The 2023 MDPI Annual Report has
been released!
 
17 pages, 647 KiB  
Systematic Review
Exploring Factors Influencing Caregiver Burden: A Systematic Review of Family Caregivers of Older Adults with Chronic Illness in Local Communities
by Jin Young Choi, Seon Heui Lee and Soyoung Yu
Healthcare 2024, 12(10), 1002; https://doi.org/10.3390/healthcare12101002 - 13 May 2024
Abstract
This study aimed to systematically review and analyze factors contributing to caregiver burden among family caregivers of older adults with chronic illnesses in local communities. Specific objectives included exploring the characteristics of older adults with chronic illness and caregiver burden through an extensive [...] Read more.
This study aimed to systematically review and analyze factors contributing to caregiver burden among family caregivers of older adults with chronic illnesses in local communities. Specific objectives included exploring the characteristics of older adults with chronic illness and caregiver burden through an extensive literature review and identifying factors influencing caregiver burden in this population. Using Korean (RISS, KISS, and KoreaMed) and international (EMBASE, MEDLINE, CINAHL, and the Cochrane Library) databases, this study employed systematic search methods to identify relevant literature. The inclusion and exclusion criteria were systematically applied in accordance with the PRISMA guidelines, focusing on studies that addressed caregiver burden among family caregivers of older adults with chronic illnesses in local communities. Following the database search, 15,962 articles were identified. After eliminating duplicates and applying the selection criteria, 18 studies were included in this review. These studies, representing various countries, contribute to a diverse dataset covering caregiver and care-recipient characteristics, including age, sex, chronic conditions, and various caregiver burden assessment tools. This systematic review provides a comprehensive understanding of the factors that influence caregiver burden among family caregivers of older adults with chronic illness in local communities. These findings emphasize the need for integrated nursing interventions and community efforts to address the welfare concerns of this population and support their caregivers. Full article
Show Figures

Figure 1

13 pages, 332 KiB  
Article
Health Outcome Comparison Based on Dietary Inflammatory Levels among Sample of Korean Elderly
by Seul-Ki Koo and Hee-Sook Lim
Healthcare 2024, 12(10), 1003; https://doi.org/10.3390/healthcare12101003 - 13 May 2024
Abstract
The aim of this study was to investigate the effect of a senior-friendly diet based on the dietary inflammatory index (DII) on the nutritional status and health indicators of older people. A total of 256 participants were classified into tertiles based on their [...] Read more.
The aim of this study was to investigate the effect of a senior-friendly diet based on the dietary inflammatory index (DII) on the nutritional status and health indicators of older people. A total of 256 participants were classified into tertiles based on their DII values and split into intervention (n = 201) and control (n = 55) groups. The intervention group was provided with a senior-friendly diet, and the control group was allowed to eat their usual diet. Before and after the trial, anthropometric measurements, blood analyses, and questionnaires were completed for both groups. The mean age of the participants was 82.49 years, and 66.4% were female. On average, participants had 2.5 medical conditions, with a notable prevalence of cardiovascular disease. Following the intervention, the energy, carbohydrate, protein, and fat intakes significantly increased in the intervention group compared to pre-intervention levels. Tertile 3 exhibited substantial improvements in total nutrition score, NQ-E balance, and DII total score, as well as in triglycerides and blood glucose, attributed to this dietary intervention compared to other groups. In comparison with Tertile 1, nutrient intake and nutritional status in Tertile 3 were closely associated with significant influencing factors of the dietary intervention. For the group with the worst DII (Tertile 3), this dietary intervention greatly improved nutritional status, nutrient intake, and clinical indicators; thus, this senior-friendly diet appears to be beneficial for elderly people with nutritional vulnerabilities. Full article
(This article belongs to the Special Issue Dietary Patterns and Public Health)
24 pages, 2778 KiB  
Article
Discrete Dynamic System Modeling for Simulated Moving Bed Processes
by Chao-Fan Xie, Hong Zhang and Rey-Chue Hwang
Mathematics 2024, 12(10), 1520; https://doi.org/10.3390/math12101520 - 13 May 2024
Abstract
Although the simulated moving bed (SMB) process boasts advantages such as high productivity and low consumption, the cost of obtaining optimized parameters through practical experiments to control the separation process can be enormous due to its complex nonlinear characteristics. Consequently, the successful transformation [...] Read more.
Although the simulated moving bed (SMB) process boasts advantages such as high productivity and low consumption, the cost of obtaining optimized parameters through practical experiments to control the separation process can be enormous due to its complex nonlinear characteristics. Consequently, the successful transformation of the SMB separation process into a mathematical dynamic model for computer simulation would greatly reduce the research costs associated with experimental studies. In this study, the Crank–Nicolson method was employed to discretize and dynamize the SMB process, enabling the simulation of processes under both linear and Langmuir isotherms. The results of the simulation experiments demonstrated the feasibility and high efficiency of this approach, thereby establishing a solid foundation for further advancements in online control strategies. Full article
(This article belongs to the Special Issue Advances in Applied Mathematics, Mechanics and Engineering)
20 pages, 814 KiB  
Article
A DEA Game Cross-Efficiency Model with Loss Aversion for Contractor Selection
by Huixia Huang, Chi Zhou and Hepu Deng
Mathematics 2024, 12(10), 1519; https://doi.org/10.3390/math12101519 - 13 May 2024
Abstract
Evaluating and selecting appropriate contractors is critical to the success of specific construction projects in the building industry. Existing approaches for addressing this problem are unsatisfactory due to the ignorance of the multi-dimensional nature of the evaluation process and inappropriate consideration of existent [...] Read more.
Evaluating and selecting appropriate contractors is critical to the success of specific construction projects in the building industry. Existing approaches for addressing this problem are unsatisfactory due to the ignorance of the multi-dimensional nature of the evaluation process and inappropriate consideration of existent risks. This study presents a DEA game cross-efficiency model with loss aversion for evaluating and selecting specific contractors. The competitiveness of the evaluation process is modeled using game theory with respect to the adoption of the cross-efficiency model. The attitude of the decision maker toward risks is tackled with the use of loss aversion, which is a phenomenon formalized in prospect theory. As a result, the proposed approach can adequately screen available contractors through prequalification and adequately consider the attitude of the decision maker toward risks, leading to effective decisions being made. An example is presented to demonstrate the applicability of the proposed model in evaluating and selecting appropriate contractors for specific construction projects. The results show that the proposed model is effective and efficient in producing a unique solution for contractor selection through appropriate modeling of the multi-dimensional contractor selection process and adequate consideration of the competition between the contractors and the attitude of the decision maker toward risks in practical situations. Full article
23 pages, 1095 KiB  
Article
Structural Shape Optimization Based on Multi-Patch Weakly Singular IGABEM and Particle Swarm Optimization Algorithm in Two-Dimensional Elastostatics
by Zhenyu Chen and Longtao Xie
Mathematics 2024, 12(10), 1518; https://doi.org/10.3390/math12101518 - 13 May 2024
Abstract
In this paper, a multi-patch weakly singular isogeometric boundary element method (WSIGABEM) for two-dimensional elastostatics is proposed. Since the method is based on the weakly singular boundary integral equation, quadrature techniques, dedicated to the weakly singular and regular integrals, are applied in the [...] Read more.
In this paper, a multi-patch weakly singular isogeometric boundary element method (WSIGABEM) for two-dimensional elastostatics is proposed. Since the method is based on the weakly singular boundary integral equation, quadrature techniques, dedicated to the weakly singular and regular integrals, are applied in the method. A new formula for the generation of collocation points is suggested to take full advantage of the multi-patch technique. The generated collocation points are essentially inside the patches without any correction. If the boundary conditions are assumed to be continuous in every patch, no collocation point lies on the discontinuous boundaries, thus simplifying the implementation. The multi-patch WSIGABEM is verified by simple examples with analytical solutions. The features of the present multi-patch WSIGABEM are investigated by comparison with the traditional IGABEM. Furthermore, the combination of the present multi-patch WSIGABEM and the particle swarm optimization algorithm results in a shape optimization method in two-dimensional elastostatics. By changing some specific control points and their weights, the shape optimizations of the fillet corner, the spanner, and the arch bridge are verified to be effective. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
27 pages, 18927 KiB  
Article
Investigation on the Aerodynamic Performance and Flow Mechanism of Transonic Ultra-Highly Loaded Tandem-Rotor Stage
by Shilong Yuan, Yunfeng Wu, Shengfeng Zhao, Xingen Lu and Ge Han
Aerospace 2024, 11(5), 389; https://doi.org/10.3390/aerospace11050389 - 13 May 2024
Abstract
The compressor serves as a crucial component that influences the performance of the gas turbine engine. Researchers have been endeavoring to explore compressor types that possess a high loading level and high-efficiency characteristics concurrently. In this study, tandem blade technology was applied to [...] Read more.
The compressor serves as a crucial component that influences the performance of the gas turbine engine. Researchers have been endeavoring to explore compressor types that possess a high loading level and high-efficiency characteristics concurrently. In this study, tandem blade technology was applied to a transonic ultra-highly loaded axial compressor, and the Baseline single-blade rotor was replaced by a tandem rotor to take into account the loading level and compressor performance. Detailed investigations were carried out to identify the effects on the aerodynamic performance of the ultra-highly loaded stage and the fundamental flow mechanism within the tandem-rotor stage. This paper presents original design maps for the tandem-rotor stage, and the selection criteria for tandem parameters in tandem-rotor stage are refined. The results indicate that the peak efficiency improved by 0.83%, the stall margin increased by 2.16%, and the choke flow rate rose by 0.30% for the optimal tandem-rotor configuration. The meridional division position of the rotor primarily affects the ratio of loading of the front and rear blades, while the circumferential relative position of the tandem rotor mainly influences the channel types formed by the front and rear blades. Larger values for the meridional division position parameter and smaller values for circumferential relative position parameter should be selected for the tandem rotor design to optimize both the isentropic efficiency and total pressure ratio. This investigation offers the theoretical foundation for the design of a transonic ultra-highly loaded tandem-rotor compressor. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 511 KiB  
Article
Symmetric Quantum Inequalities on Finite Rectangular Plane
by Saad Ihsan Butt, Muhammad Nasim Aftab and Youngsoo Seol
Mathematics 2024, 12(10), 1517; https://doi.org/10.3390/math12101517 - 13 May 2024
Abstract
Finding the range of coordinated convex functions is yet another application for the symmetric Hermite–Hadamard inequality. For any two-dimensional interval [a0,a1]×[c0,c1]2, we introduce the notion [...] Read more.
Finding the range of coordinated convex functions is yet another application for the symmetric Hermite–Hadamard inequality. For any two-dimensional interval [a0,a1]×[c0,c1]2, we introduce the notion of partial qθ-, qϕ-, and qθqϕ-symmetric derivatives and a qθqϕ-symmetric integral. Moreover, we will construct the qθqϕ-symmetric Hölder’s inequality, the symmetric quantum Hermite–Hadamard inequality for the function of two variables in a rectangular plane, and address some of its related applications. Full article
(This article belongs to the Special Issue Recent Trends in Convex Analysis and Mathematical Inequalities)
12 pages, 2026 KiB  
Article
Experimental Investigation of Impulsive Coupling Characteristics of Asteroid Simulants Based on Laser Ablation Propulsion
by Yingjie Ma, Hao Chang, Weijing Zhou and Zhilong Jian
Aerospace 2024, 11(5), 388; https://doi.org/10.3390/aerospace11050388 - 13 May 2024
Abstract
The ablation impulse of typical asteroid simulants irradiated by a nanosecond pulsed laser has been investigated in a vacuum environment. A torsional pendulum measurement system was constructed to calculate the impulse of laser ablation. A 10 ns pulsed laser was used, with a [...] Read more.
The ablation impulse of typical asteroid simulants irradiated by a nanosecond pulsed laser has been investigated in a vacuum environment. A torsional pendulum measurement system was constructed to calculate the impulse of laser ablation. A 10 ns pulsed laser was used, with a 1064 nm wavelength, a 900 mJ maximum pulse energy, and a millimeter-scale ablation spot diameter. Impulsive coupling characteristics of six typical targets that imitate the substance of asteroids with various laser fluences were analyzed. Furthermore, the impulse coupling coefficient curves of different materials were fitted. The results reveal that the minimum laser fluence corresponding to a measurable ablation impulse is approximately 2.5 J/cm2, and the optimum laser fluence corresponding to the maximum impulse coupling coefficient is approximately 14.0 J/cm2. The trends of the laser ablation impulse coupling curves are roughly consistent for the six materials. Impulse coupling characteristics of the six typical materials can be represented by the same polynomial within a 95% confidence interval, so a unified rule has been given. In actual deflection tasks of asteroids, the unified impulse coupling characteristic can be used to implement laser deflection techniques, especially when the material of the asteroid cannot be accurately judged in time. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

20 pages, 8184 KiB  
Review
A Survey of Flow Field and Combustion Characteristics under Subatmospheric Pressure
by Guoyu Ding, Zhaohui Yao, Zhixiang Zhu and Yakun Huang
Aerospace 2024, 11(5), 387; https://doi.org/10.3390/aerospace11050387 - 13 May 2024
Abstract
This paper presents a summary of and introduction to research on high-altitude and subatmospheric combustion concerning turbine and scramjet engines. The investigation includes theoretical analysis, experimental studies, and numerical simulations. The analysis encompasses the flow field structure, fuel atomization, and combustion performance. Subsequently, [...] Read more.
This paper presents a summary of and introduction to research on high-altitude and subatmospheric combustion concerning turbine and scramjet engines. The investigation includes theoretical analysis, experimental studies, and numerical simulations. The analysis encompasses the flow field structure, fuel atomization, and combustion performance. Subsequently, recent research on the combustion performance of liquid fuels, solid fuels, and gaseous fuels under high-altitude and low-pressure plateau environments is reviewed. This includes an evaluation of flame height, flame temperature, combustion rate, fire spread rate, and heat radiation flux. Additionally, combustion performance prediction models for high-altitude environments based on experimental and theoretical analysis have been introduced. Lastly, issues in subatmospheric combustion in the aerospace and plateau fire fields are presented based on the current research. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 1271 KiB  
Article
A DRL-Based Satellite Service Allocation Method in LEO Satellite Networks
by Yafei Zhao, Jiaen Zhou, Zhenrui Chen and Xinyang Wang
Aerospace 2024, 11(5), 386; https://doi.org/10.3390/aerospace11050386 - 13 May 2024
Abstract
Satellite computing represents a recent computational paradigm in the development of low Earth orbit (LEO) satellites. It aims to augment the capabilities of LEO satellites beyond their current transparent relay functions by enabling real-time processing, thereby providing low-latency computational services to end users. [...] Read more.
Satellite computing represents a recent computational paradigm in the development of low Earth orbit (LEO) satellites. It aims to augment the capabilities of LEO satellites beyond their current transparent relay functions by enabling real-time processing, thereby providing low-latency computational services to end users. In LEO constellations, a significant deployment of computationally capable satellites is orchestrated to offer enhanced computational resources. Challenges arise in the optimal allocation of terminal services to the most suitable satellite due to overlapping coverage among neighboring satellites, compounded by constraints on satellite energy and computational resources. The satellite service allocation (SSA) problem is recognized as NP-hard, yet assessing allocation methods through results allows for the application of deep reinforcement learning (DRL) to obtain improved solutions, partially addressing the SSA challenge. In this paper, we introduce a satellite computing capability model to quantify satellite computational resources. A DRL model is proposed to address service demands, computational resources, and resolve service allocation conflicts, strategically placing each service on appropriate servers. Through simulation experiments, numerical results demonstrate the superiority of our proposed method over baseline approaches in service allocation and satellite resource utilization, showcasing advancements in this field. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

26 pages, 1397 KiB  
Article
Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies
by Juan C. Nowack, Luz K. Atencia-Payares, Ana M. Tarquis and M. Gomez-del-Campo
Plants 2024, 13(10), 1350; https://doi.org/10.3390/plants13101350 - 13 May 2024
Abstract
Pruning determines the plant water status due to its effects on the leaf area and thus the irrigation management. The primary aim of this study was to assess the use of high-resolution multispectral imagery to estimate the plant water status through different bands [...] Read more.
Pruning determines the plant water status due to its effects on the leaf area and thus the irrigation management. The primary aim of this study was to assess the use of high-resolution multispectral imagery to estimate the plant water status through different bands and vegetation indexes (VIs) and to evaluate which is most suitable under different pruning management strategies. This work was carried out in 2021 and 2022 in a commercial Merlot vineyard in an arid area of central Spain. Two different pruning strategies were carried out: mechanical pruning and no pruning. The stem water potential was measured with a pressure chamber (Ψstem) at two different solar times (9 h and 12 h). Multispectral information from unmanned aerial vehicles (UAVs) was obtained at the same time as the field Ψstem measurements and different vegetation indexes (VIs) were calculated. Pruning management significantly determined the Ψstem, bunch and berry weight, number of bunches, and plant yield. Linear regression between the Ψstem and NDVI presented the tightest correlation at 12 h solar time (R2 = 0.58). The red and red-edge bands were included in a generalised multivariable linear regression and achieved higher accuracy (R2 = 0.74) in predicting the Ψstem. Using high-resolution multispectral imagery has proven useful in predicting the vine water status independently of the pruning management strategy. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
13 pages, 980 KiB  
Article
Antioxidant, Enzyme Inhibitory, and Protective Effect of Amelanchier lamarckii Extract
by Adela Maria Dăescu, Mădălina Nistor, Alexandru Nicolescu, Roxana Pop, Andrea Bunea, Dumitrita Rugina and Adela Pintea
Plants 2024, 13(10), 1347; https://doi.org/10.3390/plants13101347 - 13 May 2024
Abstract
The present study aimed to investigate the chemical content of Romanian juneberries (Amelanchier lamarckii), their effect on antioxidant and enzyme inhibition activities, and their bioaccessibility after simulated in-vitro digestion. In Amelanchier lamarckii extract (AME), 16 polyphenolic compounds were identified by LC-ESI+-MS [...] Read more.
The present study aimed to investigate the chemical content of Romanian juneberries (Amelanchier lamarckii), their effect on antioxidant and enzyme inhibition activities, and their bioaccessibility after simulated in-vitro digestion. In Amelanchier lamarckii extract (AME), 16 polyphenolic compounds were identified by LC-ESI+-MS analysis. The most representative compounds found in the extract were cyanidin-galactoside, 3,4-dihydroxy-5-methoxybenzoic acid, feruloylquinic acid, and kaempferol, all belonging to the anthocyanins, phenolic acids, and flavonols subclasses. The polyphenols of AME exert quenching abilities of harmful reactive oxygen species, as the CUPRAC antioxidant assay value was 323.99 µmol Trolox/g fruit (FW), whereas the FRAP antioxidant value was 4.10 μmol Fe2+/g fruit (FW). Enzyme inhibition assays targeting tyrosinase (IC50 = 8.843 mg/mL), α-glucosidase (IC50 = 14.03 mg/mL), and acetylcholinesterase (IC50 = 49.55 mg/mL) were used for a screening of AME’s inhibitory potential against these key enzymes as a common approach for the discovery of potential antidiabetic, skin pigmentation, and neurodegenerative effects. The screening for the potential antidiabetic effects due to the α-glucosidase inhibition was performed in glucose-induced disease conditions in a human retinal pigmented epithelial cell experimental model, proving that AME could have protective potential. In conclusion, AME is a valuable source of phenolic compounds with promising antioxidant potential and metabolic disease-protective effects, warranting further investigation for its use in the nutraceutical and health industries. Full article
(This article belongs to the Special Issue Phytochemical Analysis and Metabolic Profiling in Plants)
Show Figures

Figure 1

13 pages, 898 KiB  
Article
Exploring In Vitro Immunomodulatory Properties of Moss Atrichum undulatum Extracts
by Tanja Lunić, Marija Rakić, Aneta Sabovljević, Marko Sabovljević, Tamara Filipović, Bojan Božić and Biljana Božić Nedeljković
Plants 2024, 13(10), 1349; https://doi.org/10.3390/plants13101349 - 13 May 2024
Abstract
Bryophytes are rich sources of diverse secondary metabolites with a wide range of biological activities, including anti-inflammatory, antitumor and antimicrobial effects. The aim of this study was to investigate the chemical composition of extracts from two different genotypes (Serbian and Hungarian) of the [...] Read more.
Bryophytes are rich sources of diverse secondary metabolites with a wide range of biological activities, including anti-inflammatory, antitumor and antimicrobial effects. The aim of this study was to investigate the chemical composition of extracts from two different genotypes (Serbian and Hungarian) of the axenic moss Atrichum undulatum and evaluate the immunomodulatory potential of the prepared extracts in vitro. Both genotypes of moss samples were cultivated in vitro and subsequently extracted in a Soxhlet apparatus with methanol or ethyl acetate. The highest concentration of total phenolic compounds was found in the methanolic extract of the Serbian genotype (54.25 mg GAE/g extract), while the ethyl acetate extract of the Hungarian genotype showed the highest concentration of phenolic acids (163.20 mg CAE/extract), flavonoids (35.57 mg QE/extract), and flavonols (2.25 mg QE/extract). The extracts showed anti-neuroinflammatory properties by reducing the production of reactive oxygen species, nitric oxide, and tumor necrosis factor alpha by lipopolysaccharide-stimulated microglial cells. Moreover, they mitigated the cytotoxic effects of the pro-inflammatory mediators produced by activated microglia on neurons. The data obtained suggest that extracts from A. undulatum moss have promising anti-neuroinflammatory and neuroprotective properties, making them interesting candidates for further research to combat neuroinflammation. Full article
24 pages, 3280 KiB  
Article
The Impact and Spatial Spillover Effects of Tourism Development on Urban Welfare: Empirical Evidence from the Yangtze River Delta in China
by Gong Chen, Meijuan Hu, Zaijun Li and Lexin Kang
Systems 2024, 12(5), 174; https://doi.org/10.3390/systems12050174 - 13 May 2024
Abstract
The ultimate goal of China’s tourism industry is to create a flourishing sector that brings happiness. It is of immense theoretical and practical importance to investigate the impact of tourism development (TD) on urban welfare (UW) and uncover its spatial spillover characteristics from [...] Read more.
The ultimate goal of China’s tourism industry is to create a flourishing sector that brings happiness. It is of immense theoretical and practical importance to investigate the impact of tourism development (TD) on urban welfare (UW) and uncover its spatial spillover characteristics from a macro perspective. Utilizing panel data from 41 cities in the Yangtze River Delta region from 2000 to 2021, this study applies the spatial panel Durbin model to explore the direct and spillover effects of TD on UW. The results show that TD significantly boosts UW in both local and neighboring areas, with the spillover effects taking a dominant position in the total effects. Examining the sub-dimensions of UW, the local welfare effects of TD primarily stem from economic welfare, whereas the spillover effects are characterized by the “three-wheel drive” of economic, social, and environmental welfare. This study can provide practical insights into the coordinated and sustainable development of the regional tourism industry. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

22 pages, 2855 KiB  
Article
Test Coverage in Microservice Systems: An Automated Approach to E2E and API Test Coverage Metrics
by Amr S. Abdelfattah, Tomas Cerny, Jorge Yero, Eunjee Song and Davide Taibi
Electronics 2024, 13(10), 1913; https://doi.org/10.3390/electronics13101913 - 13 May 2024
Abstract
Test coverage is a critical aspect of the software development process, aiming for overall confidence in the product. When considering cloud-native systems, testing becomes complex, as it becomes necessary to deal with multiple distributed microservices that are developed by different teams and may [...] Read more.
Test coverage is a critical aspect of the software development process, aiming for overall confidence in the product. When considering cloud-native systems, testing becomes complex, as it becomes necessary to deal with multiple distributed microservices that are developed by different teams and may change quite rapidly. In such a dynamic environment, it is important to track test coverage. This is especially relevant for end-to-end (E2E) and API testing, as these might be developed by teams distinct from microservice developers. Moreover, indirection exists in E2E, where the testers may see the user interface but not know how comprehensive the test suits are. To ensure confidence in health checks in the system, mechanisms and instruments are needed to indicate the test coverage level. Unfortunately, there is a lack of such mechanisms for cloud-native systems. This manuscript introduces test coverage metrics for evaluating the extent of E2E and API test suite coverage for microservice endpoints. It elaborates on automating the calculation of these metrics with access to microservice codebases and system testing traces, delves into the process, and offers feedback with a visual perspective, emphasizing test coverage across microservices. To demonstrate the viability of the proposed approach, we implement a proof-of-concept tool and perform a case study on a well-established system benchmark assessing existing E2E and API test suites with regard to test coverage using the proposed endpoint metrics. The results of endpoint coverage reflect the diverse perspectives of both testing approaches. API testing achieved 91.98% coverage in the benchmark, whereas E2E testing achieved 45.42%. Combining both coverage results yielded a slight increase to approximately 92.36%, attributed to a few endpoints tested exclusively through one testing approach, not covered by the other. Full article
(This article belongs to the Special Issue Software Analysis, Quality, and Security)
Show Figures

Figure 1

26 pages, 7088 KiB  
Article
DPCalib: Dual-Perspective View Network for LiDAR-Camera Joint Calibration
by Jinghao Cao, Xiong Yang, Sheng Liu, Tiejian Tang, Yang Li and Sidan Du
Electronics 2024, 13(10), 1914; https://doi.org/10.3390/electronics13101914 - 13 May 2024
Abstract
The precise calibration of a LiDAR-camera system is a crucial prerequisite for multimodal 3D information fusion in perception systems. The accuracy and robustness of existing traditional offline calibration methods are inferior to methods based on deep learning. Meanwhile, most parameter regression-based online calibration [...] Read more.
The precise calibration of a LiDAR-camera system is a crucial prerequisite for multimodal 3D information fusion in perception systems. The accuracy and robustness of existing traditional offline calibration methods are inferior to methods based on deep learning. Meanwhile, most parameter regression-based online calibration methods directly project LiDAR data onto a specific plane, leading to information loss and perceptual limitations. A novel network, DPCalib, a dual perspective view network that mitigates the aforementioned issue, is proposed in this paper. This paper proposes a novel neural network architecture to achieve the fusion and reuse of input information. We design a feature encoder that effectively extracts features from two orthogonal views using attention mechanisms. Furthermore, we propose an effective decoder that aggregates features from two views, thereby obtaining accurate extrinsic parameter estimation outputs. The experimental results demonstrate that our approach outperforms existing SOTA methods, and the ablation experiments validate the rationality and effectiveness of our work. Full article
15 pages, 2523 KiB  
Article
Spectroscopic Investigation of Tomato Seed Germination Stimulated by Trichoderma spp.
by Igor Vukelić, Danka Radić, Ilinka Pećinar, Steva Lević, Daniela Djikanović, Ksenija Radotić and Dejana Panković
Biology 2024, 13(5), 340; https://doi.org/10.3390/biology13050340 - 13 May 2024
Abstract
Seed germination is a complex process that can be negatively affected by numerous stresses. Trichoderma spp. are known as effective biocontrol agents as well as plant growth and germination stimulators. However, understanding of the early interactions between seeds and Trichoderma spp. remains limited. [...] Read more.
Seed germination is a complex process that can be negatively affected by numerous stresses. Trichoderma spp. are known as effective biocontrol agents as well as plant growth and germination stimulators. However, understanding of the early interactions between seeds and Trichoderma spp. remains limited. In the present paper, Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy were used to reveal the nature of tomato seed germination as stimulated by Trichoderma. A rapid response of tomato seeds to Trichoderma spp. was observed within 48 h on Murashige and Skoog medium (MS) substrate, preceding any physical contact. Raman analysis indicated that both Trichoderma species stimulated phenolic compound synthesis by triggering plant-specific responses in seed radicles. The impact of T. harzianum and T. brevicompactum on two tomato cultivars resulted in alterations to the middle lamella pectin, cellulose, and xyloglucan in the primary cell wall. The Raman spectra indicated increased xylan content in NA with T9 treatment as well as increased hemicelluloses in GZ with T4 treatment. Moreover, T4 treatment resulted in elevated conjugated aldehydes in lignin in GZ, whereas the trend was reversed in NA. Additionally, FTIR analysis revealed significant changes in total protein levels in Trichoderma spp.-treated tomato seed radicles, with simultaneous decreases in pectin and/or xyloglucan. Our results indicate that two complementary spectroscopic methods, FTIR and Raman spectroscopy, can give valuable information on rapid changes in the plant cell wall structure of tomato radicles during germination stimulated by Trichoderma spp. Full article
(This article belongs to the Special Issue Beneficial Microorganisms for Plants)
Show Figures

Figure 1

17 pages, 3759 KiB  
Communication
Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135
by Ekaterina Frantsuzova, Alexander Bogun, Olga Kopylova, Anna Vetrova, Inna Solyanikova, Rostislav Streletskii and Yanina Delegan
Biology 2024, 13(5), 339; https://doi.org/10.3390/biology13050339 - 13 May 2024
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. [...] Read more.
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the “panIGRome” of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds. Full article
Show Figures

Figure 1

16 pages, 5812 KiB  
Article
Integrative Multi-Omics Analysis for Etiology Classification and Biomarker Discovery in Stroke: Advancing towards Precision Medicine
by Alberto Labarga, Judith Martínez-Gonzalez and Miguel Barajas
Biology 2024, 13(5), 338; https://doi.org/10.3390/biology13050338 - 13 May 2024
Abstract
Recent advancements in high-throughput omics technologies have opened new avenues for investigating stroke at the molecular level and elucidating the intricate interactions among various molecular components. We present a novel approach for multi-omics data integration on knowledge graphs and have applied it to [...] Read more.
Recent advancements in high-throughput omics technologies have opened new avenues for investigating stroke at the molecular level and elucidating the intricate interactions among various molecular components. We present a novel approach for multi-omics data integration on knowledge graphs and have applied it to a stroke etiology classification task of 30 stroke patients through the integrative analysis of DNA methylation and mRNA, miRNA, and circRNA. This approach has demonstrated promising performance as compared to other existing single technology approaches. Full article
(This article belongs to the Special Issue Multi-omics Data Integration in Complex Diseases)
Show Figures

Graphical abstract

12 pages, 463 KiB  
Article
Volatile Organic Compounds in Cellular Headspace after Hyperbaric Oxygen Exposure: An In Vitro Pilot Study
by Feiko J. M. de Jong, Thijs A. Lilien, Dominic W. Fenn, Thijs T. Wingelaar, Pieter-Jan A. M. van Ooij, Anke H. Maitland-van der Zee, Markus W. Hollmann, Rob A. van Hulst and Paul Brinkman
Metabolites 2024, 14(5), 281; https://doi.org/10.3390/metabo14050281 - 13 May 2024
Abstract
Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility [...] Read more.
Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility of this in vitro model for POT biomarker research was evaluated. The hyperbaric exposure protocol, similar to the U.S. Navy Treatment Table 6, was conducted on human alveolar basal epithelial cells, and the headspace VOCs were analyzed using gas chromatography–mass spectrometry. Three compounds (nonane [p = 0.005], octanal [p = 0.009], and decane [p = 0.018]), of which nonane and decane were also identified in a previous in vivo study with similar hyperbaric exposure, varied significantly between the intervention group which was exposed to 100% oxygen and the control group which was exposed to compressed air. VOC signal intensities were lower in the intervention group, but cellular stress markers (IL8 and LDH) confirmed increased stress and injury in the intervention group. Despite the observed reductions in compound expression, the model holds promise for POT biomarker exploration, emphasizing the need for further investigation into the complex relationship between VOCs and oxidative stress. Full article
(This article belongs to the Section Environmental Metabolomics)
16 pages, 1199 KiB  
Article
Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring
by Dahlin Zevallos-Aliaga, Stijn De Graeve, Pamela Obando-Chávez, Nicolás A. Vaccari, Yue Gao, Tom Peeters and Daniel G. Guerra
Biosensors 2024, 14(5), 246; https://doi.org/10.3390/bios14050246 - 13 May 2024
Abstract
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we [...] Read more.
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture’s response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 μM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury–gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+—a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
15 pages, 1016 KiB  
Article
A Fast and Sensitive One-Tube SARS-CoV-2 Detection Platform Based on RTX-PCR and Pyrococcus furiosus Argonaute
by Rui Han, Fei Wang, Wanping Chen and Lixin Ma
Biosensors 2024, 14(5), 245; https://doi.org/10.3390/bios14050245 - 13 May 2024
Abstract
Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria [...] Read more.
Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria for detecting RNA viruses, which requires reverse transcriptase to reverse transcribe viral RNA into cDNA, and fluorescence quantitative PCR detection was subsequently performed. The frequently used reverse transcriptase is thermolabile; the detection process is composed of two steps: the reverse transcription reaction at a relatively low temperature, and the qPCR performed at a relatively high temperature, moreover, the RNA to be detected needs to pretreated if they had advanced structure. Here, we develop a fast and sensitive one-tube SARS-CoV-2 detection platform based on Ultra-fast RTX-PCR and Pyrococcus furiosus Argonaute-mediated Nucleic acid Detection (PAND) technology (URPAND). URPAND was achieved ultra-fast RTX-PCR process based on a thermostable RTX (exo-) with both reverse transcriptase and DNA polymerase activity. The URPAND can be completed RT-PCR and PAND to detect nucleic acid in one tube within 30 min. This method can specifically detect SARS-CoV-2 with a low detection limit of 100 copies/mL. The diagnostic results of clinical samples with one-tube URPAND displayed 100% consistence with RT-qPCR test. Moreover, URPAND was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The URPAND platform is rapid, accurate, tube closed, one-tube, easy-to-operate and free of large instruments, which provides a new strategy to the detection of SARS-CoV-2 and other RNA viruses. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
11 pages, 952 KiB  
Communication
A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide
by Mei Ding, Xiao Xiao, Chen Zhou, Mingxin Luo and Jing Sun
Biosensors 2024, 14(5), 244; https://doi.org/10.3390/bios14050244 - 13 May 2024
Abstract
A novel indolium-based fluorescent probe for the detection of CN was developed based on the conjugation of 1, 2, 3, 3-Tetramethyl-3H-indolium iodide and 2-acetyl benzothiophene. The introduction of external CN caused a nucleophilic attack to the quaternary amine salt structure in [...] Read more.
A novel indolium-based fluorescent probe for the detection of CN was developed based on the conjugation of 1, 2, 3, 3-Tetramethyl-3H-indolium iodide and 2-acetyl benzothiophene. The introduction of external CN caused a nucleophilic attack to the quaternary amine salt structure in the probe and resulted in the departure of iodide ions and the steric rotation of the index salt group, which caused fluorescence quenching. The titration experiments showed that the probe had rapid qualitative and quantitative analysis capabilities for CN. Moreover, the relevant biocompatibility experiments also demonstrated the potential application value of the probe. Full article
(This article belongs to the Special Issue Nano-Biosensors for Detection and Monitoring (Volume II))

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop