The 2023 MDPI Annual Report has
been released!
 
10 pages, 4425 KiB  
Article
Mitigating the Blurring Effect of CryoEM Averaging on a Flexible and Highly Symmetric Protein Complex through Sub-Particle Reconstruction
by Diana S. Suder and Shane Gonen
Int. J. Mol. Sci. 2024, 25(11), 5665; https://doi.org/10.3390/ijms25115665 (registering DOI) - 23 May 2024
Abstract
Many macromolecules are inherently flexible as a feature of their structure and function. During single-particle CryoEM processing, flexible protein regions can be detrimental to high-resolution reconstruction as signals from thousands of particles are averaged together. This “blurring” effect can be difficult to overcome [...] Read more.
Many macromolecules are inherently flexible as a feature of their structure and function. During single-particle CryoEM processing, flexible protein regions can be detrimental to high-resolution reconstruction as signals from thousands of particles are averaged together. This “blurring” effect can be difficult to overcome and is possibly more pronounced when averaging highly symmetric complexes. Approaches to mitigating flexibility during CryoEM processing are becoming increasingly critical as the technique advances and is applied to more dynamic proteins and complexes. Here, we detail the use of sub-particle averaging and signal subtraction techniques to precisely target and resolve flexible DARPin protein attachments on a designed tetrahedrally symmetric protein scaffold called DARP14. Particles are first aligned as full complexes, and then the symmetry is reduced by alignment and focused refinement of the constituent subunits. The final reconstructions we obtained were vastly improved over the fully symmetric reconstructions, with observable secondary structure and side-chain placement. Additionally, we were also able to reconstruct the core region of the scaffold to 2.7 Å. The data processing protocol outlined here is applicable to other dynamic and symmetric protein complexes, and our improved maps could allow for new structure-guided variant designs of DARP14. Full article
Show Figures

Figure 1

13 pages, 6942 KiB  
Article
Monophyly or Homoplasy? The Relationships of a Rare New Species of Cambeva (Siluriformes: Trichomycteridae) from the Brazilian Atlantic Forest with a Bicolored Caudal Pattern
by Wilson J. E. M. Costa, Caio R. M. Feltrin, José Leonardo O. Mattos and Axel M. Katz
Taxonomy 2024, 4(2), 341-353; https://doi.org/10.3390/taxonomy4020017 (registering DOI) - 23 May 2024
Abstract
The Brazilian Atlantic Forest, one the five main biodiversity hotspots in the world, still houses many organisms that are rare and unknown to science, mostly concentrated in mountain ranges. Herein, we describe a rare new species of Cambeva from the Rio Tietê drainage [...] Read more.
The Brazilian Atlantic Forest, one the five main biodiversity hotspots in the world, still houses many organisms that are rare and unknown to science, mostly concentrated in mountain ranges. Herein, we describe a rare new species of Cambeva from the Rio Tietê drainage at the Serra da Mantiqueira, exhibiting a caudal fin color pattern comprising a light-yellowish–white bar posteriorly edged by a black pigmented area. A similar color pattern was described for C. castroi, C. diabola, and C. melanoptera, also endemic to the Rio Paraná basin, and considered evidence of close relationships among these three species. However, other morphological characteristics highly suggest that the new species is not closely related to C. castroi, C. diabola, and C. melanoptera). Herein, we perform a molecular phylogenetic analysis using two mitochondrial genes and one nuclear gene, including all species with that bicolored caudal pattern. The analysis strongly supports the new species as a member of the alpha-clade, and therefore as distantly related to those three species belonging to the beta-clade, indicating that this color pattern has homoplastically arisen in Cambeva. The data reported here reinforce the urgent need for field studies to better understand the different evolutionary patterns found in the genus, since an intense process of environmental degradation is in course. Full article
Show Figures

Figure 1

13 pages, 242 KiB  
Concept Paper
“You’ve Got to Put in the Time”: Neoliberal-Ableism and Disabled Streamers on Twitch
by Juan Carlos Escobar-Lamanna
Societies 2024, 14(6), 75; https://doi.org/10.3390/soc14060075 (registering DOI) - 23 May 2024
Abstract
This concept paper builds upon nascent research analyzing disability and the practice of videogame livestreaming on Twitch.tv. While a growing amount of scholarship analyzes the structure and organization of Twitch as a platform more broadly, with some attending to the platform’s marginalization of [...] Read more.
This concept paper builds upon nascent research analyzing disability and the practice of videogame livestreaming on Twitch.tv. While a growing amount of scholarship analyzes the structure and organization of Twitch as a platform more broadly, with some attending to the platform’s marginalization of women and BIPOC streamers, few studies investigate the challenges that Twitch’s features and structures present to disabled streamers. This paper addresses this gap in the literature, considering the ways in which Twitch offers disabled streamers unique economic and community-building opportunities through its monetization and identity tag features while simultaneously presenting barriers to disabled streamers through these very same features. Utilizing a critical disability studies perspective and drawing upon forum posts made by disabled streamers and interviews with disabled streamers from online gaming news websites, I argue that Twitch reifies forms of neoliberal-ableism through its prioritizing of individual labour, precarious forms of monetization that necessitate cultures of overwork and ‘grinding’, and targeted harassment, known as hate raids, against disabled and other marginalized streamers to ultimately create a kind of integrative access where disability is tolerated but not valued. Full article
(This article belongs to the Special Issue Exploring Disability in the Digital Realm)
9 pages, 6151 KiB  
Article
Innovative Integration of Triboelectric Nanogenerators into Signature Stamps for Energy Harvesting, Self-Powered Electronic Devices, and Smart Applications
by Lakshakoti Bochu, Supraja Potu, Madathil Navaneeth, Uday Kumar Khanapuram, Rakesh Kumar Rajaboina and Prakash Kodali
Eng 2024, 5(2), 958-966; https://doi.org/10.3390/eng5020052 (registering DOI) - 23 May 2024
Abstract
In this manuscript, we present a novel approach for integrating Triboelectric Nanogenerators (TENGs) into signature stamps, termed Stamp TENG (S-TENG). We have modified a commercially available stamp holder to integrate triboelectric layers for multiple applications like effective energy harvesting, sensing, and embedded electronics [...] Read more.
In this manuscript, we present a novel approach for integrating Triboelectric Nanogenerators (TENGs) into signature stamps, termed Stamp TENG (S-TENG). We have modified a commercially available stamp holder to integrate triboelectric layers for multiple applications like effective energy harvesting, sensing, and embedded electronics for data prediction. S-TENG has been further explored in remote monitoring systems for elderly individuals and for gathering real-time statistics regarding persons or events at specific locations. The S-TENG is fabricated using FEP and Al as functional layers. It demonstrates an output voltage of 310 V, a current of 165 μA, and a power density of 14.8 W/m2. The simplicity of the S-TENG’s design is noteworthy. Its ability to generate energy through simple, repetitive stamping actions, which anyone can perform without specialized training, stands out as a key feature. The device is also designed for ease of use, being handheld and user-friendly. Its flexible and adaptable structure ensures that individuals with varying physical capabilities can comfortably operate it. An impressive capability of the TENG is its ability to illuminate 320 LEDs with each stamp press momentarily. Furthermore, using energy management circuits, the S-TENG can power small electronic gadgets such as digital watches and thermometers for a few seconds. In addition, when integrated with electronics, the S-TENG shows great potential in data prediction for various practical applications. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

17 pages, 1096 KiB  
Article
Transcriptome Analysis of Stigmas of Vicia faba L. Flowers
by Inés Casimiro-Soriguer, David Aguilar-Benitez, Natalia Gutierrez and Ana M. Torres
Plants 2024, 13(11), 1443; https://doi.org/10.3390/plants13111443 (registering DOI) - 23 May 2024
Abstract
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of [...] Read more.
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization. Full article
(This article belongs to the Special Issue Advances in Legume Crops Research)
Show Figures

Figure 1

16 pages, 8402 KiB  
Article
Does Salmonella diarizonae 58:r:z53 Isolated from a Mallard Duck Pose a Threat to Human Health?
by Karolina Wódz, Lidia Piechowicz, Ewa Tokarska-Pietrzak, Jan Gawor, Robert Gromadka, Zbigniew Bełkot, Zuzanna Strzałkowska, Jan Wiśniewski, Tomasz Nowak, Janusz Bogdan, Krzysztof Anusz and Joanna Pławińska-Czarnak
Int. J. Mol. Sci. 2024, 25(11), 5664; https://doi.org/10.3390/ijms25115664 (registering DOI) - 23 May 2024
Abstract
Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present [...] Read more.
Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health. Full article
(This article belongs to the Special Issue Salmonella Pathophysiology and Host-Bacteria Relationship)
Show Figures

Figure 1

10 pages, 3947 KiB  
Article
Influence of Normal-to-High Anodizing Voltage on AAO Surface Hardness from 1050 Aluminum Alloy in Oxalic Acid
by Chin-An Ku, Chen-Chieh Wu, Chia-Wei Hung and Chen-Kuei Chung
Micromachines 2024, 15(6), 683; https://doi.org/10.3390/mi15060683 (registering DOI) - 23 May 2024
Abstract
Anodic aluminum oxide (AAO) has been widely applied for the surface protection of electronic component packaging through a pore-sealing process, with the enhanced hardness value reaching around 400 Vickers hardness (HV). However, the traditional AAO fabrication at 0~10 °C for surface protection takes [...] Read more.
Anodic aluminum oxide (AAO) has been widely applied for the surface protection of electronic component packaging through a pore-sealing process, with the enhanced hardness value reaching around 400 Vickers hardness (HV). However, the traditional AAO fabrication at 0~10 °C for surface protection takes at least 3–6 h for the reaction or other complicated methods used for the pore-sealing process, including boiling-water sealing, oil sealing, or salt-compound sealing. With the increasing development of nanostructured AAO, there is a growing interest in improving hardness without pore sealing, in order to leverage the characteristics of porous AAO and surface protection properties simultaneously. Here, we investigate the effect of voltage on hardness under the same AAO thickness conditions in oxalic acid at room temperature from a normal level of 40 V to a high level of 100 V and found a positive correlation between surface hardness and voltage. The surface hardness values of AAO formed at 100 V reach about 423 HV without pore sealing in 30 min. By employing a hybrid pulse anodization (HPA) method, we are able to prevent the high-voltage burning effect and complete the anodization process at room temperature. The mechanism behind this can be explained by the porosity and photoluminescence (PL) intensity of AAO. For the same thickness of AAO from 40~100 V, increasing the anodizing voltage decreases both the porosity and PL intensity, indicating a reduction in pores, as well as anion and oxygen vacancy defects, due to rapid AAO growth. This reduction in defects in the AAO film leads to an increase in hardness, allowing us to significantly enhance AAO hardness without a pore-sealing process. This offers an effective hardness enhancement in AAO under economically feasible conditions for the application of hard coatings and protective films. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 3rd Edition)
Show Figures

Figure 1

12 pages, 4446 KiB  
Article
Enhancing Photocatalytic Activities for Sustainable Hydrogen Evolution on Structurally Matched CuInS2/ZnIn2S4 Heterojunctions
by Fuying Li, Boiyee Liao, Jinni Shen, Junni Ke, Rongxin Zhang, Yueqi Wang and Yu Niu
Molecules 2024, 29(11), 2447; https://doi.org/10.3390/molecules29112447 (registering DOI) - 23 May 2024
Abstract
Effective charge separation and migration pose a critical challenge in the field of solar-driven hydrogen production. In this work, a Z-scheme structured CuInS2/ZnIn2S4 heterojunction was successfully fabricated through a two-step hydrothermal synthesis method to significantly enhance the efficiency [...] Read more.
Effective charge separation and migration pose a critical challenge in the field of solar-driven hydrogen production. In this work, a Z-scheme structured CuInS2/ZnIn2S4 heterojunction was successfully fabricated through a two-step hydrothermal synthesis method to significantly enhance the efficiency of solar-to-hydrogen energy conversion. Structural characterization revealed that the lattice-matched CuInS2/ZnIn2S4 heterojunction exhibits an enlarged interfacial contact area, which facilitates the transfer and separation of photogenerated charges. Microscopic analysis indicated that the CuInS2/ZnIn2S4 composite material has a tightly interwoven interface and a morphology resembling small sugar cubes. Photoelectrochemical spectroscopy analysis demonstrated that the heterojunction structure effectively enhances visible light absorption and charge separation efficiency, leading to an improvement in photocatalytic activity. Hydrogen production experimental data indicated that the CuInS2/ZnIn2S4 heterojunction photocatalyst prepared with a CuInS2 content of 20 wt% exhibits the highest hydrogen evolution rate, reaching 284.9 μmol·g−1·h−1. Moreover, this photocatalyst maintains robust photocatalytic stability even after three consecutive usage cycles. This study demonstrated that the Z-scheme CuInS2/ZnIn2S4 heterojunction photocatalyst exhibits enhanced hydrogen evolution efficiency, offering an effective structural design for harnessing solar energy to obtain hydrogen fuel. Therefore, this heterojunction photocatalyst is a promising candidate for practical applications in solar hydrogen production. Full article
(This article belongs to the Special Issue Photocatalysis in the Control of Environmental Pollution)
Show Figures

Figure 1

19 pages, 3083 KiB  
Article
Impact of Lactic Acid Bacteria Fermentation Based on Biotransformation of Phenolic Compounds and Antioxidant Capacity of Mushrooms
by Eda Nur Ayar-Sümer, Yannick Verheust, Beraat Özçelik and Katleen Raes
Foods 2024, 13(11), 1616; https://doi.org/10.3390/foods13111616 (registering DOI) - 23 May 2024
Abstract
Mushrooms contain phenolic compounds that possess health-promoting properties, including antioxidant effects. However, the low solubility and form of phenolic compounds affect their bioactivity and bioaccessibility. To overcome this limitation, our study investigates the fermentation of mushrooms to increase their free phenolic content and [...] Read more.
Mushrooms contain phenolic compounds that possess health-promoting properties, including antioxidant effects. However, the low solubility and form of phenolic compounds affect their bioactivity and bioaccessibility. To overcome this limitation, our study investigates the fermentation of mushrooms to increase their free phenolic content and enhance their bioactivity. Our research focused on the impact of fermentation on both free and bound phenolic fractions (FPs and BPs, respectively) in Lentinula edodes and Lactarius deliciosus, which were successively fermented with Lactiplantibacillus plantarum LMG 17673 for 72 h. We examined the total phenolic content (TPC), phenolic profile, and antioxidant activity of both FPs and BPs. Our results showed that the TPC of BPs was higher than that of FPs in both mushrooms, with strong antioxidant capabilities. Fermentation significantly increased the TPC of FPs in both mushrooms, particularly after 24 h of fermentation. The TPC of BPs in mushrooms decreased during fermentation, indicating their release from the matrix. Additionally, we identified 30 bioactive compounds using UPLC-Q-TOF-MS/MS. Our study demonstrates for the first time that lactic acid bacteria fermentation of mushrooms with high phenolic content leads to the liberation of bound phenolics, enhancing their bioactivity and bioaccessibility. Full article
Show Figures

Figure 1

17 pages, 3469 KiB  
Article
Enhancement of Biogas (Methane) Production from Cow Dung Using a Microbial Electrochemical Cell and Molecular Characterization of Isolated Methanogenic Bacteria
by Puja Bhatt, Pranita Poudyal, Pradip Dhungana, Bikram Prajapati, Suman Bajracharya, Amar Prasad Yadav, Tribikram Bhattarai, Lakshmaiah Sreerama and Jarina Joshi
Biomass 2024, 4(2), 455-471; https://doi.org/10.3390/biomass4020023 (registering DOI) - 23 May 2024
Abstract
Biogas has long been used as a household cooking fuel in many tropical counties, and it has the potential to be a significant energy source beyond household cooking fuel. In this study, we describe the use of low electrical energy input in an [...] Read more.
Biogas has long been used as a household cooking fuel in many tropical counties, and it has the potential to be a significant energy source beyond household cooking fuel. In this study, we describe the use of low electrical energy input in an anaerobic digestion process using a microbial electrochemical cell (MEC) to promote methane content in biogas at 18, 28, and 37 °C. Although the maximum amount of biogas production was at 37 °C (25 cm3), biogas could be effectively produced at lower temperatures, i.e., 18 (13 cm3) and 28 °C (19 cm3), with an external 2 V power input. The biogas production of 13 cm3 obtained at 18 °C was ~65-fold higher than the biogas produced without an external power supply (0.2 cm3). This was further enhanced by 23% using carbon-nanotubes-treated (CNT) graphite electrodes. This suggests that the MEC can be operated at as low as 18 °C and still produce significant amounts of biogas. The share of CH4 in biogas produced in the controls was 30%, whereas the biogas produced in an MEC had 80% CH4. The MEC effectively reduced COD to 42%, whereas it consumed 98% of reducing sugars. Accordingly, it is a suitable method for waste/manure treatment. Molecular characterization using 16s rRNA sequencing confirmed the presence of methanogenic bacteria, viz., Serratia liquefaciens and Zoballella taiwanensis, in the inoculum used for the fermentation. Consistent with recent studies, we believe that electromethanogenesis will play a significant role in the production of value-added products and improve the management of waste by converting it to energy. Full article
(This article belongs to the Topic Advances in Biomass Conversion)
Show Figures

Figure 1

22 pages, 6720 KiB  
Article
Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations
by Ivan Vidakovic, Karin Kornmueller, Daniela Fiedler, Johannes Khinast, Eleonore Fröhlich, Gerd Leitinger, Christina Horn, Julian Quehenberger, Oliver Spadiut and Ruth Prassl
Pharmaceutics 2024, 16(6), 694; https://doi.org/10.3390/pharmaceutics16060694 (registering DOI) - 23 May 2024
Abstract
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for [...] Read more.
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs. Full article
(This article belongs to the Special Issue Advances in Oral Administration)
Show Figures

Graphical abstract

14 pages, 5025 KiB  
Article
Personnel Detection in Dark Aquatic Environments Based on Infrared Thermal Imaging Technology and an Improved YOLOv5s Model
by Liang Cheng, Yunze He, Yankai Mao, Zhenkang Liu, Xiangzhao Dang, Yilong Dong and Liangliang Wu
Sensors 2024, 24(11), 3321; https://doi.org/10.3390/s24113321 (registering DOI) - 23 May 2024
Abstract
This study presents a novel method for the nighttime detection of waterborne individuals using an enhanced YOLOv5s algorithm tailored for infrared thermal imaging. To address the unique challenges of nighttime water rescue operations, we have constructed a specialized dataset comprising 5736 thermal images [...] Read more.
This study presents a novel method for the nighttime detection of waterborne individuals using an enhanced YOLOv5s algorithm tailored for infrared thermal imaging. To address the unique challenges of nighttime water rescue operations, we have constructed a specialized dataset comprising 5736 thermal images collected from diverse aquatic environments. This dataset was further expanded through synthetic image generation using CycleGAN and a newly developed color gamut transformation technique, which significantly improves the data variance and model training effectiveness. Furthermore, we integrated the Convolutional Block Attention Module (CBAM) at the end of the last encoder’s feedforward network. This integration maximizes the utilization of channel and spatial information to capture more intricate details in the feature maps. To decrease the computational demands of the network while maintaining model accuracy, Ghost convolution was employed, thereby boosting the inference speed as much as possible. Additionally, we applied hyperparameter evolution to refine the training parameters. The improved algorithm achieved an average detection accuracy of 85.49% on our proprietary dataset, significantly outperforming its predecessor, with a prediction speed of 23.51 FPS. The experimental outcomes demonstrate the proposed solution’s high recognition capabilities and robustness, fulfilling the demands of intelligent lifesaving missions. Full article
Show Figures

Figure 1

11 pages, 1871 KiB  
Article
Evaluation of the Margin of Stability during Gait Initiation in Young Healthy Adults, Elderly Healthy Adults and Patients with Parkinson’s Disease: A Comparison of Force Plate and Markerless Motion Capture Systems
by Arnaud Simonet, Paul Fourcade, Florent Loete, Arnaud Delafontaine and Eric Yiou
Sensors 2024, 24(11), 3322; https://doi.org/10.3390/s24113322 (registering DOI) - 23 May 2024
Abstract
Gait initiation (GI) is a functional task classically used in the literature to evaluate the capacity of individuals to maintain postural stability. Postural stability during GI can be evaluated through the “margin of stability” (MoS), a variable that is often computed from force [...] Read more.
Gait initiation (GI) is a functional task classically used in the literature to evaluate the capacity of individuals to maintain postural stability. Postural stability during GI can be evaluated through the “margin of stability” (MoS), a variable that is often computed from force plate recordings. The markerless motion capture system (MLS) is a recent innovative technology based on deep learning that has the potential to compute the MoS. This study tested the agreement between a force plate measurement system (FPS, gold standard) and an MLS to compute the MoS during GI. Healthy adults (young [YH] and elderly [EH]) and Parkinson’s disease patients (PD) performed GI series at spontaneous (SVC) and maximum velocity (MVC) on an FPS while being filmed by a MLS. Descriptive statistics revealed a significant effect of the group (YH vs. EH vs. PD) and velocity condition (SVC vs. MVC) on the MoS but failed to reveal any significant effect of the system (MLS vs. PFS) or interaction between factors. Bland–Altman plot analysis further showed that mean MoS biases were zero in all groups and velocity conditions, while the Bayes factor 01 indicated “moderate evidence” that both systems provided equivalent MoS. Trial-by-trial analysis of Bland–Altman plots, however, revealed that differences of >20% between the two systems did occur. Globally taken, these findings suggest that the two systems are similarly effective in detecting an effect of the group and velocity on the MoS. These findings may have important implications in both clinical and laboratory settings due to the ease of use of the MLS compared to the FPS. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 563 KiB  
Brief Report
Perception of Young European Otolaryngologists toward Transoral Robotic Surgery in Head and Neck Oncology and Surgery
by Jerome R. Lechien, Abdul-Latif Hamdan, Nicolas Fakhry, Luigi A. Vaira, Giannicola Iannella, Isabelle M. Gengler, Justin Michel, Thomas Radulesco, Marc Remacle, Stephane Hans, Giovanni Cammaroto, Alberto M. Saibene, Miguel Mayo-Yanez and Antonino Maniaci
J. Clin. Med. 2024, 13(11), 3055; https://doi.org/10.3390/jcm13113055 (registering DOI) - 23 May 2024
Abstract
Background: To investigate the perception of young European otolaryngologists (OTOs), i.e., head and neck surgeons, toward transoral robotic surgery (TORS). Methods: Members of the Young Confederation of European Otorhinolaryngology-Head and Neck Surgery and Young Otolaryngologists of International Federation of Otorhinolaryngological Societies [...] Read more.
Background: To investigate the perception of young European otolaryngologists (OTOs), i.e., head and neck surgeons, toward transoral robotic surgery (TORS). Methods: Members of the Young Confederation of European Otorhinolaryngology-Head and Neck Surgery and Young Otolaryngologists of International Federation of Otorhinolaryngological Societies were surveyed about TORS perception and practice. Results: The survey was completed by 120 young OTOS (26%). The most important barriers to TORS were robot availability (73%), cost (69%), and lack of training (37%). The participants believed that the main benefits include better surgical filed view (64%), shorter hospital stay (62%), and better postoperative outcomes (61%) than the conventional approach. Head and neck surgeons considered cT1-T2 oropharyngeal cancers (94%), resection of base of tongue for sleep apnea (86%), or primary unknown cancer (76%) as the most appropriate indications. A total of 67% of TORS surgeons assessed themselves as adequately trained in TORS. Conclusions: Young European OTOs report positive perception, adoption, and knowledge of TORS. The cost-related unavailability and the lack of training or access are reported to be the most important barriers for the spread of TORS. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

16 pages, 6756 KiB  
Article
Aging Characterization of Modified Insulating Paper Based on the Transmission Characteristics of Microstrip Resonant Sensors
by Mi Xiao, Gaoyan Yang and Wei Zhang
Energies 2024, 17(11), 2499; https://doi.org/10.3390/en17112499 (registering DOI) - 23 May 2024
Abstract
In this paper, the aging characterization of a kind of insulating paper modified by magnetron sputtering MgO particles based on a microstrip resonant sensor was presented. Firstly, the modified insulating paper with 0, 15 and 30 min MgO particle sputtering times was prepared [...] Read more.
In this paper, the aging characterization of a kind of insulating paper modified by magnetron sputtering MgO particles based on a microstrip resonant sensor was presented. Firstly, the modified insulating paper with 0, 15 and 30 min MgO particle sputtering times was prepared by a magnetron sputtering device. After that, the properties of the modified insulating paper with different sputtering times were analyzed through microscopic characterization, infrared spectrum, polymerization degree, dielectric constant, AC breakdown strength and thermal aging experiments. The results show that the dielectric constant of the modified insulating paper decreased obviously, the AC breakdown strength increased and the thermal aging resistance was better after 15 min of sputtering. The overall performance of the modified insulating paper after 30 min of sputtering is reduced due to excessive sputtering. In addition, microstrip resonant sensors are introduced to characterize the thermal aging degree of the modified insulating paper, and two microstrip resonant sensors are prepared: a complementary split ring resonator (CSRR) and an interdigital-capacitor-shaped defected ground structure resonator (IDCS-DGS). The resonance frequency deviation of the modified insulating paper samples after aging was measured by microstrip resonance sensors to show the influence of aging temperature on aging degree. The experimental results show that the test results of the microstrip resonance sensors are in good agreement with the traditional characterization methods and can characterize the various aging stages of the modified insulating paper to a certain extent, which proves the feasibility of the characterization method. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

15 pages, 2307 KiB  
Article
Explicit Scheme for a Hydrological Channel Routing: Mathematical Model and Practical Application
by Alfonso Arrieta-Pastrana, Oscar E. Coronado-Hernández and Jairo R. Coronado-Hernández
Water 2024, 16(11), 1480; https://doi.org/10.3390/w16111480 (registering DOI) - 23 May 2024
Abstract
The computation of hydrographs in large watersheds necessitates utilizing channel routing, which calculates the movement of hydrographs along channel branches. Routing methods rely on an implicit scheme to facilitate numerical resolution, which requires more computational time than the explicit scheme. This study presents [...] Read more.
The computation of hydrographs in large watersheds necessitates utilizing channel routing, which calculates the movement of hydrographs along channel branches. Routing methods rely on an implicit scheme to facilitate numerical resolution, which requires more computational time than the explicit scheme. This study presents an explicit scheme channel routing model that offers a versatile approach to open channel flow analysis. The model is based on mass conservation principles and Manning equations, and it can accommodate varying bed slopes, making it highly adaptable to diverse hydraulic scenarios. In addition, the proposed model considers backwater effects, which enhances its applicability in practical scenarios. The model was tested in a practical application on a rectangular channel with a width of 7 m, and the results showed that it can accurately predict outflow hydrographs and handle different flow conditions. Comparative analyses with existing models revealed that the proposed model’s performance in generating water flow oscillations was competitive. Moreover, sensitivity analyses were performed, which showed that the model is highly responsive to parameter variations, such as Manning’s coefficient, bed slope, and channel width. The comparison of peak flows and peak times between the proposed model and existing methods further emphasized the model’s reliability and efficiency in simulating channel routing processes. This research introduces a valuable addition to the field of hydrology by proposing a practical and effective channel routing model that integrates essential hydraulic principles and parameters. The results of the proposed model (lumped routing) are comparable with the solution provided by the Muskingum–Cunge method (distributed routing). It is of utmost importance to note that the proposed model applies to channel branches with bed slopes below 6°. Full article
Show Figures

Figure 1

21 pages, 12498 KiB  
Article
Effect of Annealing Temperature on Microstructure and Properties of Solid Solution Extruded Mg–2.0Zn–1.0Y–0.5Zr Alloys
by Junguang He, Zhenfei Cheng, Jiuba Wen, Peiwu Tian, Wuyun Feng, Xiangyang Zheng and Yuan Gong
Alloys 2024, 3(2), 140-160; https://doi.org/10.3390/alloys3020008 (registering DOI) - 23 May 2024
Abstract
In this investigation, the effects of different annealing temperatures (180, 200, 220, 240, 260, and 280 °C) on the microstructure evolution and properties of an extruded Mg–2.0Zn–1.0Y–0.5Zr (wt%) magnesium alloys were determined. Optical microscopy (OM), scanning electron microscopy (SEM), immersion corrosion, electrochemical corrosion [...] Read more.
In this investigation, the effects of different annealing temperatures (180, 200, 220, 240, 260, and 280 °C) on the microstructure evolution and properties of an extruded Mg–2.0Zn–1.0Y–0.5Zr (wt%) magnesium alloys were determined. Optical microscopy (OM), scanning electron microscopy (SEM), immersion corrosion, electrochemical corrosion experiments, and tensile testing were performed. Research has found that combining hot extrusion with subsequent low-temperature annealing significantly improves the strength, plasticity, and corrosion resistance of alloys due to grain refinement and a reduced dislocation density. The alloy was completely recrystallized at an annealing temperature of 240 °C for 4 h after solid solution extrusion, and the grains were fine and uniform, demonstrating the best comprehensive properties. Its corrosion rate, ultimate tensile strength, yield strength, and elongation were 0.454 ± 0.023 mm/y, 346.7 ± 8.9 MPa, 292.4 ± 6.9 MPa, and 19.0 ± 0.4%, respectively. The corrosion mechanism of the specimens under extruded and annealed conditions was analyzed. After annealing at 240 °C for 4 h, the dislocation and bimodal grain structure of the samples were almost eliminated, resulting in uniform and fine grains, which were conducive to the formation of a more uniform and denser oxide film, thus improving the corrosion resistance of the alloy. Full article
Show Figures

Figure 1

23 pages, 3207 KiB  
Article
Fluctuation Theorems for Heat Exchanges between Passive and Active Baths
by Massimiliano Semeraro, Antonio Suma and Giuseppe Negro
Entropy 2024, 26(6), 439; https://doi.org/10.3390/e26060439 (registering DOI) - 23 May 2024
Abstract
In addition to providing general constraints on probability distributions, fluctuation theorems allow us to infer essential information on the role played by temperature in heat exchange phenomena. In this numerical study, we measure the temperature of an out-of-equilibrium active bath using a fluctuation [...] Read more.
In addition to providing general constraints on probability distributions, fluctuation theorems allow us to infer essential information on the role played by temperature in heat exchange phenomena. In this numerical study, we measure the temperature of an out-of-equilibrium active bath using a fluctuation theorem that relates the fluctuations in the heat exchanged between two baths to their temperatures. Our setup consists of a single particle moving between two wells of a quartic potential accommodating two different baths. The heat exchanged between the two baths is monitored according to two definitions: as the kinetic energy carried by the particle whenever it jumps from one well to the other and as the work performed by the particle on one of the two baths when immersed in it. First, we consider two equilibrium baths at two different temperatures and verify that a fluctuation theorem featuring the baths temperatures holds for both heat definitions. Then, we introduce an additional Gaussian coloured noise in one of the baths, so as to make it effectively an active (out-of-equilibrium) bath. We find that a fluctuation theorem is still satisfied with both heat definitions. Interestingly, in this case the temperature obtained through the fluctuation theorem for the active bath corresponds to the kinetic temperature when considering the first heat definition, while it is larger with the second one. We interpret these results by looking at the particle jump phenomenology. Full article
(This article belongs to the Section Non-equilibrium Phenomena)
Show Figures

Figure 1

14 pages, 3317 KiB  
Article
Hyphenation of Thermodesorption into GC × GC-TOFMS for Odorous Molecule Detection in Car Materials: Column Sets and Adaptation of Second Column Dimensions to TD Pressure Constraints
by Romain Klein, José Dugay, Jérôme Vial, Didier Thiébaut, Guy Colombet, Donatien Barreteau and Guillaume Gruntz
Separations 2024, 11(6), 162; https://doi.org/10.3390/separations11060162 (registering DOI) - 23 May 2024
Abstract
Vehicle interior air quality is an issue of growing interest among car manufacturers and customers. GC-MS is the benchmark method for the analysis of indoor air or material emissions. It is suitable for the quantification of target pollutants and the most abundant compounds. [...] Read more.
Vehicle interior air quality is an issue of growing interest among car manufacturers and customers. GC-MS is the benchmark method for the analysis of indoor air or material emissions. It is suitable for the quantification of target pollutants and the most abundant compounds. It fails, however, to uncover the true molecular complexity of these samples. In the present study, we describe the development of a TD-GC × GC-TOFMS method designed to detect polar and potentially odorous molecules in car material emissions. Attention is paid to the hyphenation of the thermodesorber and the gas chromatograph, both at software and hardware levels, and the constraints due to pressure limitations on the thermodesorber (evaluated at 414 kPa/60 psi at the end of the temperature ramp and at 138 kPa/20 psi at rest). A compromise was made for the 2D column length and diameter to balance separation and pressure (50 × 0.18 × 0.18 cm × mm × µm + 60 cm transfer line selected). On various materials, we were able to observe several hundreds of polar molecules, among them were between 75 and 150 odorants per material. This work lays the foundation for the widespread screening of potential odorants in car material emissions. Full article
(This article belongs to the Collection Feature Paper Collection in Section Chromatographic Separations)
Show Figures

Figure 1

13 pages, 4100 KiB  
Brief Report
Cytokinins Reduce Viral Replication and Alter Plaque Morphology of Frog Virus 3 In Vitro
by Mark Seegobin, Samantha R. Logan, R. J. Neil Emery and Craig R. Brunetti
Viruses 2024, 16(6), 826; https://doi.org/10.3390/v16060826 (registering DOI) - 23 May 2024
Abstract
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic [...] Read more.
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5′monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations. Full article
(This article belongs to the Special Issue Iridoviruses, 2nd Edition)
Show Figures

Figure 1

14 pages, 3122 KiB  
Article
Effects of Steel Fiber Content on Compressive Properties and Constitutive Relation of Ultra-High Performance Shotcrete (UHPSC)
by Shijie Xiao, Jianyu Yang, Zelin Liu, Weijun Yang and Jiangang He
Buildings 2024, 14(6), 1503; https://doi.org/10.3390/buildings14061503 (registering DOI) - 23 May 2024
Abstract
Shotcrete is widely used in civil engineering as a supporting structure. In this paper, the compressive behavior of ultra-high-performance shotcrete (UHPSC) with different steel fiber content by volume (0, 0.5%, 0.75%, 1%, 1.25%, 1.5%) was investigated. The results showed that the failure pattern [...] Read more.
Shotcrete is widely used in civil engineering as a supporting structure. In this paper, the compressive behavior of ultra-high-performance shotcrete (UHPSC) with different steel fiber content by volume (0, 0.5%, 0.75%, 1%, 1.25%, 1.5%) was investigated. The results showed that the failure pattern of UHPSC was changed from brittle failure to ductile failure with the increase in steel fiber content. The compressive strength, peak strain and compressive toughness of UHPSC increased with the increase in steel fiber content, but the elastic modulus and Poisson’s ratio did not change significantly. With content of 1.5% steel fibers, its axial compressive strength, peak strain and compressive strain energy were 122.7 MPa, 3749 με and 0.269 MPa, respectively, increased by 14%, 23.5% and 55.5% compared with those without steel fiber. The peak strain and compressive toughness were higher than that of ultra-high-performance concrete (UHPC), while the elastic modulus of UHPSC was lower than that of UHPC. Based on the experimental data, the relationship between compressive strength, peak strain, compressive toughness and the change in the characteristic value of steel fiber content (λf) were revealed. The uniaxial compressive constitutive model of UHPSC with different steel fiber content was established and reflected the change rule of the shape parameter of α (constitutive model ascending section) and β (constitutive model descending section) with λf. The experimental results were in good agreement with the model calculation results, which can provide theoretical support for the structural design of UHPSC. Full article
Show Figures

Figure 1

9 pages, 499 KiB  
Communication
Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens
by Jui-Hsing Wang, Po-Tsang Huang, Yao-Ting Huang, Yan-Chiao Mao, Chung-Hsu Lai, Ting-Kuang Yeh, Chien-Hao Tseng and Chih-Chuan Kao
Pathogens 2024, 13(6), 439; https://doi.org/10.3390/pathogens13060439 (registering DOI) - 23 May 2024
Abstract
CRISPR-Cas systems are adaptive immune mechanisms present in most prokaryotes that play an important role in the adaptation of bacteria and archaea to new environments. Shewanella algae is a marine zoonotic pathogen with worldwide distribution, which accounts for the majority of clinical cases [...] Read more.
CRISPR-Cas systems are adaptive immune mechanisms present in most prokaryotes that play an important role in the adaptation of bacteria and archaea to new environments. Shewanella algae is a marine zoonotic pathogen with worldwide distribution, which accounts for the majority of clinical cases of Shewanella infections. However, the characterization of Shewanella algae CRISPR-Cas systems has not been well investigated yet. Through whole genome sequence analysis, we characterized the CRISPR-Cas systems in S. algae. Our results indicate that CRISPR-Cas systems are prevalent in S. algae, with the majority of strains containing the Type I-F system. This study provides new insights into the diversity and function of CRISPR-Cas systems in S. algae and highlights their potential role in the adaptation and survival of these marine pathogens. Full article
(This article belongs to the Special Issue Emerging Pathogens in Aquaculture)
Show Figures

Figure 1

8 pages, 597 KiB  
Article
Metabolites Associated with Polygenic Risk of Breast Cancer
by Elizabeth Samuels, Jaclyn Parks, Jessica Chu, Treena McDonald, John Spinelli, Rachel A. Murphy and Parveen Bhatti
Metabolites 2024, 14(6), 295; https://doi.org/10.3390/metabo14060295 (registering DOI) - 23 May 2024
Abstract
While hundreds of germline genetic variants have been associated with breast cancer risk, the mechanisms underlying the impacts of most of these variants on breast cancer remain uncertain. Metabolomics may offer valuable insights into the mechanisms underlying genetic risks of breast cancer. Among [...] Read more.
While hundreds of germline genetic variants have been associated with breast cancer risk, the mechanisms underlying the impacts of most of these variants on breast cancer remain uncertain. Metabolomics may offer valuable insights into the mechanisms underlying genetic risks of breast cancer. Among 143 cancer-free female participants, we used linear regression analyses to explore associations between the genetic risk of breast cancer, as determined by a previously developed polygenic risk score (PRS) that included 266 single-nucleotide polymorphisms (SNPs), and 223 measures of metabolites obtained from blood samples using nuclear magnetic resonance (NMR). A false discovery rate of 10% was applied to account for multiple comparisons. PRS was statistically significantly associated with 45 metabolite measures. These were primarily measures of very low-density lipoproteins (VLDLs) and high-density lipoproteins (HDLs), including triglycerides, cholesterol, and phospholipids. For example, the strongest effect was observed with the percent ratio of medium VLDL triglycerides to total lipids (0.53 unit increase in mean-standardized ln-transformed percent ratio per unit increase in PRS; q = 0.1). While larger-scale studies are needed to confirm these results, this exploratory study presents biologically plausible findings that are consistent with previously reported associations between lipids and breast cancer risk. If confirmed, these lipids could be targeted for lifestyle and pharmaceutical interventions among women at increased genetic risk of breast cancer. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop