The 2023 MDPI Annual Report has
been released!
 
27 pages, 2759 KiB  
Article
DExplore: An Online Tool for Detecting Differentially Expressed Genes from mRNA Microarray Experiments
by Anna D. Katsiki, Pantelis E. Karatzas, Hector-Xavier De Lastic, Alexandros G. Georgakilas, Ourania Tsitsilonis and Constantinos E. Vorgias
Biology 2024, 13(5), 351; https://doi.org/10.3390/biology13050351 (registering DOI) - 16 May 2024
Abstract
Microarray experiments, a mainstay in gene expression analysis for nearly two decades, pose challenges due to their complexity. To address this, we introduce DExplore, a user-friendly web application enabling researchers to detect differentially expressed genes using data from NCBI’s GEO. Developed with R, [...] Read more.
Microarray experiments, a mainstay in gene expression analysis for nearly two decades, pose challenges due to their complexity. To address this, we introduce DExplore, a user-friendly web application enabling researchers to detect differentially expressed genes using data from NCBI’s GEO. Developed with R, Shiny, and Bioconductor, DExplore integrates WebGestalt for functional enrichment analysis. It also provides visualization plots for enhanced result interpretation. With a Docker image for local execution, DExplore accommodates unpublished data. To illustrate its utility, we showcase two case studies on cancer cells treated with chemotherapeutic drugs. DExplore streamlines microarray data analysis, empowering molecular biologists to focus on genes of biological significance. Full article
(This article belongs to the Special Issue Differential Gene Expression and Coexpression 2.0)
Show Figures

Graphical abstract

9 pages, 209 KiB  
Article
The Ill-Thought-Through Aim to Eliminate the Education Gap across the Socio-Economic Spectrum
by Ognjen Arandjelović
Knowledge 2024, 4(2), 280-288; https://doi.org/10.3390/knowledge4020015 (registering DOI) - 16 May 2024
Abstract
Background: In an era of dramatic technological progress, the consequent economic transformations, and an increasing need for an adaptable workforce, the importance of education has risen to the forefront of the social discourse. The concurrent increase in the awareness of issues pertaining to [...] Read more.
Background: In an era of dramatic technological progress, the consequent economic transformations, and an increasing need for an adaptable workforce, the importance of education has risen to the forefront of the social discourse. The concurrent increase in the awareness of issues pertaining to social justice and the debate over what this justice entails and how it ought to be effected, feed into the education policy more than ever before. From the nexus of the aforementioned considerations, concern about the so-called education gap has emerged, with worldwide efforts to close it. Methods: I analyze the premises behind such efforts and demonstrate that they are founded upon fundamentally flawed ideas. Results: I show that in a society in which education is delivered equitably, education gaps emerge naturally as a consequence of differentiation due to talents, the tendency for matched mate selection, and the heritability of intellectual traits. Conclusion: I issue a call for a redirection of efforts away from the ill-founded idea of closing the education gap to the understanding of the magnitude of its unfair contributions, as well as to those social aspects that can modulate it in accordance with what a society deems fair according to its values. Full article
19 pages, 2653 KiB  
Article
Retrofitting Battery Electric Machinery with Unchanged Hydraulic System and Enhanced Control Strategies
by Marco Ferrari, Daniele Beltrami and Stefano Uberti
Actuators 2024, 13(5), 191; https://doi.org/10.3390/act13050191 (registering DOI) - 16 May 2024
Abstract
The push for environmental sustainability has accelerated the acceptance of electric vehicles, as well as the exploration of electrified Non-Road Mobile Machinery. This study emphasizes the challenges of electrifying off-highway machinery, which include the many machinery layouts and the presence of Small- and [...] Read more.
The push for environmental sustainability has accelerated the acceptance of electric vehicles, as well as the exploration of electrified Non-Road Mobile Machinery. This study emphasizes the challenges of electrifying off-highway machinery, which include the many machinery layouts and the presence of Small- and Medium-sized Enterprises in the market. Recognizing the barriers faced by these companies, this paper shows how modeling and simulation can be effective tools for system integration and control optimization, even when lacking extensive expertise in the topic. However, it emphasizes the need for user-friendly modeling tools and methods adaptable to the operational needs of Small- and Medium-sized Enterprises. This study presents a case study of a retrofitted battery-electric hydraulic material handler. The machinery is simulated using Simscape, and the accuracy of the model is confirmed through experimental validation. By simulating a rational duty cycle, this study proposes two solutions for performance enhancement while maintaining the integrity of the hydraulic system. These solutions offer a balanced compromise between energy consumption and productivity and a novel control algorithm to minimize energy consumption. Most importantly, the two proposed solutions can be easily switched by the operator, which can decide to favor productivity over energy saving based on driving needs. Full article
(This article belongs to the Section Control Systems)
24 pages, 2853 KiB  
Article
Sex Matters–Insights from Testing Drug Efficacy in an Animal Model of Pancreatic Cancer
by Benjamin Schulz, Emily Leitner, Tim Schreiber, Tobias Lindner, Rico Schwarz, Nadine Aboutara, Yixuan Ma, Hugo Murua Escobar, Rupert Palme, Burkhard Hinz, Brigitte Vollmar and Dietmar Zechner
Cancers 2024, 16(10), 1901; https://doi.org/10.3390/cancers16101901 (registering DOI) - 16 May 2024
Abstract
Preclinical studies rarely test the efficacy of therapies in both sexes. The field of oncology is no exception in this regard. In a model of syngeneic, orthotopic, metastasized pancreatic ductal adenocarcinoma we evaluated the impact of sex on pathological features of this disease [...] Read more.
Preclinical studies rarely test the efficacy of therapies in both sexes. The field of oncology is no exception in this regard. In a model of syngeneic, orthotopic, metastasized pancreatic ductal adenocarcinoma we evaluated the impact of sex on pathological features of this disease as well as on the efficacy and possible adverse side effects of a novel, small molecule-based therapy inhibiting KRAS:SOS1, MEK1/2 and PI3K signaling in male and female C57BL/6J mice. Male mice had less tumor infiltration of CD8-positive cells, developed bigger tumors, had more lung metastasis and a lower probability of survival compared to female mice. These more severe pathological features in male animals were accompanied by higher distress at the end of the experiment. The evaluated inhibitors BI-3406, trametinib and BKM120 showed synergistic effects in vitro. This combinatorial therapy reduced tumor weight more efficiently in male animals, although the drug concentrations were similar in the tumors of both sexes. These results underline the importance of sex-specific preclinical research and at the same time provide a solid basis for future studies with the tested compounds. Full article
(This article belongs to the Special Issue Sex Differences in Cancer)
18 pages, 1183 KiB  
Article
Enriching Eggs with Bioactive Compounds through the Inclusion of Grape Pomace in Laying Hens Diet: Effect on Internal and External Egg Quality Parameters
by Beatriz Herranz, Carlos Romero, Inés Sánchez-Román, Mónica López-Torres, Agustín Viveros, Ignacio Arija, María Dolores Álvarez, Sonia de Pascual-Teresa and Susana Chamorro
Foods 2024, 13(10), 1553; https://doi.org/10.3390/foods13101553 (registering DOI) - 16 May 2024
Abstract
(1) Background: Grapes and their associated by-products (such as grape pomace and GP) stand out for their polyphenol content, which makes them a source of bioactive compounds with antioxidant capacity. The aim of this research was to determine if the inclusion of 50 [...] Read more.
(1) Background: Grapes and their associated by-products (such as grape pomace and GP) stand out for their polyphenol content, which makes them a source of bioactive compounds with antioxidant capacity. The aim of this research was to determine if the inclusion of 50 g/kg of GP in the diet of hens could enrich eggs with antioxidants and to study its effect on internal and external egg quality parameters. (2) Methods: A trial was conducted with two genetic lines of hens, which were fed either a control diet or a diet containing 50 g/kg of GP. Performance, internal and external egg quality, and egg yolk content of vitamins E and A and gallic acid were determined. (3) Results: In eggs laid by hens fed a GP diet, Haugh units and yolk color scores were enhanced, and eggshells became thinner, but without affecting the breaking strength. No dietary effect was observed on the vitamin contents of the yolk. A higher gallic acid content was observed in the yolks of eggs laid by hens fed the GP diet, suggesting that some dietary phenolic compounds could be transferred to the eggs. Hen genetics influenced egg weight, albumen Haugh units, shell thickness, and α- and γ-tocopherol concentration in yolks. (4) Conclusions: Dietary inclusion of GP improved the internal quality of eggs, enriching yolks with a phenolic compound but reducing shell thickness. Full article
(This article belongs to the Special Issue Circular Economy Approach to Produce Sustainable and Healthy Foods)
Show Figures

Figure 1

25 pages, 759 KiB  
Review
Reviewing Control Paradigms and Emerging Trends of Grid-Forming Inverters—A Comparative Study
by Khaliqur Rahman, Jun Hashimoto, Dai Orihara, Taha Selim Ustun, Kenji Otani, Hiroshi Kikusato and Yasuhiro Kodama
Energies 2024, 17(10), 2400; https://doi.org/10.3390/en17102400 (registering DOI) - 16 May 2024
Abstract
Grid-forming inverters (GFMs) have emerged as crucial components in modern power systems, facilitating the integration of renewable energy sources and enhancing grid stability. The significance of GFMs lies in their ability to autonomously establish grid voltage and frequency, enabling grids to form and [...] Read more.
Grid-forming inverters (GFMs) have emerged as crucial components in modern power systems, facilitating the integration of renewable energy sources and enhancing grid stability. The significance of GFMs lies in their ability to autonomously establish grid voltage and frequency, enabling grids to form and improve system flexibility. Discussing control methods for grid-forming inverters is paramount due to their crucial role in shaping grid dynamics and ensuring reliable power delivery. This paper explores the fundamental and advanced control methods employed by GFMs, explaining their operational principles and performance characteristics. Basic control methods typically involve droop control, voltage and frequency regulation, and power-balancing techniques to maintain grid stability under varying operating conditions. Advanced control strategies encompass predictive control, model predictive control (MPC), and adaptive control, which influence advanced algorithms and real-time data for enhanced system responsiveness and efficiency. A detailed analysis and performance comparison of different control methods for GFM is presented, highlighting their strengths, limitations, and suitability for diverse grid environments. Through comprehensive studies, this research interprets the ability of various control strategies to mitigate grid disturbances, optimize power flow, and enhance overall system stability. Full article
(This article belongs to the Special Issue Challenges and Prospects of Grid Support in Grid-Forming Inverters)
17 pages, 5679 KiB  
Article
An Anti-VEGF-B Antibody Reduces Abnormal Tumor Vasculature and Enhances the Effects of Chemotherapy
by Peter W. Janes, Adam C. Parslow, Diana Cao, Angela Rigopoulos, Fook-Thean Lee, Sylvia J. Gong, Glenn A. Cartwright, Ingrid J. G. Burvenich, Ulf Eriksson, Terrance G. Johns, Fiona E. Scott and Andrew M. Scott
Cancers 2024, 16(10), 1902; https://doi.org/10.3390/cancers16101902 (registering DOI) - 16 May 2024
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, [...] Read more.
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, which we demonstrate to be expressed in tumor cells and in tumor stroma and vasculature across a range of tumor types. We examined the anti-VEGF-B-specific monoclonal antibody 2H10 in preclinical xenograft models of breast and colorectal cancer, in comparison with the anti-VEGF-A antibody bevacizumab. Similar to bevacizumab, 2H10 therapy was associated with changes in tumor blood vessels and intra-tumoral diffusion consistent with normalization of the tumor vasculature. Accordingly, treatment resulted in partial inhibition of tumor growth, and significantly improved the response to chemotherapy. Our studies indicate the importance of VEGF-B in tumor growth, and the potential of specific anti-VEGF-B treatment to inhibit tumor development, alone or in combination with established chemotherapies. Full article
(This article belongs to the Section Cancer Therapy)
23 pages, 626 KiB  
Review
Oil Heat Treatment of Wood—A Comprehensive Analysis of Physical, Chemical, and Mechanical Modifications
by Eleni Mandraveli, Andromachi Mitani, Paschalina Terzopoulou and Dimitrios Koutsianitis
Materials 2024, 17(10), 2394; https://doi.org/10.3390/ma17102394 (registering DOI) - 16 May 2024
Abstract
Wood, a natural material with versatile industrial applications, faces limitations such as low dimensional stability and decay resistance. To address these issues, there has been significant progress in wood modification research. Oil heat treatment has emerged as an effective method among environmentally friendly [...] Read more.
Wood, a natural material with versatile industrial applications, faces limitations such as low dimensional stability and decay resistance. To address these issues, there has been significant progress in wood modification research. Oil heat treatment has emerged as an effective method among environmentally friendly wood treatment options. Studies have indicated that treating wood with hot vegetable oils yields superior properties compared to traditional methods involving gaseous atmospheres, which is attributed to the synergistic effect of oils and heat. This comprehensive review investigates the physical, chemical, and mechanical modifications induced by the oil heat treatment of wood, along with its impact on biological durability against biotic agents. The review synthesizes recent research findings, elucidates underlying mechanisms, and discusses the implications for wood material science and engineering. Full article
20 pages, 26056 KiB  
Article
Development of Grid-Forming and Grid-Following Inverter Control in Microgrid Network Ensuring Grid Stability and Frequency Response
by V. Vignesh Babu, J. Preetha Roselyn, C. Nithya and Prabha Sundaravadivel
Electronics 2024, 13(10), 1958; https://doi.org/10.3390/electronics13101958 (registering DOI) - 16 May 2024
Abstract
This paper proposes a control strategy for grid-following inverter control and grid-forming inverter control developed for a Solar Photovoltaic (PV)–battery-integrated microgrid network. A grid-following (GFL) inverter with real and reactive power control in a solar PV-fed system is developed; it uses a Phase [...] Read more.
This paper proposes a control strategy for grid-following inverter control and grid-forming inverter control developed for a Solar Photovoltaic (PV)–battery-integrated microgrid network. A grid-following (GFL) inverter with real and reactive power control in a solar PV-fed system is developed; it uses a Phase Lock Loop (PLL) to track the phase angle of the voltages at the PCC and adopts a vector control strategy to adjust the active and reactive currents that are injected into the power grid. The drawback of a GFL inverter is that it lacks the capability to operate independently when the utility grid is down due to outages or disturbances. The proposed grid-forming (GFM) inverter control with a virtual synchronous machine provides inertia to the grid, generates a stable grid-like voltage and frequency and enables the integration of the grid. The proposed system incorporates a battery energy storage system (BESS) which has inherent energy storage capability and is independent of geographical areas. The GFM control includes voltage and frequency control, enhanced islanding and black start capability and the maintenance of the stability of the grid-integrated system. The proposed model is validated under varying irradiance conditions, load switching, grid outages and temporary faults with fault ride-through (FRT) capability, and fast frequency response and stability are achieved. The proposed model is validated under varying irradiance conditions, load switching, grid outages and line faults incorporating fault ride-through capability in GFM-based control. The proposed controller was simulated in a 100 MW solar PV system and 60 MW BESS using the MATLAB/Simulink 2023 tool, and the experimental setup was validated in a 1 kW grid-connected system. The percentage improvement of the system frequency and voltage with FRT-capable GFM control is 69.3% and 70%, respectively, and the percentage improvement is only 3% for system frequency and 52% for grid voltage in the case of an FRT-capable GFL controller. The simulation and experimental results prove that GFM-based inverter control achieves fast frequency response, and grid stability is also ensured. Full article
(This article belongs to the Special Issue State-of-the-Art Power Electronics Systems)
Show Figures

Figure 1

25 pages, 4294 KiB  
Article
The Structural Design of and Experimental Research on a Coke Oven Gas Burner
by Mingrui Geng, Suyi Jin and Denghui Wang
Sustainability 2024, 16(10), 4185; https://doi.org/10.3390/su16104185 (registering DOI) - 16 May 2024
Abstract
A novel low-NOx burner was proposed in this study to achieve the stable and clean combustion of low- and medium-calorific-value gas and promote energy sustainability, and the influence of the gas pipe structure on the burner’s characteristics was studied with coke oven [...] Read more.
A novel low-NOx burner was proposed in this study to achieve the stable and clean combustion of low- and medium-calorific-value gas and promote energy sustainability, and the influence of the gas pipe structure on the burner’s characteristics was studied with coke oven gas as a fuel. A 40 kW burner test bench was established to conduct cold-state experiments to investigate the influences of the gas pipe structure on the aerodynamic characteristics of the burner. We performed numerical simulations on both a 40 kW burner and a 14 MW prototype burner to investigate the thermal performance of the burners and their impact on low NOx emissions. The experimental results showed that increasing the deflection angle of the gas pipe nozzle direction relative to the circumferential tangent direction, the high-velocity zone and the high-concentration zone of the flow field move towards the central axis. Increasing the bending angle of gas pipe nozzle direction relative to the axis direction caused the high-velocity zone and the high-concentration zone to move upstream direction of the jet. The simulation reveals that the NO concentration at the exit cross-section of the combustion chamber of the 14 MW prototype burner is 17.00 mg/m3 (with 3.5% oxygen content). A recommended design structure of the burner was proposed, with a deflection angle of 0°and a bending angle of 0° for the No. 3 gas pipe, and a deflection angle of 15° and a bending angle of 30° for the No. 4 gas pipe. Full article
(This article belongs to the Special Issue Sustainability in Fuel Consumption and Pollutant Emission Management)
16 pages, 2631 KiB  
Review
High-Speed Electro-Optic Modulators Based on Thin-Film Lithium Niobate
by Songyan Hou, Hao Hu, Zhihong Liu, Weichuan Xing, Jincheng Zhang and Yue Hao
Nanomaterials 2024, 14(10), 867; https://doi.org/10.3390/nano14100867 (registering DOI) - 16 May 2024
Abstract
Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains, essential for diverse applications including optical communication, microwave signal processing, sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-effectiveness, and superior performance remains challenging within established integrated photonics platforms. [...] Read more.
Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains, essential for diverse applications including optical communication, microwave signal processing, sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-effectiveness, and superior performance remains challenging within established integrated photonics platforms. Enter thin-film lithium niobate (LN), a recent standout with its inherent electro-optic (EO) efficiency, proven industrial performance, durability, and rapid fabrication advancements. This platform inherits material advantages from traditional bulk LN devices while offering a reduced footprint, wider bandwidths, and lower power requirements. Despite its recent introduction, commercial thin-film LN wafers already rival or surpass established alternatives like silicon and indium phosphide, benefitting from decades of research. In this review, we delve into the foundational principles and technical innovations driving state-of-the-art LN modulator demonstrations, exploring various methodologies, their strengths, and challenges. Furthermore, we outline pathways for further enhancing LN modulators and anticipate exciting prospects for larger-scale LN EO circuits beyond singular components. By elucidating the current landscape and future directions, we highlight the transformative potential of thin-film LN technology in advancing electro-optic modulation and integrated photonics. Full article
Show Figures

Figure 1

21 pages, 9404 KiB  
Article
Enhancing GNSS Deformation Monitoring Forecasting with a Combined VMD-CNN-LSTM Deep Learning Model
by Yilin Xie, Xiaolin Meng, Jun Wang, Haiyang Li, Xun Lu, Jinfeng Ding, Yushan Jia and Yin Yang
Remote Sens. 2024, 16(10), 1767; https://doi.org/10.3390/rs16101767 (registering DOI) - 16 May 2024
Abstract
Hydraulic infrastructures are susceptible to deformation over time, necessitating reliable monitoring and prediction methods. In this study, we address this challenge by proposing a novel approach based on the combination of Variational Mode Decomposition (VMD), Convolutional Neural Network (CNN), and Long Short-Term Memory [...] Read more.
Hydraulic infrastructures are susceptible to deformation over time, necessitating reliable monitoring and prediction methods. In this study, we address this challenge by proposing a novel approach based on the combination of Variational Mode Decomposition (VMD), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) methods for Global Navigation Satellite Systems (GNSS) deformation monitoring and prediction modeling. The VMD method is utilized to decompose the complex deformation signals into intrinsic mode functions, which are then fed into a CNN method for feature extraction. The extracted features are input into an LSTM method to capture temporal dependencies and make predictions. The experimental results demonstrate that the proposed VMD-CNN-LSTM method exhibits an improvement by about 75%. This research contributes to the advancement of deformation monitoring technologies in water conservancy engineering, offering a promising solution for proactive maintenance and risk mitigation strategies. Full article
(This article belongs to the Special Issue Advances in GNSS for Time Series Analysis)
Show Figures

Figure 1

18 pages, 1131 KiB  
Article
Fault Diagnosis Method for Space Fluid Loop Systems Based on Improved Evidence Theory
by Yue Liu, Zhenxiang Li, Lu Zhang and Hongyong Fu
Entropy 2024, 26(5), 427; https://doi.org/10.3390/e26050427 (registering DOI) - 16 May 2024
Abstract
Addressing the challenges posed by the complexity of the structure and the multitude of sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis method based on an improved D-S evidence theory. The method first employs the Gaussian [...] Read more.
Addressing the challenges posed by the complexity of the structure and the multitude of sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis method based on an improved D-S evidence theory. The method first employs the Gaussian affiliation function to convert the information acquired by sensors into BPA functions. Subsequently, it utilizes a pignistic probability transformation to convert the multiple subset focal elements into single subset focal elements. Finally, it comprehensively evaluates the credibility and uncertainty factors between evidences, introducing Bray–Curtis dissimilarity and belief entropy to achieve the fusion of conflicting evidence. The proposed method is initially validated on the classic Iris dataset, demonstrating its reliability. Furthermore, when applied to fault diagnosis in space application fluid circuit loop pumps, the results indicate that the method can effectively fuse multiple sensors and accurately identify faults. Full article
(This article belongs to the Section Multidisciplinary Applications)
13 pages, 3164 KiB  
Article
Narrowband Organic/Inorganic Hybrid Afterglow Materials
by Wen Xia, Xun Li, Junbo Li, Qianqian Yan, Guangming Wang, Xixi Piao and Kaka Zhang
Molecules 2024, 29(10), 2343; https://doi.org/10.3390/molecules29102343 (registering DOI) - 16 May 2024
Abstract
Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of [...] Read more.
Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the “spectrum congestion” problem of high-density information storage in optical anti-counterfeiting and information encryption. Full article
(This article belongs to the Special Issue Recent Advances in Room Temperature Phosphorescence Materials)
Show Figures

Figure 1

28 pages, 309 KiB  
Article
Social Media and the Spiritual Journey: The Place of Digital Technology in Enriching the Experience
by Talib Hussain and Dake Wang
Religions 2024, 15(5), 616; https://doi.org/10.3390/rel15050616 (registering DOI) - 16 May 2024
Abstract
This qualitative study explores the utilization of social media among Pakistani pilgrims during spiritual journeys and investigates its impact on their pilgrimage experiences. Thirty Pakistani pilgrims who had embarked on spiritual journeys to various religious sites were interviewed using semi-structured interviews. Thematic analysis [...] Read more.
This qualitative study explores the utilization of social media among Pakistani pilgrims during spiritual journeys and investigates its impact on their pilgrimage experiences. Thirty Pakistani pilgrims who had embarked on spiritual journeys to various religious sites were interviewed using semi-structured interviews. Thematic analysis was employed to analyze the interview transcripts, revealing five main stages of social media usage: pre-trip preparation, real-time updates and guidance, community building and support, sharing experiences and insights, and post-trip reflection and engagement. At each stage, social media played diverse roles, including providing information and support, fostering connections with fellow pilgrims, sharing personal experiences, and facilitating spiritual dialogue. This explorative study underscores the significance of social media in enhancing the pilgrimage experience for Pakistani pilgrims, serving as a valuable tool for information dissemination, community building, spiritual support, and personal reflection throughout the pilgrimage journey. The findings contribute to a deeper understanding of how social media shapes pilgrims’ experiences and fosters their spiritual growth, emphasizing the need for further research to explore the nuanced dynamics of social media usage in the context of pilgrimage. Overall, this study sheds light on the unique role of social media in the spiritual journeys of Pakistani pilgrims and highlights its implications for pilgrimage practices and the broader discourse on religious tourism. Full article
13 pages, 3501 KiB  
Article
Alterations in Blood–Brain Barrier Integrity and Lateral Ventricle Differ in Rats Exposed to Space Radiation and Social Isolation
by Austin M. Adkins, Zachary N. M. Luyo, Alayna J. Gibbs, Alea F. Boden, Riley S. Heerbrandt, Justin D. Gotthold, Richard A. Britten, Laurie L. Wellman and Larry D. Sanford
Life 2024, 14(5), 636; https://doi.org/10.3390/life14050636 (registering DOI) - 16 May 2024
Abstract
The proposed Mars missions will expose astronauts to long durations of social isolation (SI) and space radiation (SR). These stressors have been shown to alter the brain’s macrostructure and microenvironment, including the blood–brain barrier (BBB). Breakdown of the BBB is linked to impaired [...] Read more.
The proposed Mars missions will expose astronauts to long durations of social isolation (SI) and space radiation (SR). These stressors have been shown to alter the brain’s macrostructure and microenvironment, including the blood–brain barrier (BBB). Breakdown of the BBB is linked to impaired executive functions and physical deficits, including sensorimotor and neurocognitive impairments. However, the precise mechanisms mediating these effects remain unknown. Additionally, the synergistic effects of combined exposure to SI and SR on the structural integrity of the BBB and brain remain unknown. We assessed the BBB integrity and morphology in the brains of male rats exposed to ground-based analogs of SI and SR. The rats exposed to SR had enlarged lateral ventricles and increased BBB damage associated with a loss of astrocytes and an increased number of leaky vessels. Many deficits observed in SR-treated animals were attenuated by dual exposure to SI (DFS). SI alone did not show BBB damage but did show differences in astrocyte morphology compared to the Controls. Thus, determining how single and combined inflight stressors modulate CNS structural integrity is crucial to fully understand the multiple pathways that could impact astronaut performance and health, including the alterations to the CNS structures and cell viability observed in this study. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology)
Show Figures

Figure 1

16 pages, 3547 KiB  
Article
Well-Dispersed CoNiO2 Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies
by Leiyu Du, Renxin Xu, Yunfa Si, Wei Zhao, Hongyi Luo, Wei Jin and Dan Liu
Coatings 2024, 14(5), 631; https://doi.org/10.3390/coatings14050631 (registering DOI) - 16 May 2024
Abstract
Developing microwave absorbers with superior low-frequency electromagnetic wave absorption properties is one of the foremost important factors driving the boom in 5G technology development. In this study, via a simple hydrothermal and pyrolysis strategy, randomly interleaved CoNiO2 nanosheets and uniformly ultrafine CoNi [...] Read more.
Developing microwave absorbers with superior low-frequency electromagnetic wave absorption properties is one of the foremost important factors driving the boom in 5G technology development. In this study, via a simple hydrothermal and pyrolysis strategy, randomly interleaved CoNiO2 nanosheets and uniformly ultrafine CoNi nanocrystals are anchored onto both sides of a single-layered MXene. The absorption mechanism demonstrated that the hierarchical heterostructure prevents the aggregation of MXene nanoflakes and magnetic crystallites. In addition, the introduction of the double-magnetic phase of CoNiO2/CoNi arrays can not only enhance the magnetic loss capacity but also generate larger void spaces and abundant heterogeneous interfaces, collectively promoting impedance-matching and furthering microwave attenuation capabilities at a low frequency. Hence, the reflection loss of the optimal absorber (M–MCNO) is −45.33 dB at 3.24 GHz, which corresponds to a matching thickness of 5.0 mm. Moreover, its EAB can entirely cover the S-band and C-band by tailoring the matching thickness from 2 to 7 mm. Satellite radar cross-section (RCS) simulations demonstrated that the M–MCNO can reduce the RCS value to below −10 dB m2 over a multi-angle range. Thus, the proposed hybrid absorber is of great significance for the development of magnetized MXene composites with superior low-frequency microwave absorption properties. Full article
Show Figures

Figure 1

11 pages, 861 KiB  
Article
The Combination of Citrus Rootstock and Scion Cultivar Influences Trioza erytreae (Hemiptera: Triozidae) Survival, Preference Choice and Oviposition
by María Quintana-González de Chaves, Nancy Montero-Gomez, Carlos Álvarez-Acosta, Estrella Hernández-Suárez, Aurea Hervalejo, Juan M. Arjona-López and Francisco J. Arenas-Arenas
Insects 2024, 15(5), 363; https://doi.org/10.3390/insects15050363 (registering DOI) - 16 May 2024
Abstract
Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a citrus pest which produces gall symptoms on leaves and transmits bacteria associated with the citrus disease Huanglongbing, ‘Candidatus Liberibacter’ spp. In the present work, the biology and behaviour of T. erytreae were studied [...] Read more.
Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a citrus pest which produces gall symptoms on leaves and transmits bacteria associated with the citrus disease Huanglongbing, ‘Candidatus Liberibacter’ spp. In the present work, the biology and behaviour of T. erytreae were studied in different rootstock–cultivar combinations. Six rootstocks were used, Flying dragon (FD), ‘Cleopatra’ mandarin (CL), Carrizo citrange (CC), Forner-Alcaide no.5 (FA5), Forner-Alcaide no.517 (FA517) and Citrus macrophylla (CM), and six scion cultivars: ‘Star Ruby’, ‘Clemenules’, ‘Navelina’, ‘Valencia Late’, ‘Fino 49’ and ‘Ortanique’. Survival and oviposition were evaluated in a no-choice trial, and preference in a choice trial, all of them under greenhouse conditions. Trioza erytreae did not show a clear settle preference for any citrus combination. However, it was able to lay more eggs in ‘Fino 49’ grafted on CC than on FD. In terms of survival, ‘Ortanique’ grafted onto FA5 was more suitable than when grafted onto FA517, and in the case of ‘Valencia Late’, when it was grafted onto CM rather than CC. Our results showed that T. erytreae behave differently depending on the citrus combination. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

31 pages, 786 KiB  
Systematic Review
Assessment of the Effects of Physiotherapy on Back Care and Prevention of Non-Specific Low Back Pain in Children and Adolescents: A Systematic Review and Meta-Analysis
by José Manuel García-Moreno, Inmaculada Calvo-Muñoz, Antonia Gómez-Conesa and José Antonio López-López
Healthcare 2024, 12(10), 1036; https://doi.org/10.3390/healthcare12101036 (registering DOI) - 16 May 2024
Abstract
Non-specific low back pain (NSLBP) in children and adolescents has increased in recent years, and the evidence of the physiotherapy interventions in back care needs to be updated. Our main goal was to quantify the effects of preventive physiotherapy interventions on improving behavior [...] Read more.
Non-specific low back pain (NSLBP) in children and adolescents has increased in recent years, and the evidence of the physiotherapy interventions in back care needs to be updated. Our main goal was to quantify the effects of preventive physiotherapy interventions on improving behavior and knowledge related to back care and prevention of NSLBP in children and adolescents. Based on two previous meta-analyses, Cochrane Library, MEDLINE, PEDro, Web of Science, LILACS, IBECS, PsycINFO, and IME databases and several journals were searched. Two researchers independently extracted data and assessed the risk of bias in the studies using the RoB2 tool. Data were described according to PRISMA guidelines. A total of 24 studies (28 reports) were included. In the posttest, the behavior variable obtained an overall effect size of d+ = 1.48 (95%CI: 0.40 to 2.56), and the knowledge variable obtained an effect size of d+ = 1.41 (95%CI: 1.05 to 1.76). Physiotherapy has demonstrated beneficial impacts on behavior and knowledge concerning back care and to prevent NSLBP in children and adolescents. Interventions focusing on postural hygiene and exercise should be preferred, especially those that are shorter in number of weeks, more intense, and incorporate as many intervention hours as possible. Full article
17 pages, 768 KiB  
Article
Periodontal Health and Its Relationship with Psychological Stress: A Cross-Sectional Study
by Monica Macrì, Giuseppe D’Albis, Vincenzo D’Albis, Anna Antonacci, Antonia Abbinante, Riccardo Stefanelli, Francesco Pegreffi and Felice Festa
J. Clin. Med. 2024, 13(10), 2942; https://doi.org/10.3390/jcm13102942 (registering DOI) - 16 May 2024
Abstract
Background: Studies suggest that chronic psychological stress can lead to oral health deterioration, alter the immune response, and possibly contribute to increased inflammation, which can impact the physiological healing of periodontal tissues. This cross-sectional study seeks to assess and improve clinical understanding [...] Read more.
Background: Studies suggest that chronic psychological stress can lead to oral health deterioration, alter the immune response, and possibly contribute to increased inflammation, which can impact the physiological healing of periodontal tissues. This cross-sectional study seeks to assess and improve clinical understanding regarding the relationship between perceived stress, mindfulness, and periodontal health. Methods: A total of 203 people were analyzed from December 2022 to June 2023. The Periodontal Screening and Recording (PSR) score and Gingival Bleeding Index (GBI), and Plaque Control Record (PCR) of every patient were registered. Subsequently, participants completed the Sheldon Cohen Perceived Stress Scale (PSS) and the Mindfulness Awareness Attention Scale (MAAS) questionnaires. The collected data underwent statistical analysis, encompassing the evaluation of correlations and dependencies. Applying Welch’s t-test to assess the relationship between MAAS and the variable indicating the presence or absence of periodontitis, a noteworthy p-value of 0.004265 was obtained. Results: This underscores a significant distinction in MAAS scores between patients affected by periodontitis and those unaffected by the condition. Additionally, Pearson correlations were computed for GBI and perceived stress, PCR and perceived stress, PCR and MAAS. The resulting p-values of 2.2–16, 3.925–8, and 2.468–8, respectively, indicate a statistically significant correlation in each instance. Conclusions: These findings contribute valuable insights into the interconnectedness of these variables, emphasizing the significance of their associations in the study context. Despite the limitations, the findings of this study suggest a significant relationship between psychological stress, mindfulness, and periodontal tissue health. Clinical trials are necessary to incorporate the assessment of a patient’s psychological status as a new valuable tool in the management of periodontal health. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
12 pages, 2181 KiB  
Article
Exploring Endogenous Processes in Water Supply Systems: Insights from Statistical Methods and δ18O Analysis
by Nikolina Novotni-Horčička, Tamara Marković, Ivan Kovač and Igor Karlović
Water 2024, 16(10), 1425; https://doi.org/10.3390/w16101425 (registering DOI) - 16 May 2024
Abstract
Water used for water supply undergoes numerous changes that affect its composition prior to entering the water supply system (WSS). Once it enters the WSS, it is subject to numerous influences altering its physical and chemical composition, redox potential, and microbial quality. Observations [...] Read more.
Water used for water supply undergoes numerous changes that affect its composition prior to entering the water supply system (WSS). Once it enters the WSS, it is subject to numerous influences altering its physical and chemical composition, redox potential, and microbial quality. Observations of water quality parameters at different locations within the WSS indicate that it is justified to assume that these processes take place from the source to the end user. In this study, we used the results of routine everyday analyses (EC, T, pH, ORP, chloride, nitrate, nitrite, ammonium, and bacteria) supplemented by experimental data from a one-year sampling campaign assessing the main cations and anions and stable isotopes δ2H and δ18O. Through these data, the statistical significance of the differences between the concentrations of the basic water quality parameters among different WSS locations was determined, together with the water retention time in the system. The results indicate minor changes in water chemical composition within the observed WSS, remaining below the prescribed Maximum Contaminant Level (MCL) for human consumption. However, factors such as water retention time, CaCO3 deposition, pH fluctuations, and bacterial growth may influence its suitability, which necessitates further investigation into potential risks affecting water quality. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 2076 KiB  
Article
Performance Improvement of an Electric Vehicle Charging Station Using Brain Emotional Learning-Based Intelligent Control
by Sherif A. Zaid, Hani Albalawi, Aadel M. Alatwi and Atef Elemary
Processes 2024, 12(5), 1014; https://doi.org/10.3390/pr12051014 (registering DOI) - 16 May 2024
Abstract
Electric vehicle (EV) charging facilities are essential to their development and deployment. These days, autonomous microgrids that use renewable energy resources to energize charging stations for electric vehicles alleviate pressure on the public electricity grid. Nevertheless, controlling and managing such charging stations’ energy [...] Read more.
Electric vehicle (EV) charging facilities are essential to their development and deployment. These days, autonomous microgrids that use renewable energy resources to energize charging stations for electric vehicles alleviate pressure on the public electricity grid. Nevertheless, controlling and managing such charging stations’ energy is difficult due to the nonlinearity and irregular character of renewable energy sources. The current research recommends using a Brain Emotional Learning Intelligent Control (BELBIC) controller to enhance an autonomous EV charging station’s performance and power management. The charging station uses a battery to store energy and is primarily powered by photovoltaic (PV) solar energy. The principles of BELBIC are dependent on emotional cues and sensory inputs, and they are based on an emotion processing system in the brain. Noise and parameter variations do not affect this kind of controller. In this study, the performance of a conventional proportional–integral (PI) controller and the suggested BELBIC controller is evaluated for variations in solar insolation. The various parts of an EV charging station are simulated and modelled by the MATLAB/Simulink framework. The findings show that, in comparison to the conventional PI controller, the suggested BELBIC controller greatly enhances the transient responsiveness of the EV charging station’s performance. The EV keeps charging while the storage battery perfectly saves and keeps steady variations in PV power, even in the face of any PV insolation disturbances. The suggested system’s simulation results are provided and scrutinized to confirm the concept’s suitability. The findings validate the robustness of the suggested BELBIC control versus parameter variations. Full article
16 pages, 13921 KiB  
Article
Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 1: Flow Field Investigations with Phase-Locked Particle Image Velocimetry
by Tobias Schubert, Dragan Kožulović and Martin Bitter
Aerospace 2024, 11(5), 403; https://doi.org/10.3390/aerospace11050403 (registering DOI) - 16 May 2024
Abstract
Particle image velocimetry (PIV) measurements were performed inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions to investigate the near-endwall flow. Of particular research interest was the dominant periodic disturbance of the flow field by incoming wakes, which were generated [...] Read more.
Particle image velocimetry (PIV) measurements were performed inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions to investigate the near-endwall flow. Of particular research interest was the dominant periodic disturbance of the flow field by incoming wakes, which were generated by moving cylindrical bars at a frequency of 500 Hz. Two PIV setups were utilized to resolve both (1) a large blade-to-blade plane close to the endwall as well as midspan and (2) the wake effects in an axial flow field downstream of the blade passage. The measurements were performed using a phase-locked approach in order to align and compare the results with comprehensive CFD data that are also available for this test case. The experimental results not only support a better understanding and even a quantification of the wake-induced over/under-turning inside and downstream of the passage, they also enable the tracing of the `negative-jet-effect’, which is widely known in the CFD branch of the turbomachinery community but is seldom visualized in experiments. The results also reveal that the bar wake periodically widens the blade wake by up to 165%, while the secondary flow is less affected and exhibits a phase lag with respect to the 2D-flow effects. The results presented here are an essential basis for the subsequent investigation of the near-endwall blade suction surface effects using unsteady pressure-sensitive paint in the second part of this two-part publication. Full article
(This article belongs to the Special Issue Advanced Flow Diagnostic Tools)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop