The 2023 MDPI Annual Report has
been released!
 
13 pages, 2004 KiB  
Article
Forward Starting Option Pricing under Double Fractional Stochastic Volatilities and Jumps
by Sumei Zhang, Haiyang Xiao and Hongquan Yong
Fractal Fract. 2024, 8(5), 283; https://doi.org/10.3390/fractalfract8050283 (registering DOI) - 08 May 2024
Abstract
This paper aims to provide an effective method for pricing forward starting options under the double fractional stochastic volatilities mixed-exponential jump-diffusion model. The value of a forward starting option is expressed in terms of the expectation of the forward characteristic function of log [...] Read more.
This paper aims to provide an effective method for pricing forward starting options under the double fractional stochastic volatilities mixed-exponential jump-diffusion model. The value of a forward starting option is expressed in terms of the expectation of the forward characteristic function of log return. To obtain the forward characteristic function, we approximate the pricing model with a semimartingale by introducing two small perturbed parameters. Then, we rewrite the forward characteristic function as a conditional expectation of the proportion characteristic function which is expressed in terms of the solution to a classic PDE. With the affine structure of the approximate model, we obtain the solution to the PDE. Based on the derived forward characteristic function and the Fourier transform technique, we develop a pricing algorithm for forward starting options. For comparison, we also develop a simulation scheme for evaluating forward starting options. The numerical results demonstrate that the proposed pricing algorithm is effective. Exhaustive comparative experiments on eight models show that the effects of fractional Brownian motion, mixed-exponential jump, and the second volatility component on forward starting option prices are significant, and especially, the second fractional volatility is necessary to price accurately forward starting options under the framework of fractional Brownian motion. Full article
Show Figures

Figure 1

19 pages, 833 KiB  
Article
A Comparative Study of the Tourism Carrying Capacity of the State of Baja California between 2019 and 2022
by Blanca Bernal, Nancy Montero and Sergio Vázquez
Sustainability 2024, 16(10), 3938; https://doi.org/10.3390/su16103938 (registering DOI) - 08 May 2024
Abstract
The purpose of this work is to conduct a comparative study of variations in the indicators of the tourism carrying capacity in the state of Baja California. It is crucial to consider that the state had to confront the COVID-19 pandemic, during which [...] Read more.
The purpose of this work is to conduct a comparative study of variations in the indicators of the tourism carrying capacity in the state of Baja California. It is crucial to consider that the state had to confront the COVID-19 pandemic, during which tourism was not deemed an essential activity. This circumstance generated numerous social, psychological, and economic effects, primarily. In this regard, the aim is to identify the consequences of organizing events that promote tourism, particularly concerning the opinions of business professionals in the region. This is a qualitative and longitudinal study; the initial phase took place in May 2019, while the second survey occurred in the summer of 2022. The statistical sample is non-probabilistic and based on convenience, comprising 320 tourism businesses. The findings indicate that the tourist destinations remained appealing, experiencing inflows just above the average and approaching their capacity limits. Significantly, there are areas for improvement in terms of their tourist load capacities across each of the dimensions studied, despite the global health crisis. Full article
(This article belongs to the Special Issue Sustainable Tourism Planning and Management)
Show Figures

Figure 1

16 pages, 6420 KiB  
Article
Near Real-Time Monitoring of Large Gradient Nonlinear Subsidence in Mining Areas: A Hybrid SBAS-InSAR Method Integrating Robust Sequential Adjustment and Deep Learning
by Yuanjian Wang, Ximin Cui, Yuhang Che, Yuling Zhao, Peixian Li, Xinliang Kang and Yue Jiang
Remote Sens. 2024, 16(10), 1664; https://doi.org/10.3390/rs16101664 (registering DOI) - 08 May 2024
Abstract
With the increasing availability of satellite monitoring data, the demand for storage and computational resources for updating the results of monitoring the surface subsidence in a mining area continues to rise. Sequential adjustment (SA) models are considered effective for rapidly updating time series [...] Read more.
With the increasing availability of satellite monitoring data, the demand for storage and computational resources for updating the results of monitoring the surface subsidence in a mining area continues to rise. Sequential adjustment (SA) models are considered effective for rapidly updating time series interferometry synthetic aperture radar (TS-InSAR) measurements. However, the accuracy of surface subsidence values estimated through traditional sequential adjustment is highly sensitive to abnormal observations or prior information on anomalies. Moreover, the surface subsidence associated with mining exhibits nonlinear and large gradient characteristics, making general InSAR methods challenging for obtaining reliable monitoring results. In this study, we employ the phase unwrapping network (PUNet) to obtain unwrapped values of differential interferograms. To mitigate the impact of abnormal errors in the near real-time small baseline subset InSAR (SBAS-InSAR) sequential updating process in mining areas, a robust sequential adjustment method based on M-estimation is proposed to estimate the temporal deformation parameters by using the equivalent weight model. Using a coal backfilling mining face in Shanxi, China, as the study area and the Sentinel-1 SAR dataset, we comprehensively evaluate the performance of unwrapping methods and subsidence time series estimation techniques and evaluate the effect of filling mining on surface subsidence control. The results are validated using leveling measurements within the study area. The relative error of the proposed method is less than 5%, which can meet the requirements of monitoring the surface subsidence in mining areas. The method proposed in this study not only enhances computational efficiency but also addresses the issue of underestimation encountered by InSAR methods in mining area applications. Furthermore, it also mitigates unwrapping phase anomalies on the monitoring results. Full article
Show Figures

Graphical abstract

21 pages, 796 KiB  
Review
Current Status and Future Perspectives of Antibody–Drug Conjugates in Hormone Receptor-Positive Breast Cancer
by Maria Grammoustianou, Foteinos-Ioannis Dimitrakopoulos and Angelos Koutras
Cancers 2024, 16(10), 1801; https://doi.org/10.3390/cancers16101801 (registering DOI) - 08 May 2024
Abstract
Breast cancer is the most common cancer type in women. The vast majority of breast cancer patients have hormone receptor-positive (HR+) tumors. In advanced HR+ breast cancer, the combination of endocrine therapy with cyclin-dependent kinase 4/6 (CDK4/6) inhibitors is considered the standard of [...] Read more.
Breast cancer is the most common cancer type in women. The vast majority of breast cancer patients have hormone receptor-positive (HR+) tumors. In advanced HR+ breast cancer, the combination of endocrine therapy with cyclin-dependent kinase 4/6 (CDK4/6) inhibitors is considered the standard of care in the front-line setting. Nevertheless, resistance to hormonal therapy and CDK4/6 inhibitors eventually occurs, leading to progression of the disease. Antibody–drug conjugates (ADCs) comprise a promising therapeutic choice with significant efficacy in patients with HR+ breast cancer, which is resistant to endocrine treatment. ADCs typically consist of a cytotoxic payload attached by a linker to a monoclonal antibody that targets a specific tumor-associated antigen, offering the advantage of a more selective delivery of chemotherapy to cancer cells. In this review, we focus on the ADC mechanisms of action, their toxicity profile and therapeutic uses as well as on related biomarkers and future perspectives in advanced HR+ breast cancer. Full article
(This article belongs to the Special Issue 2nd Edition: Estrogen Receptor-Positive (ER+) Breast Cancers)
Show Figures

Figure 1

15 pages, 731 KiB  
Article
Synergistic Integration of EVs and Renewable DGs in Distribution Micro-Grids
by Mahmoud Ghofrani
Sustainability 2024, 16(10), 3939; https://doi.org/10.3390/su16103939 (registering DOI) - 08 May 2024
Abstract
This paper proposes a multi-objective optimization framework for safe, reliable, and economic integration of electric vehicles (EVs) and renewable distributed generators (DGs) in distribution micro-grids. EV and DG coordination optimization with the use of vehicle-to-grid (V2G) technology along with system reconfiguration optimization is [...] Read more.
This paper proposes a multi-objective optimization framework for safe, reliable, and economic integration of electric vehicles (EVs) and renewable distributed generators (DGs) in distribution micro-grids. EV and DG coordination optimization with the use of vehicle-to-grid (V2G) technology along with system reconfiguration optimization is developed to provide collective revenues and address integrational complications that may occur by additional system loading due to EV charging and EV-DG energy exchanges. A Genetic Algorithm (GA) optimizes the EV charging/discharging in synergies with renewable DGs to maximize benefits that can be captured by their collaborative participation in electricity market and through renewable energy arbitrage. The developed EV charging/discharging optimization is implemented in a real 134-bus distribution network and is evaluated for its potential operational implications, namely, increased system losses. A system reconfiguration is then proposed to reduce the system losses by optimizing the flow of power through switching on/off the connections within the micro-grid and/or with other distribution systems. Simulation results demonstrate the efficiency of the proposed method in not only providing collective revenues, but also in enhancing the system operation by reducing the losses of the distribution grid. The collective benefits proposed by the developed optimization and validated by the simulation results facilitate transitioning to clean and eco-friendly sources of energy for generation and transportation, which in turn leads to more sustainable development of societies and communities. Full article
28 pages, 3843 KiB  
Review
Predictor Variables in the Spread of Chagas Disease in Rural Areas
by Liziana de Sousa Leite, Valéria Christina de Rezende Feres and Paulo Sérgio Scalize
Pathogens 2024, 13(5), 394; https://doi.org/10.3390/pathogens13050394 (registering DOI) - 08 May 2024
Abstract
Over a hundred years ago after the discovery of Chagas disease (CD) in Brazil, the World Health Organization estimates a number of 6 to 7 million people infected by Trypanosoma cruzi worldwide. Therefore, the goal of this work was to identify variables related [...] Read more.
Over a hundred years ago after the discovery of Chagas disease (CD) in Brazil, the World Health Organization estimates a number of 6 to 7 million people infected by Trypanosoma cruzi worldwide. Therefore, the goal of this work was to identify variables related to the spread of infection by T. cruzi in humans living in rural areas, seeking predictor variables. A systematic review of the literature has been conducted, with a search in the Scopus platform, using the search string “Chagas disease” and “rural”, resulting in 85 valid and analyzed scientific studies (1977 and 2022). Twenty-seven predictor variables have been acquired, and 19 of them have been grouped, such as: socioeconomic and educational, housing, environmental, sanitary, and cultural; and 8 variables related to T. cruzi seropositive individuals. The predictor variables yielded significant results (p-value < 0.05) in 59.5% of the cases (195/328), with a median of 66.7%. In other words, studies relating to 50% of the 27 variables showed significance equal to or greater than 66.7% of the time. The independent variables with the highest proportion of significant data (p-value < 0.05) were Education (87.6%), Intradomicile building (70%), Domestic animals (69.6%), and Triatomines (69.2%) in the households. Some variables reached 100%; however, few articles were found, indicating the need for further research, especially for Sanitation and Culture. It has been concluded that, in the several contexts found, the social vulnerability and lack of information led the individual to living in environments where inhabitability is inadequate, to perform limited work activity and develop habits and behaviors which impair them in an environmental insalubrity situation, favorable to the access of vectors and pathogens of anthropozoonoses such as CD. Full article
(This article belongs to the Special Issue Insects Vectors of Pathogens)
Show Figures

Figure 1

37 pages, 3481 KiB  
Article
Chemical Leasing (Ch.L.) and the Sherwood Plot
by Georgios Karakatsanis and Christos Makropoulos
Resources 2024, 13(5), 65; https://doi.org/10.3390/resources13050065 (registering DOI) - 08 May 2024
Abstract
Although the Circular Economy (CE) has made remarkable technological progress by offering a wide range of alternative engineering solutions, an obstacle for its large-scale commercialization is nested in the adoption of those business and financial models that accurately depict the value generated from [...] Read more.
Although the Circular Economy (CE) has made remarkable technological progress by offering a wide range of alternative engineering solutions, an obstacle for its large-scale commercialization is nested in the adoption of those business and financial models that accurately depict the value generated from resource recovery. Recovering a resource from a waste matrix conserves natural reserves in situ by reducing demand for virgin resources, as well as conserving environmental carrying capacities by reducing waste discharges. The standard business model for resource recovery is Industrial Symbiosis (IS), where industries organize in clusters and allocate the process of waste matrices to achieve the recovery of a valuable resource at an optimal cost. Our work develops a coherent microeconomic architecture of Chemical Leasing (Ch.L.) contracts within the analytical framework of the Sherwood Plot (SP) for recovering a Value-Added Compound (VAC) from a wastewater matrix. The SP depicts the relationship between the VAC’s dilution in the wastewater matrix and its cost of recovery. ChL is engineered on the SP as a financial contract, motivating industrial synergies for delivering the VAC at the target dilution level at the market’s minimum cost and with mutual profits. In this context, we develop a ChL market typology where information completeness on which industry is most cost-efficient in recovering a VAC at every dilution level determines market dominance via a Kullback–Leibler Divergence (DKL) metric. In turn, we model how payoffs are allocated between industries via three ChL contract pricing systems, their profitability limits, and their fitting potential by market type. Finally, we discuss the emerging applications of ChL financial engineering in relation to three vital pillars of resource recovery and natural capital conservation. Full article
(This article belongs to the Special Issue Advances in Wastewater Reuse)
28 pages, 3449 KiB  
Article
Diagnostic Tool for Early Detection of Rheumatic Disorders Using Machine Learning Algorithm and Predictive Models
by Godfrey A. Mills, Dzifa Dey, Mohammed Kassim, Aminu Yiwere and Kenneth Broni
BioMedInformatics 2024, 4(2), 1174-1201; https://doi.org/10.3390/biomedinformatics4020065 (registering DOI) - 08 May 2024
Abstract
Background: Rheumatic diseases are chronic diseases that affect joints, tendons, ligaments, bones, muscles, and other vital organs. Detection of rheumatic diseases is a complex process that requires careful analysis of heterogeneous content from clinical examinations, patient history, and laboratory investigations. Machine learning techniques [...] Read more.
Background: Rheumatic diseases are chronic diseases that affect joints, tendons, ligaments, bones, muscles, and other vital organs. Detection of rheumatic diseases is a complex process that requires careful analysis of heterogeneous content from clinical examinations, patient history, and laboratory investigations. Machine learning techniques have made it possible to integrate such techniques into the complex diagnostic process to identify inherent features that lead to disease formation, development, and progression for remedial measures. Methods: An automated diagnostic tool using a multilayer neural network computational engine is presented to detect rheumatic disorders and the type of underlying disorder for therapeutic strategies. Rheumatic disorders considered are rheumatoid arthritis, osteoarthritis, and systemic lupus erythematosus. The detection system was trained and tested using 70% and 30% respectively of labelled synthetic dataset of 100,000 records containing both single and multiple disorders. Results: The detection system was able to detect and predict underlying disorders with accuracy of 97.48%, sensitivity of 96.80%, and specificity of 97.50%. Conclusion: The good performance suggests that this solution is robust enough and can be implemented for screening patients for intervention measures. This is a much-needed solution in environments with limited specialists, as the solution promotes task-shifting from the specialist level to the primary healthcare physicians. Full article
18 pages, 9633 KiB  
Article
Characterizing Glomerular Barrier Dysfunction with Patient-Derived Serum in Glomerulus-on-a-Chip Models: Unveiling New Insights into Glomerulonephritis
by Shin Young Kim, Yun Yeong Choi, Eun Jeong Kwon, Seungwan Seo, Wan Young Kim, Sung Hyuk Park, Seokwoo Park, Ho Jun Chin, Ki Young Na and Sejoong Kim
Int. J. Mol. Sci. 2024, 25(10), 5121; https://doi.org/10.3390/ijms25105121 (registering DOI) - 08 May 2024
Abstract
Glomerulonephritis (GN) is characterized by podocyte injury or glomerular filtration dysfunction, which results in proteinuria and eventual loss of kidney function. Progress in studying the mechanism of GN, and developing an effective therapy, has been limited by the absence of suitable in vitro [...] Read more.
Glomerulonephritis (GN) is characterized by podocyte injury or glomerular filtration dysfunction, which results in proteinuria and eventual loss of kidney function. Progress in studying the mechanism of GN, and developing an effective therapy, has been limited by the absence of suitable in vitro models that can closely recapitulate human physiological responses. We developed a microfluidic glomerulus-on-a-chip device that can recapitulate the physiological environment to construct a functional filtration barrier, with which we investigated biological changes in podocytes and dynamic alterations in the permeability of the glomerular filtration barrier (GFB) on a chip. We also evaluated the potential of GN-mimicking devices as a model for predicting responses to human GN. Glomerular endothelial cells and podocytes successfully formed intact monolayers on opposite sides of the membrane in our chip device. Permselectivity analysis confirmed that the chip was constituted by a functional GFB that could accurately perform differential clearance of albumin and dextran. Reduction in cell viability resulting from damage was observed in all serum-induced GN models. The expression of podocyte-specific marker WT1 was also decreased. Albumin permeability was increased in most models of serum-induced IgA nephropathy (IgAN) and membranous nephropathy (MN). However, sera from patients with minimal change disease (MCD) or lupus nephritis (LN) did not induce a loss of permeability. This glomerulus-on-a-chip system may provide a platform of glomerular cell culture for in vitro GFB in formation of a functional three-dimensional glomerular structure. Establishing a disease model of GN on a chip could accelerate our understanding of pathophysiological mechanisms of glomerulopathy. Full article
(This article belongs to the Special Issue Molecular Study of Renal Diseases)
Show Figures

Figure 1

19 pages, 2319 KiB  
Review
The Potential of Selenium-Based Therapies for Ocular Oxidative Stress
by Lulwah Al-Bassam, Gemma C. Shearman, Steve Brocchini, Raid G. Alany and Gareth R. Williams
Pharmaceutics 2024, 16(5), 631; https://doi.org/10.3390/pharmaceutics16050631 (registering DOI) - 08 May 2024
Abstract
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress [...] Read more.
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress and maintaining ocular health. Selenium has attracted considerable attention because it is a component of selenoproteins and antioxidant enzymes. The application of selenium to a patient can increase selenoprotein expression, counteracting the effect of reactive oxygen species by increasing the presence of antioxidant enzymes, and thus slowing the progression of chronic ocular disorders. Oxidative stress effects at the biomolecular level for prevalent ocular conditions are described in this review along with some of the known defensive mechanisms, with a focus on selenoproteins. The importance of selenium in the eye is described, along with a discussion of selenium studies and uses. Selenium’s antioxidant and anti-inflammatory qualities may prevent or delay eye diseases. Recent breakthroughs in drug delivery methods and nanotechnology for selenium-based ocular medication delivery are enumerated. Different types of selenium may be employed in formulations aimed at managing ocular oxidative stress conditions. Full article
Show Figures

Figure 1

35 pages, 1091 KiB  
Review
Microplastics and Oxidative Stress—Current Problems and Prospects
by Kornelia Kadac-Czapska, Justyna Ośko, Eliza Knez and Małgorzata Grembecka
Antioxidants 2024, 13(5), 579; https://doi.org/10.3390/antiox13050579 (registering DOI) - 08 May 2024
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of [...] Read more.
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS. Full article
13 pages, 2261 KiB  
Article
Peposertib, a DNA-PK Inhibitor, Enhances the Anti-Tumor Efficacy of Topoisomerase II Inhibitors in Triple-Negative Breast Cancer Models
by Steffie Revia, Felix Neumann, Julia Jabs, Florian Orio, Christian Sirrenberg, Astrid Zimmermann, Christiane Amendt and Joachim Albers
Int. J. Mol. Sci. 2024, 25(10), 5120; https://doi.org/10.3390/ijms25105120 (registering DOI) - 08 May 2024
Abstract
Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the [...] Read more.
Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients. Full article
(This article belongs to the Special Issue DNA Damage and DNA Repair Pathways in Cancer Development)
Show Figures

Figure 1

14 pages, 6604 KiB  
Article
(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation
by Wei Zhang, Liyan Xue, Jincheng Zhang, Meng Zhang, Kaixian Wang, Minzhong Huang, Fan Yang, Zhengming Jiang and Tongxiang Liang
Materials 2024, 17(10), 2205; https://doi.org/10.3390/ma17102205 (registering DOI) - 08 May 2024
Abstract
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address [...] Read more.
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address these issues, we developed a novel ceramic fiber@bioderived carbon composite aerogel with a continuous through-hole structure via electrospinning and freeze-casting methods. Specifically, an aerogel was prepared by incorporating perovskite oxide (Ca0.25La0.5Dy0.25)CrO3 ceramic fibers (CCFs) and amylopectin-derived carbon (ADC). The CCFs exhibited remarkable photothermal conversion efficiencies, and the ADC served as a connecting agent and imparted hydrophilicity to the aerogel due to its abundant oxygen-containing functional groups. After optimizing the composition and microstructure, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel demonstrated remarkable properties, including efficient light absorption and rapid transport of water and solutes. Under 1 kW m−2 light intensity irradiation, this novel material exhibited a high temperature (48.3 °C), high evaporation rate (1.68 kg m−2 h−1), and impressive solar vapor conversion efficiency (91.6%). Moreover, it exhibited long-term stability in water evaporation even with highly concentrated salt solutions (25 wt%). Therefore, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel holds great promise for various applications of solar interface evaporation. Full article
(This article belongs to the Special Issue High-Entropy Ceramics: Synthesis and Applications)
Show Figures

Figure 1

34 pages, 49917 KiB  
Editorial
Meeting and Working with K. Alex Müller: Personal Memories
by Annette Bussmann-Holder and Hugo Keller
Condens. Matter 2024, 9(2), 24; https://doi.org/10.3390/condmat9020024 (registering DOI) - 08 May 2024
Abstract
On 9 January 2023, K [...] Full article
(This article belongs to the Special Issue Complexity in Quantum Materials: In Honor of Prof. K.A. Muller)
Show Figures

Figure 1

23 pages, 1677 KiB  
Article
Effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the Structure and Function of the Intestinal Flora in Rabbits Undergoing Hepatic Artery Infusion Chemotherapy
by Xiangdong Yan, Liuhui Bai, Jin Lv, Ping Qi, Xiaojing Song and Lei Zhang
Biology 2024, 13(5), 327; https://doi.org/10.3390/biology13050327 (registering DOI) - 08 May 2024
Abstract
Few studies have explored the biological mechanism by which probiotics alleviate adverse reactions to chemotherapy drugs after local hepatic chemotherapy perfusion by regulating the intestinal flora. This study investigates the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus [...] Read more.
Few studies have explored the biological mechanism by which probiotics alleviate adverse reactions to chemotherapy drugs after local hepatic chemotherapy perfusion by regulating the intestinal flora. This study investigates the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the intestinal microbial structure and intestinal barrier function, as well as the potential mechanism in rabbits after local hepatic chemotherapy infusion. Eighteen New Zealand White rabbits were randomly divided into a control group, a hepatic local chemotherapy perfusion group, and a hepatic local chemotherapy perfusion + Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets group to assess the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the adverse reactions. The administration of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets alleviated the intestinal flora disorder caused by local hepatic perfusion chemotherapy, promoted the growth of beneficial bacteria, and inhibited the growth of harmful bacteria. The Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets also reduced the levels of serum pro-inflammatory cytokines and liver injury factors induced by local hepatic perfusion chemotherapy. Our findings indicate that Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets can ameliorate the toxicity and side effects of chemotherapy by regulating intestinal flora, blocking pro-inflammatory cytokines, reducing liver injury factors, and repairing the intestinal barrier. Probiotics may be used as a potential alternative therapeutic strategy to prevent the adverse reactions caused by chemotherapy with local hepatic perfusion. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
18 pages, 808 KiB  
Article
Four-Component Statistical Copolymers by RAFT Polymerization
by Dimitrios Vagenas and Stergios Pispas
Polymers 2024, 16(10), 1321; https://doi.org/10.3390/polym16101321 (registering DOI) - 08 May 2024
Abstract
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA [...] Read more.
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA475), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzyl methacrylate (BzMA). Monomer choice was based on factors such as the chemical nature of pendant functional groups, the polyelectrolyte/polyampholyte and amphiphilic character and the overall hydrophobic–hydrophilic balance (HLB) of the obtained quaterpolymers. Their synthesis was achieved via a one-pot reversible addition fragmentation chain transfer (RAFT) polymerization in two distinct compositions and molecular architectures, linear and hyperbranched, respectively, in order to explore the effects of macromolecular topology. The resulting statistical quaterpolymers were characterized via 1H-NMR and ATR-FTIR spectroscopies. Their behavior in aqueous solutions was studied by dynamic (DLS) and electrophoretic light scattering (ELS) and fluorescence spectroscopy (FS), producing vital information concerning their self-assembly and the structure of the formed aggregates. The physicochemical studies were extended by tuning parameters such as the solution pH and ionic strength. Finally, the quaterpolymer behavior in FBS/PBS solutions was investigated to test their colloid stability and biocompatibility in an in vivo-mimicking, biological fluid environment. Full article
(This article belongs to the Section Polymer Chemistry)
17 pages, 400 KiB  
Review
Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications
by Mónica Serra, Eduardo Gudina, Cláudia Botelho, José António Teixeira and Ana Novo Barros
Cosmetics 2024, 11(3), 76; https://doi.org/10.3390/cosmetics11030076 (registering DOI) - 08 May 2024
Abstract
Polyglutamic acid (PGA), a biopolymer comprising repeating units of glutamic acid, has garnered significant attention owing to its versatile applications. In recent years, microbial production processes have emerged as promising methods for the large-scale synthesis of PGA, offering advantages such as sustainability, efficiency, [...] Read more.
Polyglutamic acid (PGA), a biopolymer comprising repeating units of glutamic acid, has garnered significant attention owing to its versatile applications. In recent years, microbial production processes have emerged as promising methods for the large-scale synthesis of PGA, offering advantages such as sustainability, efficiency, and tailored molecular properties. Beyond its industrial applications, PGA exhibits unique properties that render it an attractive candidate for use in the cosmetic industry. The biocompatibility, water solubility, and film-forming characteristics of PGA make it an ideal ingredient for cosmetic formulations. This article explores the extensive potential cosmetic applications of PGA, highlighting its multifaceted role in skincare, haircare, and various beauty products. From moisturizing formulations to depigmentating agents and sunscreen products, PGA offers a wide array of benefits. Its ability to deeply hydrate the skin and hair makes it an ideal ingredient for moisturizers, conditioners, and hydrating masks. Moreover, PGA’s depigmentating properties contribute to the reduction in hyperpigmentation and uneven skin tone, enhancing the overall complexion. As the demand for sustainable and bio-derived cosmetic ingredients escalates, comprehending the microbial production and cosmetic benefits of PGA becomes crucial for driving innovation in the cosmetic sector. Full article
(This article belongs to the Special Issue Natural Sources for Cosmetic Ingredients: Challenges and Innovations)
26 pages, 1143 KiB  
Review
Models of Herpes Simplex Virus Latency
by Paige N. Canova, Audra J. Charron and David A. Leib
Viruses 2024, 16(5), 747; https://doi.org/10.3390/v16050747 (registering DOI) - 08 May 2024
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily [...] Read more.
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each. Full article
(This article belongs to the Special Issue Advances in HSV Research)
24 pages, 1136 KiB  
Article
Comprehensive Evaluation of Resilience for Qinling Tunnel Group Operation Safety System Based on Combined Weighting and Cloud Model
by Haiyang Liu and Yiyang He
Sustainability 2024, 16(10), 3937; https://doi.org/10.3390/su16103937 (registering DOI) - 08 May 2024
Abstract
An extensive network of tunnels has recently been constructed in the Qinling Mountains. Characterized by high and steep terrain, this network has led to frequent traffic accidents. To address this issue, this paper introduces the theory of resilience into the evaluation system of [...] Read more.
An extensive network of tunnels has recently been constructed in the Qinling Mountains. Characterized by high and steep terrain, this network has led to frequent traffic accidents. To address this issue, this paper introduces the theory of resilience into the evaluation system of safety systems during the operation period of highway tunnel groups. Based on this, this paper establishes a resilience evaluation index system for the operation safety system of highway tunnel groups, including a human system, vehicle system, and road system. To address both qualitative and quantitative issues concerning the indicators, this paper employs the analytic hierarchy process (AHP) and entropy weight method to combine and assign weights to the resilience evaluation indicators. Subsequently, the cloud model method is utilized to quantify the level of resilience of the highway tunnel group safety system during the operation period. The study results unveiled the patterns of traffic accidents within the Qinling Tunnel Group from the perspectives of vehicle, road, and human factors. The final weight allocation reveals that the road system has the highest proportion, exerting the greatest influence as a primary level index. Moreover, by taking the Qinling Tunnel Group on the Xihan Expressway as an engineering example, the resilience level of the case project was analyzed and obtained. Proposals for enhancing resilience were put forth, taking into account the project’s unique attributes, encompassing adaptability, resistance, and recovery. Overall, this study validates the feasibility and reliability of the proposed method for assessing the resilience of highway networks, offering empirical support for transportation administrators in the implementation of resilience-enhancing strategies. Full article
39 pages, 12717 KiB  
Article
Improved Multi-Strategy Sand Cat Swarm Optimization for Solving Global Optimization
by Kuan Zhang, Yirui He, Yuhang Wang and Changjian Sun
Biomimetics 2024, 9(5), 280; https://doi.org/10.3390/biomimetics9050280 (registering DOI) - 08 May 2024
Abstract
The sand cat swarm optimization algorithm (SCSO) is a novel metaheuristic algorithm that has been proposed in recent years. The algorithm optimizes the search ability of individuals by mimicking the hunting behavior of sand cat groups in nature, thereby achieving robust optimization performance. [...] Read more.
The sand cat swarm optimization algorithm (SCSO) is a novel metaheuristic algorithm that has been proposed in recent years. The algorithm optimizes the search ability of individuals by mimicking the hunting behavior of sand cat groups in nature, thereby achieving robust optimization performance. It is characterized by few control parameters and simple operation. However, due to the lack of population diversity, SCSO is less efficient in solving complex problems and is prone to fall into local optimization. To address these shortcomings and refine the algorithm’s efficacy, an improved multi-strategy sand cat optimization algorithm (IMSCSO) is proposed in this paper. In IMSCSO, a roulette fitness–distance balancing strategy is used to select codes to replace random agents in the exploration phase and enhance the convergence performance of the algorithm. To bolster population diversity, a novel population perturbation strategy is introduced, aiming to facilitate the algorithm’s escape from local optima. Finally, a best–worst perturbation strategy is developed. The approach not only maintains diversity throughout the optimization process but also enhances the algorithm’s exploitation capabilities. To evaluate the performance of the proposed IMSCSO, we conducted experiments in the CEC 2017 test suite and compared IMSCSO with seven other algorithms. The results show that the IMSCSO proposed in this paper has better optimization performance. Full article
Show Figures

Figure 1

26 pages, 688 KiB  
Review
Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines
by Zahra Sedarat and Andrew W. Taylor-Robinson
Pathogens 2024, 13(5), 392; https://doi.org/10.3390/pathogens13050392 (registering DOI) - 08 May 2024
Abstract
Helicobacter pylori is a gastric oncopathogen that infects over half of the world’s human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people [...] Read more.
Helicobacter pylori is a gastric oncopathogen that infects over half of the world’s human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology, structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases. Full article
(This article belongs to the Special Issue Oncopathogens)
14 pages, 14115 KiB  
Article
Highway Deformation Monitoring by Multiple InSAR Technology
by Dan Zhao, Haonan Yao and Xingyu Gu
Sensors 2024, 24(10), 2988; https://doi.org/10.3390/s24102988 (registering DOI) - 08 May 2024
Abstract
Addressing the challenge of large-scale uneven deformation and the complexities of monitoring road conditions, this study focuses on a segment of the G15 Coastal Highway in Jiangsu Province. It employs PS-InSAR, SBAS-InSAR, and DS-InSAR techniques to comprehensively observe deformation. Analysis of 73 image [...] Read more.
Addressing the challenge of large-scale uneven deformation and the complexities of monitoring road conditions, this study focuses on a segment of the G15 Coastal Highway in Jiangsu Province. It employs PS-InSAR, SBAS-InSAR, and DS-InSAR techniques to comprehensively observe deformation. Analysis of 73 image datasets spanning 2018 to 2021 enables separate derivation of deformation data using distinct InSAR methodologies. Results are then interpreted alongside geological and geomorphological features. Findings indicate widespread deformation along the G15 Coastal Highway, notably significant settlement near Guanyun North Hub and uplift near Guhe Bridge. Maximum deformation rates exceeding 10 mm/year are observed in adjacent areas by all three techniques. To assess data consistency across techniques, identical observation points are identified, and correlation and difference analyses are conducted using statistical software. Results reveal a high correlation between the monitoring outcomes of the three techniques, with an average observation difference of less than 2 mm/year. This underscores the feasibility of employing a combination of these InSAR techniques for road deformation monitoring, offering a reliable approach for establishing real-time monitoring systems and serving as a foundation for ongoing road health assessments. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 879 KiB  
Article
Metadata-Private Resource Allocation in Edge Computing Withstands Semi-Malicious Edge Nodes
by Zihou Zhang, Jiangtao Li, Yufeng Li and Yuanhang He
Sensors 2024, 24(10), 2989; https://doi.org/10.3390/s24102989 (registering DOI) - 08 May 2024
Abstract
Edge computing provides higher computational power and lower transmission latency by offloading tasks to nearby edge nodes with available computational resources to meet the requirements of time-sensitive tasks and computationally complex tasks. Resource allocation schemes are essential to this process. To allocate resources [...] Read more.
Edge computing provides higher computational power and lower transmission latency by offloading tasks to nearby edge nodes with available computational resources to meet the requirements of time-sensitive tasks and computationally complex tasks. Resource allocation schemes are essential to this process. To allocate resources effectively, it is necessary to attach metadata to a task to indicate what kind of resources are needed and how many computation resources are required. However, these metadata are sensitive and can be exposed to eavesdroppers, which can lead to privacy breaches. In addition, edge nodes are vulnerable to corruption because of their limited cybersecurity defenses. Attackers can easily obtain end-device privacy through unprotected metadata or corrupted edge nodes. To address this problem, we propose a metadata privacy resource allocation scheme that uses searchable encryption to protect metadata privacy and zero-knowledge proofs to resist semi-malicious edge nodes. We have formally proven that our proposed scheme satisfies the required security concepts and experimentally demonstrated the effectiveness of the scheme. Full article
(This article belongs to the Special Issue Security, Privacy and Cybersecurity in Internet of Things (IoT))
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop