The 2023 MDPI Annual Report has
been released!
 
30 pages, 10354 KiB  
Article
3D Modelling Approach to Enhance the Characterization of a Bronze Age Nuragic Site
by Stefano Cara, Paolo Valera and Carlo Matzuzzi
Minerals 2024, 14(5), 489; https://doi.org/10.3390/min14050489 (registering DOI) - 06 May 2024
Abstract
Megalithism in Sardinia (Italy) had its highest expression during the Bronze Age with the creation of monumental complexes known as Nuraghes. These unique monuments have recently been the subject of in-depth investigations for their potential to be recognized as World Heritage Sites (by [...] Read more.
Megalithism in Sardinia (Italy) had its highest expression during the Bronze Age with the creation of monumental complexes known as Nuraghes. These unique monuments have recently been the subject of in-depth investigations for their potential to be recognized as World Heritage Sites (by UNESCO). The main purpose of our research was to make a contribution to obtain a more in-depth characterization of these monuments by testing a 3D model of a complex Nuraghe, integrated with an analysis of the geolithological context. This work first focused on the geological and typological investigation of the materials used in its construction, which was then compared with the geolithological characteristics of the region. A survey of the outcropping remains was carried out by means of Structure-from-Motion Multi-View Stereo (SfM-MVS) photogrammetry with UAV ground and aerial acquisition using APS-C photo sensors, georeferenced with an RTK-GNSS ground survey. The level of accuracy of our digital models shows the potential of the proposed method, giving accurate and geometrically consistent 3D reconstructions in terms of georeferencing error, shape and surface. The survey method allows for the virtualization of the current state of conservation of the Nuraghe, giving a solid basis to set up further (future) archaeological excavations and to contribute to knowledge on the architecture of the structures. This study also provides useful information on the nature and origin of the construction materials and proposes a hypothesis on the original dimensions of the monument, which is often a topic of debate in the world of archaeology. Full article
Show Figures

Figure 1

13 pages, 454 KiB  
Article
Assessment of Non-Coplanar Maneuver Parameters and Perturbing Accelerations Using the Minimal Number of Observations
by Andrey Baranov
Symmetry 2024, 16(5), 567; https://doi.org/10.3390/sym16050567 (registering DOI) - 06 May 2024
Abstract
The algorithms for determining the active space object maneuver parameters in the conditions of near-circular orbits are presented in the paper. The right ascension and declination angles are used to determine the parameters of a single maneuver with transversal and lateral components (the [...] Read more.
The algorithms for determining the active space object maneuver parameters in the conditions of near-circular orbits are presented in the paper. The right ascension and declination angles are used to determine the parameters of a single maneuver with transversal and lateral components (the application moment and the velocity impulse magnitude). Two pairs of angles are used to determine the parameters of the maneuver with only a lateral component. Two pairs of angles are needed for the determination of the parameters of the long-duration maneuver performed by a low-thrust engine (moments of the maneuver start and finish, and components of the acceleration delivered by the engine). The essential detail that makes it possible to determine the parameters of long-duration maneuvers is their symmetry relative to the center of the engine operating interval. Considerable perturbing accelerations, which are not accounted for by traditional perturbing models, affect passive objects, especially membranous objects with a big and variable area-to-mass ratio. This decreases dramatically the accuracy of these objects’ motion propagation. In this paper, the magnitude of perturbing acceleration is determined with the assumption that it is constant and is active throughout the whole time interval from the moment of the last orbit determination to the moment of the new measurement used. Examples of the assessment of maneuvers performed by an object in the geostationary orbit are presented. Full article
(This article belongs to the Special Issue Advances in Mechanics and Control II)
Show Figures

Figure 1

23 pages, 9608 KiB  
Article
Characterizing Land Surface Temperature (LST) through Remote Sensing Data for Small-Scale Urban Development Projects in the Gulf Cooperation Council (GCC)
by Maram Ahmed, Mohammed A. Aloshan, Wisam Mohammed, Essam Mesbah, Naser A. Alsaleh and Islam Elghonaimy
Sustainability 2024, 16(9), 3873; https://doi.org/10.3390/su16093873 (registering DOI) - 06 May 2024
Abstract
In the context of global climate change, there is a projected increase in land surface temperature (LST) worldwide, amplifying its impacts. This poses a particular concern for countries with hot climates, including the Kingdom of Bahrain as an example for the Gulf Cooperation [...] Read more.
In the context of global climate change, there is a projected increase in land surface temperature (LST) worldwide, amplifying its impacts. This poses a particular concern for countries with hot climates, including the Kingdom of Bahrain as an example for the Gulf Cooperation Council countries (GCC), which are countries with a hot climate. With a surge in population growth, there is a heightened demand for land to accommodate additional residential developments, creating an opportunity to investigate the influence of land use changes on LST variations. To achieve this goal, a residential development project spanning from 2013 to 2023 was undertaken. Landsat 8 OLI/TIRS remote sensing datasets were selected for four climate seasons, each set comprising images before and after development. The analysis involved extracting the LST, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-Up Index (NDBI) on various dates, followed by correlation and regression analyses to explore their interrelationships. The results revealed a significant increase in the mean LST during spring and autumn post-development. A consistent positive association between the LST and NDBI was observed across all seasons, strengthening after development completion. Conversely, there was a pre-development negative correlation between the LST and NDVI, shifting to a positive relationship post-development. These findings empirically support the idea that small-scale residential developments contribute to notable LST increases, primarily due to expanded impervious surfaces. These insights have the potential to inform localized adaptation strategies for small-scale residential development projects, crucial for managing the impacts of rising land surface temperatures. Full article
Show Figures

Figure 1

17 pages, 4424 KiB  
Article
Boron and Nitrogen Co-Doped Porous Graphene Nanostructures for the Electrochemical Detection of Poisonous Heavy Metal Ions
by Yogesh Chaudhary, Shradha Suman, Benadict Rakesh, Gunendra Prasad Ojha, Uday Deshpande, Bishweshwar Pant and Kamatchi Jothiramalingam Sankaran
Nanomaterials 2024, 14(9), 806; https://doi.org/10.3390/nano14090806 (registering DOI) - 06 May 2024
Abstract
Heavy metal poisoning has a life-threatening impact on the human body to aquatic ecosystems. This necessitates designing a convenient green methodology for the fabrication of an electrochemical sensor that can detect heavy metal ions efficiently. In this study, boron (B) and nitrogen (N) [...] Read more.
Heavy metal poisoning has a life-threatening impact on the human body to aquatic ecosystems. This necessitates designing a convenient green methodology for the fabrication of an electrochemical sensor that can detect heavy metal ions efficiently. In this study, boron (B) and nitrogen (N) co-doped laser-induced porous graphene (LIGBN) nanostructured electrodes were fabricated using a direct laser writing technique. The fabricated electrodes were utilised for the individual and simultaneous electrochemical detection of lead (Pb2+) and cadmium (Cd2+) ions using a square wave voltammetry technique (SWV). The synergistic effect of B and N co-doping results in an improved sensing performance of the electrode with better sensitivity of 0.725 µA/µM for Pb2+ and 0.661 µA/µM for Cd2+ ions, respectively. Moreover, the sensing electrode shows a low limit of detection of 0.21 µM and 0.25 µM for Pb2+ and Cd2+ ions, with wide linear ranges from 8.0 to 80 µM for Pb2+ and Cd2+ ions and high linearity of R2 = 0.99 in case of simultaneous detection. This rapid and facile method of fabricating heteroatom-doped porous graphene opens a new avenue in electrochemical sensing studies to detect various hazardous metal ions. Full article
Show Figures

Figure 1

9 pages, 657 KiB  
Article
Effects of RDL GABA Receptor Point Mutants on Susceptibility to Meta-Diamide and Isoxazoline Insecticides in Drosophila melanogaster
by Tianhao Zhou, Weiping Wu, Suhan Ma, Jie Chen, Jia Huang and Xiaomu Qiao
Insects 2024, 15(5), 334; https://doi.org/10.3390/insects15050334 (registering DOI) - 06 May 2024
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors in insects, specifically those composed of the RDL (resistant to dieldrin) subunit, serve as important targets for commonly used synthetic insecticides. These insecticides belong to various chemical classes, such as phenylpyrazoles, cyclodienes, meta-diamides, and isoxazolines, with the latter [...] Read more.
Ionotropic γ-aminobutyric acid (GABA) receptors in insects, specifically those composed of the RDL (resistant to dieldrin) subunit, serve as important targets for commonly used synthetic insecticides. These insecticides belong to various chemical classes, such as phenylpyrazoles, cyclodienes, meta-diamides, and isoxazolines, with the latter two potentially binding to the transmembrane inter-subunit pocket. However, the specific amino acid residues that contribute to the high sensitivity of insect RDL receptors to these novel insecticides remain elusive. In this study, we investigated the susceptibility of seven distinct Drosophila melanogaster Rdl point mutants against four meta-diamide and isoxazoline insecticides: isocycloseram, fluxametamide, fluralaner, and broflanilide. Our findings indicate that, despite exhibiting increased sensitivity to fluralaner in vitro, the RdlI276C mutant showed resistance to isocycloseram and fluxametamide. Similarly, the double-points mutant RdlI276F+G279S also showed decreased sensitivity to the tested isoxazolines. On the other hand, the RdlG335M mutant displayed high levels of resistance to all tested insecticides. Molecular modeling and docking simulations further supported these findings, highlighting similar binding poses for these insecticides. In summary, our research provides robust in vivo evidence supporting the idea that the inter-subunit amino acids within transmembrane M1 and M3 domains form the binding site crucial for meta-diamide and isoxazoline insecticide interactions. This study highlights the complex interplay between mutations and insecticide susceptibility, paving the way for more targeted pest control strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 946 KiB  
Review
The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples
by Vladislav Deigin, Natalia Linkova, Julia Vinogradova, Dmitrii Vinogradov, Victoria Polyakova, Dmitrii Medvedev, Alexander Krasichkov and Olga Volpina
Int. J. Mol. Sci. 2024, 25(9), 5042; https://doi.org/10.3390/ijms25095042 (registering DOI) - 06 May 2024
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides’ susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino [...] Read more.
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides’ susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed. Full article
(This article belongs to the Special Issue Peptides as Biochemical Tools and Modulators of Biological Activity)
Show Figures

Figure 1

11 pages, 4421 KiB  
Article
Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study
by Tao Sun, Qili Bao, Yang Gao, Shujun Li, Jianping Li and Hao Wang
Materials 2024, 17(9), 2165; https://doi.org/10.3390/ma17092165 (registering DOI) - 06 May 2024
Abstract
The manufacturing process for wrought Ti alloys with the hexagonal close-packed (HCP) structure introduces a complicated microstructure with abundant intra- and inter-grain boundaries, which greatly influence performance. In the hexagonal close-packed (HCP) structure, two types of grain boundaries are commonly observed between grains [...] Read more.
The manufacturing process for wrought Ti alloys with the hexagonal close-packed (HCP) structure introduces a complicated microstructure with abundant intra- and inter-grain boundaries, which greatly influence performance. In the hexagonal close-packed (HCP) structure, two types of grain boundaries are commonly observed between grains with ~90° misorientation: the basal/prismatic boundary (BPB) and the coherent twin boundary (CTB). The mechanical response of the BPB and CTB under external loading was studied through molecular dynamic simulations of HCP-Ti. The results revealed that CTB undergoes transformation into BPB through the accumulation of twin boundary (TB) steps and subsequent emission of Shockley partial dislocations. When the total mismatch vector is close to the Burgers vector of a Shockley partial dislocation, BPB emits partial dislocations and further grows along the stacking faults. When a pair of CTBs are close to each other, severe boundary distortion occurs, facilitating the emission and absorption of partial dislocations, which further assists the CTB-BPB transformation. The present results thus help to explain the frequent observation of coexisting CTB and BPB in HCP alloys and further contribute to the understanding of their microstructure and property regulation. Full article
Show Figures

Figure 1

11 pages, 2032 KiB  
Article
Unveiling the Low-Lying Spin States of [Fe3S4] Clusters via the Extended Broken-Symmetry Method
by Shibing Chu and Qiuyu Gao
Molecules 2024, 29(9), 2152; https://doi.org/10.3390/molecules29092152 (registering DOI) - 06 May 2024
Abstract
Photosynthetic water splitting, when synergized with hydrogen production catalyzed by hydrogenases, emerges as a promising avenue for clean and renewable energy. However, theoretical calculations have faced challenges in elucidating the low-lying spin states of iron–sulfur clusters, which are integral components of hydrogenases. To [...] Read more.
Photosynthetic water splitting, when synergized with hydrogen production catalyzed by hydrogenases, emerges as a promising avenue for clean and renewable energy. However, theoretical calculations have faced challenges in elucidating the low-lying spin states of iron–sulfur clusters, which are integral components of hydrogenases. To address this challenge, we employ the Extended Broken-Symmetry method for the computation of the cubane–[Fe3S4] cluster within the [FeNi] hydrogenase enzyme. This approach rectifies the error caused by spin contamination, allowing us to obtain the magnetic exchange coupling constant and the energy level of the low-lying state. We find that the Extended Broken-Symmetry method provides more accurate results for differences in bond length and the magnetic coupling constant. This accuracy assists in reconstructing the low-spin ground state force and determining the geometric structure of the ground state. By utilizing the Extended Broken-Symmetry method, we further highlight the significance of the geometric arrangement of metal centers in the cluster’s properties and gain deeper insights into the magnetic properties of transition metal iron–sulfur clusters at the reaction centers of hydrogenases. This research illuminates the untapped potential of hydrogenases and their promising role in the future of photosynthesis and sustainable energy production. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions)
Show Figures

Figure 1

11 pages, 1875 KiB  
Communication
A Novel Weighted Block Sparse DOA Estimation Based on Signal Subspace under Unknown Mutual Coupling
by Yulong Liu, Yingzeng Yin, Hongmin Lu and Kuan Tong
Electronics 2024, 13(9), 1790; https://doi.org/10.3390/electronics13091790 (registering DOI) - 06 May 2024
Abstract
In this paper, a novel weighted block sparse method based on the signal subspace is proposed to realize the Direction-of-Arrival (DOA) estimation under unknown mutual coupling in the uniform linear array. Firstly, the signal subspace is obtained by decomposing the eigenvalues of the [...] Read more.
In this paper, a novel weighted block sparse method based on the signal subspace is proposed to realize the Direction-of-Arrival (DOA) estimation under unknown mutual coupling in the uniform linear array. Firstly, the signal subspace is obtained by decomposing the eigenvalues of the sampling covariance matrix. Then, a block sparse model is established based on the deformation of the product of the mutual coupling matrix and the steering vector. Secondly, a suitable set of weighted coefficients is calculated to enhance sparsity. Finally, the optimization problem is transformed into a second-order cone (SOC) problem and solved. Compared with other algorithms, the simulation results of this paper have better performance on DOA accuracy estimation. Full article
(This article belongs to the Special Issue Radar System and Radar Signal Processing)
Show Figures

Figure 1

8 pages, 1407 KiB  
Case Report
The Segregation of p.Arg68Ter-CLDN14 Mutation in a Syrian Deaf Family, Phenotypic Variations, and Comparative Analysis with the GJB2 Gene
by Abdelaziz Tlili, Abdullah Al Mutery and Jihen Chouchen
Genes 2024, 15(5), 588; https://doi.org/10.3390/genes15050588 (registering DOI) - 06 May 2024
Abstract
Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis [...] Read more.
Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis and screening challenging. The emergence of advanced next-generation sequencing (NGS) technologies has significantly advanced the discovery of genes and variants linked to various conditions, such as hearing loss. In this study, our objective was to identify the specific variant causing hearing loss in a family from Syria using clinical exome sequencing. The proband in the family exhibited profound deafness as shown by pure-tone audiometry results. The analysis of the different variants obtained by NGS revealed the presence of a nonsense mutation within the CLDN14 gene. Through Sanger sequencing, we verified that this variant segregates with the disease and was not present in the control population. Moreover, we conducted a comprehensive review of all reported deafness-related CLDN14 mutations and their associated phenotypes. Furthermore, we endeavored to carry out a comparative analysis between the CLDN14 and GJB2 genes, with the objective of identifying potential factors that could explain the notable discrepancy in mutation frequency between these two genes. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 8326 KiB  
Article
High Resolution Ranging with Small Sample Number under Low SNR Utilizing RIP-OMCS Strategy and AHRC l1 Minimization for Laser Radar
by Min Xue, Mengdao Xing, Yuexin Gao, Jixiang Fu, Zhixin Wu and Wangshuo Tang
Remote Sens. 2024, 16(9), 1647; https://doi.org/10.3390/rs16091647 (registering DOI) - 06 May 2024
Abstract
This manuscript presents a novel scheme to achieve high-resolution laser-radar ranging with a small sample number under low signal-to-noise ratio (SNR) conditions. To reduce the sample number, the Restricted Isometry Property-based optimal multi-channel coprime-sampling (RIP-OMCS) strategy is established. In the RIP-OMCS strategy, the [...] Read more.
This manuscript presents a novel scheme to achieve high-resolution laser-radar ranging with a small sample number under low signal-to-noise ratio (SNR) conditions. To reduce the sample number, the Restricted Isometry Property-based optimal multi-channel coprime-sampling (RIP-OMCS) strategy is established. In the RIP-OMCS strategy, the data collected across multiple channels with very low coprime-sampling rates can record accurate range information on each target. Further, the asynchronous problem caused by channel sampling-time errors is considered. The sampling-time errors are estimated using the cross-correlation function. After canceling the asynchronous problem, the data collected by multiple channels are then merged into non-uniform sampled signals. Using data combination, target-range estimation is converted into an optimization problem of sparse representation consisting of a non-uniform Fourier dictionary. This optimization problem is solved using adaptive hybrid re-weighted constraint (AHRC) l1 minimization. Two constraints are formed from statistical attributes of the targets and clutter. Moreover, as the detailed characteristics of the target, clutter, and noise are unknown before the solution, the two constraints can be adaptively modified, which guarantees that l1 minimization obtains the high-resolution range profile and accurate distance of all targets under a low SNR. Our experiments confirmed the effectiveness of the proposed method. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

23 pages, 16364 KiB  
Article
Mapping the Continuous Cover of Invasive Noxious Weed Species Using Sentinel-2 Imagery and a Novel Convolutional Neural Regression Network
by Fei Xing, Ru An, Xulin Guo and Xiaoji Shen
Remote Sens. 2024, 16(9), 1648; https://doi.org/10.3390/rs16091648 (registering DOI) - 06 May 2024
Abstract
Invasive noxious weed species (INWS) are typical poisonous plants and forbs that are considered an increasing threat to the native alpine grassland ecosystems in the Qinghai–Tibetan Plateau (QTP). Accurate knowledge of the continuous cover of INWS across complex alpine grassland ecosystems over a [...] Read more.
Invasive noxious weed species (INWS) are typical poisonous plants and forbs that are considered an increasing threat to the native alpine grassland ecosystems in the Qinghai–Tibetan Plateau (QTP). Accurate knowledge of the continuous cover of INWS across complex alpine grassland ecosystems over a large scale is required for their control and management. However, the cooccurrence of INWS and native grass species results in highly heterogeneous grass communities and generates mixed pixels detected by remote sensors, which causes uncertainty in classification. The continuous coverage of INWS at the pixel level has not yet been achieved. In this study, objective 1 was to test the capability of Senginel-2 imagery at estimating continuous INWS cover across complex alpine grasslands over a large scale and objective 2 was to assess the performance of the state-of-the-art convolutional neural network-based regression (CNNR) model in estimating continuous INWS cover. Therefore, a novel CNNR model and a random forest regression (RFR) model were evaluated for estimating INWS continuous cover using Sentinel-2 imagery. INWS continuous cover was estimated directly from Sentinel-2 imagery with an R2 ranging from 0.88 to 0.93 using the CNNR model. The RFR model combined with multiple features had a comparable accuracy, which was slightly lower than that of the CNNR model, with an R2 of approximately 0.85. Twelve green band-, red-edge band-, and near-infrared band-related features had important contributions to the RFR model. Our results demonstrate that the CNNR model performs well when estimating INWS continuous cover directly from Sentinel-2 imagery, and the RFR model combined with multiple features derived from the Sentinel-2 imager can also be used for INWS continuous cover mapping. Sentinel-2 imagery is suitable for mapping continuous INWS cover across complex alpine grasslands over a large scale. Our research provides information for the advanced mapping of the continuous cover of invasive species across complex grassland ecosystems or, more widely, terrestrial ecosystems over large spatial areas using remote sensors such as Sentinel-2. Full article
Show Figures

Figure 1

13 pages, 1278 KiB  
Article
Assessment of Suicide Risk in Patients with Depressive Episodes Due to Affective Disorders and Borderline Personality Disorder: A Pilot Comparative Study
by Elena Rudolfovna Isaeva, Daria Maksimovna Ryzhova, Anna Vladimirovna Stepanova and Ivo Nestorov Mitrev
Brain Sci. 2024, 14(5), 463; https://doi.org/10.3390/brainsci14050463 (registering DOI) - 06 May 2024
Abstract
This study assessed suicidal risk in patients suffering from non-psychotic depressive disorders within various clinical and nosological forms (F31–F34 mood disorders and F60.31—emotionally unstable personality disorder). Clinical and psychological features were presented, as well as predictors of suicidal risk in patients of these [...] Read more.
This study assessed suicidal risk in patients suffering from non-psychotic depressive disorders within various clinical and nosological forms (F31–F34 mood disorders and F60.31—emotionally unstable personality disorder). Clinical and psychological features were presented, as well as predictors of suicidal risk in patients of these groups. We performed a comparative analysis of the anxiety and depression level, the level of mental pain, fear of death and the severity of anti-suicidal motives in patients with affective disorders and borderline personality disorder (BPD). Based on the results, 100% of patients in these clinical nosological groups were found to have a high level of suicidal risk. Patients with affective disorders have weak anti-suicidal motives and are not fully aware of the consequences of their own death. Patients with BPD have a higher suicidal risk than patients with affective disorders; they are characterized by less pronounced social orientation, demonstrativeness, self-centeredness, less pronounced levels of anxiety and fear of death. Full article
(This article belongs to the Special Issue Anxious Brain: Stress Influence on the Nervous System)
Show Figures

Figure 1

18 pages, 3900 KiB  
Review
The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies
by Jingjing Wang, Yuhang Luo, Harshita Katiyar, Chen Liang and Qian Liu
Viruses 2024, 16(5), 734; https://doi.org/10.3390/v16050734 (registering DOI) - 06 May 2024
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict [...] Read more.
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus–cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs’ restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics. Full article
Show Figures

Figure 1

14 pages, 5726 KiB  
Article
Coupled Mode Design of Low-Loss Electromechanical Phase Shifters
by Nathnael S. Abebe, Sunil Pai, Rebecca L. Hwang, Payton Broaddus, Yu Miao and Olav Solgaard
Micro 2024, 4(2), 334-347; https://doi.org/10.3390/micro4020021 (registering DOI) - 06 May 2024
Abstract
Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, [...] Read more.
Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters. Full article
Show Figures

Figure 1

29 pages, 4148 KiB  
Review
Decoding Near Synonyms in Pedestrianization Research: A Numerical Analysis and Summative Approach
by Hisham Abusaada and Abeer Elshater
Urban Sci. 2024, 8(2), 45; https://doi.org/10.3390/urbansci8020045 (registering DOI) - 06 May 2024
Abstract
Pedestrianization is a significant discourse focus within urban planning and design research. However, the need for more clarity from the inconsistent use of near-synonym concepts or terms necessitates attention. This review article addresses this issue through a comprehensive analysis of synonym proliferation in [...] Read more.
Pedestrianization is a significant discourse focus within urban planning and design research. However, the need for more clarity from the inconsistent use of near-synonym concepts or terms necessitates attention. This review article addresses this issue through a comprehensive analysis of synonym proliferation in pedestrian research, culminating in developing a robust “near synonymous toolkit” and “synonym selection framework”. Employing a linear snowball sampling technique, numerical analysis, and a qualitative content analysis-based summative approach, we examined sixteen peer-reviewed articles from 11 scientific journals. Through systematic classification based on consistency and variability, the summative review identifies three primary groups of near synonyms: dominant and widely utilized conceptual or terminological near synonymy in pedestrianization in the urban planning and design literature, near synonyms directly associated with a pedestrian, pedestrianize, and those indirectly linked to another conceptual or terminological synonymy. Further analysis delves into the nature of near-synonym concepts or terms, revealing three discernible patterns: the use of distinct, precise concepts or terms with near-synonym meanings, similar concepts or terms conveying divergent meanings, and the juxtaposition of unrelated vocabulary lacking semantic resemblance. These insights illuminate semantic relationships within the studied vocabulary, underscoring the importance of addressing inconsistency for clarity, precision, and coherence in scientific discourse. By offering practical guidance through the proposed framework, this study empowers academic researchers to navigate synonym selection adeptly, thereby enhancing the caliber of scholarly writing in urban planning and design. Full article
Show Figures

Figure 1

14 pages, 5650 KiB  
Article
Glycyrrhizic Acid Nanoparticles Subside the Activity of Methicillin-Resistant Staphylococcus aureus by Suppressing PBP2a
by Patricia Rijo, Tamer M. M. Abuamara, Lashin Saad Ali Lashin, Sherif A. Kamar, Vera M. S. Isca, Tahseen S. Mohammed, Mohamed S. M. Abdrabo, Mohamed A. Amin, Ahmed I. Abd El Maksoud and Amr Hassan
Pharmaceuticals 2024, 17(5), 589; https://doi.org/10.3390/ph17050589 (registering DOI) - 06 May 2024
Abstract
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have [...] Read more.
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV–visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40–50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria. Full article
Show Figures

Figure 1

8 pages, 412 KiB  
Article
Accelerated Fractionated Radiation Therapy for Localized Glottic Carcinoma
by Tatsuji Mizukami, Kentaro Yamagishi, Masaki Tobikawa, Akira Nakazato, Hideharu Abe, Yuka Morita and Jun-ichi Saitoh
Curr. Oncol. 2024, 31(5), 2636-2643; https://doi.org/10.3390/curroncol31050198 (registering DOI) - 06 May 2024
Abstract
Background: The aim of this study is to examine the outcomes of an accelerated fractionated irradiation for N0 glottic carcinoma. Methods: In this retrospective analysis, 29 patients with N0 glottic carcinoma treated by radiation therapy were enrolled. Thirteen patients had T1a disease, six [...] Read more.
Background: The aim of this study is to examine the outcomes of an accelerated fractionated irradiation for N0 glottic carcinoma. Methods: In this retrospective analysis, 29 patients with N0 glottic carcinoma treated by radiation therapy were enrolled. Thirteen patients had T1a disease, six had T1b disease, and ten had T2 disease. A fractional dose of 2.1 Gy was administered to seven patients. The total doses were 65.1 and 67.2 Gy in four and three patients, respectively. A fractional dose of 2.25 Gy was administered to 22 patients. The total doses were 63 and 67.5 Gy in 21 patients and 1 patient with T2 disease, respectively. Additionally, 13 patients underwent the use of TS-1 (80–100 mg per day). Results: The median follow-up period was 33 months, and the 3-year local control rate was 95.6%. No patient had a lymph node or distant recurrence. As acute adverse events, grades 2 and 3 dermatitis were observed in 18 patients and 1 patient, and grades 2 and 3 mucositis were observed in 15 patients and 1 patient. As a late adverse event, one patient required tracheotomy because of laryngeal edema occurring. Conclusions: Accelerated fractionated irradiation may be an option in the radiation therapy of N0 glottic carcinoma because of its ability to shorten the treatment time. Full article
(This article belongs to the Section Head and Neck Oncology)
Show Figures

Figure 1

19 pages, 10133 KiB  
Article
Research on the Identification of Nonlinear Wheel–Rail Adhesion Characteristics Model Parameters in Electric Traction System Based on the Improved TLBO Algorithm
by Weiwei Gan, Xufeng Zhao, Dong Wei, Zhonghao Bai, Rongjun Ding, Kan Liu and Xueming Li
Electronics 2024, 13(9), 1789; https://doi.org/10.3390/electronics13091789 (registering DOI) - 06 May 2024
Abstract
The wheel–rail adhesion is one of the key factors limiting the traction performance of railway vehicles. To meet the adhesion optimization needs and rapidly obtain wheel–rail creep characteristics under specific operating conditions, an engineering identification method for wheel–rail adhesion characteristics based on a [...] Read more.
The wheel–rail adhesion is one of the key factors limiting the traction performance of railway vehicles. To meet the adhesion optimization needs and rapidly obtain wheel–rail creep characteristics under specific operating conditions, an engineering identification method for wheel–rail adhesion characteristics based on a nonlinear model is proposed. The proposed method, built upon the traditional Teaching-Learning-Based Optimization (TLBO) algorithm, has been adapted to the specific nature of nonlinear wheel–rail adhesion model parameters identification, enhancing both the search speed in the early stages and the search accuracy in the later stages of the algorithm. The proposed identification algorithm is validated using experimental data from the South African 22E dual-flow locomotive. The validation results demonstrate that the proposed identification algorithm can obtain a nonlinear wheel–rail adhesion characteristics model with an average adhesion coefficient error of around 0.01 within 50 iteration steps. These validation results indicate promising prospects for the engineering practice of the proposed algorithm. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters and Drives)
Show Figures

Figure 1

10 pages, 13238 KiB  
Article
Dead Zone Fault Detection Optimization Method for Few-Mode Fiber Links Based on Unexcited Coupled Higher-Order Modes
by Feng Liu, Tianle Gu and Zicheng Huang
Photonics 2024, 11(5), 433; https://doi.org/10.3390/photonics11050433 (registering DOI) - 06 May 2024
Abstract
The traditional single-mode fiber (SMF) optical time domain reflectometer (OTDR) may not be able to accurately detect and locate fault events in the dead zone of few-mode fiber (FMF) links. This paper introduces the concept of higher-order spatial mode detection dimensions unique to [...] Read more.
The traditional single-mode fiber (SMF) optical time domain reflectometer (OTDR) may not be able to accurately detect and locate fault events in the dead zone of few-mode fiber (FMF) links. This paper introduces the concept of higher-order spatial mode detection dimensions unique to FMF, combined with the spatial mode coupling characteristics between modes. The Fresnel reflection from the end face of the fiber, the interior of the circulator, and the connector only occurs in the spatial mode of the injected optical pulse. The Rayleigh backscattering, which reflects the fault distribution characteristics of FMF links, can be detected by non-excited higher-order spatial modes. The proposed method can completely overcome the traditional OTDR dead zone. In this paper, the six-mode fiber is taken as an example for experimental verification. The detection optical pulse is injected into the fundamental mode LP01, and the Rayleigh backscattering of LP11a, LP11b, LP21a, LP21b, and LP02 higher-order spatial mode are collected and analyzed to accurately detect and locate the fusion splice fault event at 100 m and 500 m in the dead zone. Full article
Show Figures

Figure 1

18 pages, 6538 KiB  
Article
A Description of the New Hybodont Shark Genus, Columnaodus, from the Burlington and Keokuk Limestones (Carboniferous, Mississippian, Osagean) of Illinois and Iowa, USA
by David Cicimurri, Charles Ciampaglio, Matthew Hoenig, Ryan Shell, Lauren Fuelling, David Peterman, Daniel A. Cline and Stephen Jacquemin
Diversity 2024, 16(5), 276; https://doi.org/10.3390/d16050276 (registering DOI) - 06 May 2024
Abstract
Bonebeds occurring in exposures of the Burlington and Keokuk Limestones (Mississippian/Osagean) along the Iowa and Illinois border (USA) contain an abundant and diverse collection of chondrichthyan remains that includes teeth, spines, denticles, and coprolites. These remains represent cochliodont, hybodont, petalodont, ctenacanthid, symmoriid, and [...] Read more.
Bonebeds occurring in exposures of the Burlington and Keokuk Limestones (Mississippian/Osagean) along the Iowa and Illinois border (USA) contain an abundant and diverse collection of chondrichthyan remains that includes teeth, spines, denticles, and coprolites. These remains represent cochliodont, hybodont, petalodont, ctenacanthid, symmoriid, and acanthodian (stem chondrichthyan) taxa. The thickest of these beds, herein referred to as the Burlington–Keokuk bonebed, occurs at the top of the Burlington Limestone and presents a remarkable opportunity to study the assemblage of mid-continent, Middle Mississippian chondrichthyans. Bulk matrix samples of this bonebed were collected from two quarries (Biggsville Quarry, Biggsville, IL, USA, and Nelson Quarry, Mediapolis, IA, USA) and disaggregated. Among the multitude of previously known taxa, several teeth represented a new genus and species of hybodont shark. Herein, we describe these teeth as Columnaodus witzkei (gen. et sp. nov.), a hybodontiform with dental features comparable to unnamed specimens reported from elsewhere. Full article
Show Figures

Figure 1

22 pages, 2893 KiB  
Article
Micropropagation and Genetic Fidelity of Fegra Fig (Ficus palmata Forssk.) and Grafting Compatibility of the Regenerated Plants with Ficus carica
by Ahmed Ali Al-Aizari, Yaser Hassan Dewir, Abdel-Halim Ghazy, Abdullah Al-Doss and Rashid Sultan Al-Obeed
Plants 2024, 13(9), 1278; https://doi.org/10.3390/plants13091278 (registering DOI) - 06 May 2024
Abstract
Ficus palmata is an important fig species that produces edible and nutritious fruit and possesses several therapeutic uses. This study reports an effective method for the micropropagation of F. palmata using nodal explants. In vitro shoots were cultured for 7 weeks onto MS [...] Read more.
Ficus palmata is an important fig species that produces edible and nutritious fruit and possesses several therapeutic uses. This study reports an effective method for the micropropagation of F. palmata using nodal explants. In vitro shoots were cultured for 7 weeks onto MS medium fortified with different concentrations of cytokinins, light intensities, sucrose concentrations, and light/dark incubation treatments. Optimal axillary shoot proliferation (10.9 shoots per explant) was obtained on a medium containing 30 g/L sucrose and supplemented with 2 mg/L 6-benzylaminopurine (BAP) under 35 μmol/m2/s light intensity. Dark incubation limited the foliage growth but favored shoot elongation and rooting compared with light incubation. Elongated shoots, under dark conditions, were rooted (100%; 6.67 roots per explant) onto MS medium containing 1 mg/L indole-3-acetic acid (IAA) and 1.5 g/L activated charcoal. The micropropagated plantlets were acclimatized with a 95% survival rate. In this study, the genetic fidelity of micropropagated F. palmata clones along with their mother plant was tested using randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeats (ISSR), and start codon targeted (SCoT) molecular markers. The genetic similarity between the micropropagated plantlets and the mother plant of F. palmata was nearly 95.9%, assuring high uniformity and true-to-type regenerated plants. Using micropropagated F. palmata plantlets as a rootstock proved appropriate for the grafting F. carica ‘Brown Turkey’. These findings contribute to the commercial propagation and production of the fig crop. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 4448 KiB  
Article
Impact of New Energy Vehicle Charging Point Subsidy Policy on Subway Demand: Evidence from Beijing’s Real Estate Market
by Yilin Bi, Jiangwei Liu, Zhuang Liu and Suhao Wei
Sustainability 2024, 16(9), 3874; https://doi.org/10.3390/su16093874 (registering DOI) - 06 May 2024
Abstract
New energy vehicles (NEVs) offer a sustainable private transportation alternative. Charging points are the source of power for NEVs; thus, their construction can significantly lower the costs associated with their use, thereby encouraging their adoption. This could potentially impact the subway demand, which [...] Read more.
New energy vehicles (NEVs) offer a sustainable private transportation alternative. Charging points are the source of power for NEVs; thus, their construction can significantly lower the costs associated with their use, thereby encouraging their adoption. This could potentially impact the subway demand, which is reflected by the relationship between housing prices and subway proximity in this paper, leading to a decrease in the premium for properties near subway stations. Utilizing a comprehensive data set of 599,916 housing transactions in Beijing and a difference-in-differences approach based on the hedonic price model, we found that China’s NEV charging point subsidy policy significantly decreases the subway premium of housing prices and mitigates housing price disparities. Furthermore, we explored the spatial heterogeneity of this impact, finding that the policy has less influence on residents living near the city center. Our findings indicate that the policy has resulted in a considerable decrease in the subway premium, ranging from ¥19,217 to ¥55,936 ($2745 to $7991) per transaction, which is equivalent to the annual income for an average individual at the time of the policy. The results address the far-reaching implications and significant role of NEV development in urban transportation. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop