of flowers, which determines the development of zygomorphic flowers. However, [...] Read more.
Orchid flowers have evolved in concert with pollinators to form highly specialized structures resulting in zygomorphy. In dicotyledons, it is widely accepted that CYC-like genes are involved in the dorsoventral polarity establishment of flowers, which determines the development of zygomorphic flowers. However, the function of TCP transcription factors involved in orchid floral development is rarely known. Here, we found 15 unigenes with TCP domain (EpTCPs) from the previously reported Erycina pusilla unigene database. The expression patterns of EpTCPs in various tissues and different floral organs were successively detected by quantitative real-time PCR. The results revealed that the CYC-like gene (EpTCP25) and CIN-like genes (EpTCP11 and EpTCP26) were highly expressed in inflorescences but lowly expressed in leaves and roots. What is more, these three genes were expressed relatively high in the dorsal labellum, and EpTCP26 showed differential expression along the dorsoventral polarity of tepals, which was high in the dorsal and low in the ventral. Ectopic expression of EpTCP25 in Arabidopsis repressed primary root growth and delayed flowering. EpTCP26 overexpression in Arabidopsis promoted primary root growth and leaf growth. In contrast, EpTCP11 overexpression repressed primary root growth and changed the radially symmetric flower to a bilaterally symmetric flower by inhibiting the elongation of one or two adjacent petals. In addition, the homeotic transition of floral organs is generated when these genes are ectopically expressed in Arabidopsis, suggesting their roles in floral morphogenesis. Altogether, our results indicate that CIN-like genes would be associated with the unique flower pattern development of Erycina pusilla. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

11 pages, 4300 KiB  
Article
Polarimeter Optical Spectrum Analyzer
by Eyal Buks
Photonics 2024, 11(6), 486; https://doi.org/10.3390/photonics11060486 (registering DOI) - 21 May 2024
Abstract
A coherent optical spectrum analyzer is integrated with a rotating quarter wave plate polarimeter. The combined polarimeter optical spectrum analyzer (POSA) allows the extraction of the state of polarization with high spectral resolution. The POSA is used in this work to study two [...] Read more.
A coherent optical spectrum analyzer is integrated with a rotating quarter wave plate polarimeter. The combined polarimeter optical spectrum analyzer (POSA) allows the extraction of the state of polarization with high spectral resolution. The POSA is used in this work to study two optical systems. The first is an optical modulator based on a ferrimagnetic sphere resonator. The POSA is employed to explore the underlying magneto–optical mechanism responsible for modulation sideband asymmetry. The second system under study is a cryogenic fiber loop laser, which produces an unequally spaced optical comb. The polarization measurements provide insights into the nonlinear processes responsible for comb creation. Characterizations extracted from the POSA data provide guidelines for the performance optimization of applications based on the systems under study. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

18 pages, 3022 KiB  
Article
Characterizing the Contribution of Functional Microbiota Cultures in Pit Mud to the Metabolite Profiles of Fermented Grains
by Yingdong Wan, Jun Huang, Qiuxiang Tang, Suyi Zhang, Hui Qin, Yi Dong, Xiaojun Wang, Chuanfeng Qiu, Mengyang Huang, Zhu Zhang, Yi Zhang and Rongqing Zhou
Foods 2024, 13(11), 1597; https://doi.org/10.3390/foods13111597 (registering DOI) - 21 May 2024
Abstract
Elevating the flavor profile of strong flavors Baijiu has always been a focal point in the industry, and pit mud (PM) serves as a crucial flavor contributor in the fermentation process of the fermented grains (FG). This study investigated the influence of wheat [...] Read more.
Elevating the flavor profile of strong flavors Baijiu has always been a focal point in the industry, and pit mud (PM) serves as a crucial flavor contributor in the fermentation process of the fermented grains (FG). This study investigated the influence of wheat flour and bran (MC and FC) as PM culture enrichment media on the microbiota and metabolites of FG, aiming to inform strategies for improving strong-flavor Baijiu flavor. Results showed that adding PM cultures to FG significantly altered its properties: FC enhanced starch degradation to 51.46% and elevated reducing sugar content to 1.60%, while MC increased acidity to 2.11 mmol/10 g. PM cultures also elevated FG’s ester content, with increases of 0.36 times for MC-FG60d and 1.48 times for FC-FG60d compared to controls, and ethyl hexanoate rising by 0.91 times and 1.39 times, respectively. Microbial analysis revealed that Lactobacillus constituted over 95% of the Abundant bacteria community, with Kroppenstedtia or Bacillus being predominant among Rare bacteria. Abundant fungi included Rasamsonia, Pichia, and Thermomyces, while Rare fungi consisted of Rhizopus and Malassezia. Metagenomic analysis revealed bacterial dominance, primarily consisting of Lactobacillus and Acetilactobacillus (98.80–99.40%), with metabolic function predictions highlighting genes related to metabolism, especially in MC-FG60d. Predictions from PICRUSt2 suggested control over starch, cellulose degradation, and the TCA cycle by fungal subgroups, while Abundant fungi and bacteria regulated ethanol and lactic acid production. This study highlights the importance of PM cultures in the fermentation process of FG, which is significant for brewing high-quality, strong-flavor Baijiu. Full article
(This article belongs to the Special Issue Microbiological Studies on Wine/Baijiu Fermentation)
Show Figures

Graphical abstract

9 pages, 305 KiB  
Article
Associations between Motor Competence, Physical Activity and Sedentary Behaviour among Early School-Aged Children in the SELMA Cohort Study
by Johanna Delvert, Heléne V. Wadensjö, Carl-Gustaf Bornehag and Sverre Wikström
Children 2024, 11(6), 616; https://doi.org/10.3390/children11060616 (registering DOI) - 21 May 2024
Abstract
Low motor competence (MC) has been associated with lower physical activity (PA) and long-term health risks in children. Less is known about sex-specific patterns and associations during early school age. The aim of this study was to explore how motor difficulties are associated [...] Read more.
Low motor competence (MC) has been associated with lower physical activity (PA) and long-term health risks in children. Less is known about sex-specific patterns and associations during early school age. The aim of this study was to explore how motor difficulties are associated with PA levels, screen time, and organised sports participation (OSP). Data from 479 children, seven years of age, participating in the Swedish Environmental, Longitudinal, Mother and child, Asthma, and allergy (SELMA) pregnancy cohort study were used. MC and activity-related outcomes were assessed with questionnaires answered by parents. Associations between MC and outcomes were evaluated using logistic regression models adjusted for sex, overweight, and parental education level. Sex differences were investigated with interaction analyses and in stratified models. Children with motor difficulties had the same level of PA as their peers, but more screen time and lower OSP. Compared with children with normal MC, boys with motor difficulties had lower rates of OSP, but girls did not. This indicates that the identification and compensatory support for motor difficulties for boys at an early age, as well as the development of inclusive leisure time activities, are of importance to facilitate health-promoting activities on equal terms. Full article
(This article belongs to the Special Issue Motor Competence and Physical Activity in School Children)
Show Figures

Graphical abstract

14 pages, 2380 KiB  
Article
Changes in Soil Microbial Communities Associated with Pinus densiflora and Larix kaempferi Seedlings under Extreme Warming and Precipitation Manipulation
by Minyoung Kwon, Guanlin Li, Heejae Jo, Gwang-Jung Kim, Haegeun Chung and Yowhan Son
Sustainability 2024, 16(11), 4331; https://doi.org/10.3390/su16114331 (registering DOI) - 21 May 2024
Abstract
Soil microbial communities are essential to the terrestrial ecosystem processes by mediating nutrient cycling, and their function and composition may be altered under climate change. In this study, the effects of extreme climate events (extreme warming and precipitation pattern) on the microbial communities [...] Read more.
Soil microbial communities are essential to the terrestrial ecosystem processes by mediating nutrient cycling, and their function and composition may be altered under climate change. In this study, the effects of extreme climate events (extreme warming and precipitation pattern) on the microbial communities and extracellular enzyme activities in the soils planted with 1-year-old Pinus densiflora and Larix kaempferi seedlings were investigated. Open-field warming (+3 °C and +6 °C) and precipitation manipulation including drought induced by the complete interception of rainfall and heavy rainfall (113 mm per day) were applied from 13 July to 20 August 2020. The activities of soil enzymes, including β-glucosidase, acid phosphatase, N-acetyl-glucosaminidase, and leucine aminopeptidase, microbial biomass carbon and nitrogen, and changes in microbial community composition were determined. The microbial biomass carbon was 15.26% higher in Larix kaempferi-planted soils than in Pinus densiflora-planted soils. Fungal Chao 1 in the heavy rainfall and drought plots were 53.86% and 0.84% lower than the precipitation control, respectively, and 49.32% higher in the Larix kaempferi plots than under the Pinus densiflora. The fungal Shannon index was 46.61% higher in plots planted with Larix kaempferi than in those planted with Pinus densiflora. Regarding the dominant phyla, the relative abundance of Ascomycota in heavy rainfall plots was 14.16% and 13.10% higher than in the control and drought plots, respectively, and the relative abundance of Mortierllomycota was 55.48% higher under Larix kaempferi than under Pinus densiflora. The overall results are considered to reflect the microbial sensibility to environmental conditions and interaction with the planted species. Since the current study observed only short-term responses to extreme climate events, further study is required to determine the continuous effects of environmental changes on the associations between plants and soil microbes. Full article
12 pages, 1012 KiB  
Communication
SNR Enhancement for Comparator-Based Ultra-Low-Sampling Φ-OTDR System Using Compressed Sensing
by Zhenyu Xiao, Xiaoming Li, Haofei Zhang, Xueguang Yuan, Yang-An Zhang, Yuan Zhang, Zhengyang Li, Qi Wang and Yongqing Huang
Sensors 2024, 24(11), 3279; https://doi.org/10.3390/s24113279 (registering DOI) - 21 May 2024
Abstract
The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing [...] Read more.
The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise’s dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer’s driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system’s performance while greatly reducing its hardware burden. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop