The 2023 MDPI Annual Report has
been released!
 
19 pages, 3002 KiB  
Article
Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone
by Yiming Zhao, Zhe Xiang, Nong Zhang and Jingchen Dai
Processes 2024, 12(5), 983; https://doi.org/10.3390/pr12050983 (registering DOI) - 12 May 2024
Abstract
The low-permeability argillaceous rock mass is an unfavorable geological body commonly found in the construction process of underground engineering conditions such as roadways and tunnels. Due to the compact structure and low permeability of the rock mass, grouting with conventional materials cannot effectively [...] Read more.
The low-permeability argillaceous rock mass is an unfavorable geological body commonly found in the construction process of underground engineering conditions such as roadways and tunnels. Due to the compact structure and low permeability of the rock mass, grouting with conventional materials cannot effectively seal the micro-cracks of the rock mass. Based on the low efficiency of high-pressure grouting of nano-silica sol, this paper preliminarily explores the regularities and mechanism of grouting and pore sealing of low-permeability rock mass under the action of silica sol imbibition from the aspects of gelling properties of silica sol, core pore structure, imbibition law, and pore sealing characteristics. The results show the following: (1) The increase in particle size during the gel process reduced the injectability and wettability of the silica sol. The imbibition properties of silica sol were time-varying, and the deterioration inflection points of injectability and wettability appeared at 10 h and 9 h, respectively. (2) Catalyst, temperature, gel process, and rock mass permeability will affect the law of core imbibition, and the injectability and capillary force of the grouting material and rock mass will jointly affect the imbibition process of silica sol. (3) Silica sol imbibition changed the pore size distribution of the core, the pore volume above 50 nm decreased, and the pore volume below 50 nm increased. Silica sol has multiple effects such as filling, adsorption, and percolation in the imbibition process of the micro-pores of rock mass, and the adsorption and percolation of silica are related to the nano micro-pores. Full article
(This article belongs to the Section Materials Processes)
14 pages, 2199 KiB  
Article
The Role of T-Cadherin (CDH13) in Treatment Options with Garcinol in Melanoma
by Sebastian Staebler, Sebastian Hoechst, Aranya Thongmao, Nadja Schneider, Anja-Katrin Bosserhoff and Silke Kuphal
Cancers 2024, 16(10), 1853; https://doi.org/10.3390/cancers16101853 (registering DOI) - 12 May 2024
Abstract
Targeted therapies with chemotherapeutic agents and immunotherapy with checkpoint inhibitors are among the systemic therapies recommended in the guidelines for clinicians to treat melanoma. Although there have been constant improvements in the treatment of melanoma, resistance to the established therapies continues to occur. [...] Read more.
Targeted therapies with chemotherapeutic agents and immunotherapy with checkpoint inhibitors are among the systemic therapies recommended in the guidelines for clinicians to treat melanoma. Although there have been constant improvements in the treatment of melanoma, resistance to the established therapies continues to occur. Therefore, the purpose of this study was to explore the function of garcinol with regards to specific cancer properties such as proliferation and apoptosis. Garcinol, a natural compound isolated from the plant also known as mangosteen (Garcinia mangostana), is a newly discovered option for cancer treatment. Numerous pharmaceutical substances are derived from plants. For example, the derivates of camptothecin, extracted from the bark of the Chinese tree of happiness (Camptotheca acuminate), or paclitaxel, extracted from the bark of the Western yew tree (Taxus brevifolia), are used as anti-cancer drugs. Here, we show that garcinol reduced proliferation and induced apoptosis in melanoma cell lines. In addition, we found that those cells that are positive for the expression of the cell–cell adhesion molecule T-cadherin (CDH13) respond more sensitively to treatment with garcinol. After knock-down experiments with an siRNA pool against T-cadherin, the sensitivity to garcinol decreased and proliferation and anti-apoptotic behavior of the cells was restored. We conclude that patients who are T-cadherin-positive could especially benefit from a therapy with garcinol. Full article
(This article belongs to the Special Issue Melanoma: Pathology and Translational Research)
Show Figures

Figure 1

14 pages, 7056 KiB  
Article
g2D-Net: Efficient Dehazing with Second-Order Gated Units
by Jia Jia, Zhibo Wang and Jeongik Min
Electronics 2024, 13(10), 1900; https://doi.org/10.3390/electronics13101900 (registering DOI) - 12 May 2024
Abstract
Image dehazing aims to reconstruct potentially clear images from corresponding images corrupted by haze. With the rapid development of deep learning-related technologies, dehazing methods based on deep convolutional neural networks have gradually become mainstream. We note that existing dehazing methods often accompany an [...] Read more.
Image dehazing aims to reconstruct potentially clear images from corresponding images corrupted by haze. With the rapid development of deep learning-related technologies, dehazing methods based on deep convolutional neural networks have gradually become mainstream. We note that existing dehazing methods often accompany an increase in computational overhead while improving the performance of dehazing. We propose a novel lightweight dehazing neural network to balance performance and efficiency: the g2D-Net. The g2D-Net borrows the design ideas of input-adaptive and long-range information interaction from Vision Transformers and introduces two kinds of convolutional blocks, i.e., the g2D Block and the FFT-g2D Block. Specifically, the g2D Block is a residual block with second-order gated units, which inherit the input-adaptive property of a gated unit and can realize the second-order interaction of spatial information. The FFT-g2D Block is a variant of the g2D Block, which efficiently extracts the global features of the feature maps through fast Fourier convolution and fuses them with local features. In addition, we employ the SK Fusion layer to improve the cascade fusion layer in a traditional U-Net, thus introducing the channel attention mechanism and dynamically fusing information from different paths. We conducted comparative experiments on five benchmark datasets, and the results demonstrate that the g2D-Net achieves impressive dehazing performance with relatively low complexity. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

25 pages, 27101 KiB  
Article
Light as a Form of Visual Language Supporting Daily Schedules in Educational Spaces: A Design Framework
by Stavroula Angelaki and Georgios A. Triantafyllidis
Buildings 2024, 14(5), 1385; https://doi.org/10.3390/buildings14051385 (registering DOI) - 12 May 2024
Abstract
This study explores how lighting can be employed as a visual language to enhance communication between the space and its users and develop a design framework for educational spaces. A primary school is used as a case study to apply the proposed design [...] Read more.
This study explores how lighting can be employed as a visual language to enhance communication between the space and its users and develop a design framework for educational spaces. A primary school is used as a case study to apply the proposed design framework. The study focuses on lighting interventions in existing educational spaces to support daily schedules and transitions between activities. In this context, electric light is used as an indicator, highlighting the daily schedule and activities in the space. A theoretical approach is used as a foundation for establishing the design framework that leads to lighting proposals based on the specific spatial characteristics of each study. The outcome is a design solution based on the dominant spatial elements that define the space’s identity and function. The study focuses on educational spaces and lighting for peripheral vision while considering pupils’ visual and spatial development. The proposal has the role of an additional light layer that signals transitions in terms of activities or spatial mobility. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
14 pages, 5883 KiB  
Article
Modelling of a Lake Outburst as a Result of the Development of Piping
by Galina Pryakhina, Valeriia Rasputina and Stepan Svirepov
Water 2024, 16(10), 1379; https://doi.org/10.3390/w16101379 (registering DOI) - 12 May 2024
Abstract
The retreat of mountain glaciers inevitably leads to an increase in the number of outburst moraine lakes. One of the possible mechanisms of moraine dam outburst along with overflow over the crest is the formation of a filtration channel in the body of [...] Read more.
The retreat of mountain glaciers inevitably leads to an increase in the number of outburst moraine lakes. One of the possible mechanisms of moraine dam outburst along with overflow over the crest is the formation of a filtration channel in the body of the moraine dam (piping). An algorithm for calculating the outburst flood hydrograph, describing the development of a filtration channel in the body of a moraine dam and the subsequent formation of water overflow when the soil above the channel collapses, is proposed in this paper. Verification of proposed methodology was carried out on the basis of experimental data and published data of real outbursts. Satisfactory results verifying this methodology made it possible to use the proposed methodology for the calculation of the hydrograph of the outburst of Lake Bashkara in the Elbrus region, which occurred on 1 September 2017. It is shown that the simulation results are quantitatively comparable with the estimates obtained from field data: the time of water discharge through the channel was 16 min, the period of the outburst wave passage was 40 min, and the maximum discharge was 636 m3/s. Thus, the possibility of applying the proposed methodology for calculating the destruction of natural moraine dams has been demonstrated. Full article
Show Figures

Figure 1

12 pages, 2327 KiB  
Article
Reverse Genetics of Murine Rotavirus: A Comparative Analysis of the Wild-Type and Cell-Culture-Adapted Murine Rotavirus VP4 in Replication and Virulence in Neonatal Mice
by Takahiro Kawagishi, Liliana Sánchez-Tacuba, Ningguo Feng, Harry B. Greenberg and Siyuan Ding
Viruses 2024, 16(5), 767; https://doi.org/10.3390/v16050767 (registering DOI) - 12 May 2024
Abstract
Small-animal models and reverse genetics systems are powerful tools for investigating the molecular mechanisms underlying viral replication, virulence, and interaction with the host immune response in vivo. Rotavirus (RV) causes acute gastroenteritis in many young animals and infants worldwide. Murine RV replicates efficiently [...] Read more.
Small-animal models and reverse genetics systems are powerful tools for investigating the molecular mechanisms underlying viral replication, virulence, and interaction with the host immune response in vivo. Rotavirus (RV) causes acute gastroenteritis in many young animals and infants worldwide. Murine RV replicates efficiently in the intestines of inoculated suckling pups, causing diarrhea, and spreads efficiently to uninoculated littermates. Because RVs derived from human and other non-mouse animal species do not replicate efficiently in mice, murine RVs are uniquely useful in probing the viral and host determinants of efficient replication and pathogenesis in a species-matched mouse model. Previously, we established an optimized reverse genetics protocol for RV and successfully generated a murine-like RV rD6/2-2g strain that replicates well in both cultured cell lines and in the intestines of inoculated pups. However, rD6/2-2g possesses three out of eleven gene segments derived from simian RV strains, and these three heterologous segments may attenuate viral pathogenicity in vivo. Here, we rescued the first recombinant RV with all 11 gene segments of murine RV origin. Using this virus as a genetic background, we generated a panel of recombinant murine RVs with either N-terminal VP8* or C-terminal VP5* regions chimerized between a cell-culture-adapted murine ETD strain and a non-tissue-culture-adapted murine EW strain and compared the diarrhea rate and fecal RV shedding in pups. The recombinant viruses with VP5* domains derived from the murine EW strain showed slightly more fecal shedding than those with VP5* domains from the ETD strain. The newly characterized full-genome murine RV will be a useful tool for dissecting virus–host interactions and for studying the mechanism of pathogenesis in neonatal mice. Full article
(This article belongs to the Special Issue Rotaviruses and Rotavirus Vaccines)
Show Figures

Figure 1

18 pages, 4270 KiB  
Article
Persistent Mesodermal Differentiation Capability of Bone Marrow MSCs Isolated from Aging Patients with Low-Energy Traumatic Hip Fracture and Osteoporosis: A Clinical Evidence
by Mei-Chih Wang, Wei-Lin Yu, Yun-Chiao Ding, Jun-Jae Huang, Chin-Yu Lin and Wo-Jan Tseng
Int. J. Mol. Sci. 2024, 25(10), 5273; https://doi.org/10.3390/ijms25105273 (registering DOI) - 12 May 2024
Abstract
A low-energy hit, such as a slight fall from a bed, results in a bone fracture, especially in the hip, which is a life-threatening risk for the older adult and a heavy burden for the social economy. Patients with low-energy traumatic bone fractures [...] Read more.
A low-energy hit, such as a slight fall from a bed, results in a bone fracture, especially in the hip, which is a life-threatening risk for the older adult and a heavy burden for the social economy. Patients with low-energy traumatic bone fractures usually suffer a higher level of bony catabolism accompanied by osteoporosis. Bone marrow-derived stem cells (BMSCs) are critical in osteogenesis, leading to metabolic homeostasis in the healthy bony microenvironment. However, whether the BMSCs derived from the patients who suffered osteoporosis and low-energy traumatic hip fractures preserve a sustained mesodermal differentiation capability, especially in osteogenesis, is yet to be explored in a clinical setting. Therefore, we aimed to collect BMSCs from clinical hip fracture patients with osteoporosis, followed by osteogenic differentiation comparison with BMSCs from healthy young donors. The CD markers identification, cytokines examination, and adipogenic differentiation were also evaluated. The data reveal that BMSCs collected from elderly osteoporotic patients secreted approximately 122.8 pg/mL interleukin 6 (IL-6) and 180.6 pg/mL vascular endothelial growth factor (VEGF), but no PDGF-BB, IL-1b, TGF-b1, IGF-1, or TNF-α secretion. The CD markers and osteogenic and adipogenic differentiation capability in BMSCs from these elderly osteoporotic patients and healthy young donors are equivalent and compliant with the standards defined by the International Society of Cell Therapy (ISCT). Collectively, our data suggest that the elderly osteoporotic patients-derived BMSCs hold equivalent differentiation and proliferation capability and intact surface markers identical to BMSCs collected from healthy youth and are available for clinical cell therapy. Full article
Show Figures

Graphical abstract

18 pages, 2571 KiB  
Article
Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate
by Xiaofeng Tang, Hanqing Xue, Jiawen Li, Shengnan Wang, Jie Yu and Tao Zeng
Toxics 2024, 12(5), 359; https://doi.org/10.3390/toxics12050359 (registering DOI) - 12 May 2024
Abstract
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are [...] Read more.
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are frequently proposed for treating persistent pollutants. In this study, the degradation performance of BPA in an oxidation system of PMS activated by transition metal sites anchored nitrogen-doped carbonaceous substrate (M-N-C) materials was investigated. As heterogeneous catalysts targeting the activation of peroxymonosulfate (PMS), M-N-C materials emerge as promising contenders poised to overcome the limitations encountered with traditional carbon materials, which often exhibit insufficient activity in the PMS activation process. Nevertheless, the amalgamation of metal sites during the synthesis process presents a formidable challenge to the structural design of M-N-C. Herein, employing ZIF-8 as the precursor of carbonaceous support, metal ions can readily penetrate the cage structure of the substrate, and the N-rich linkers serve as effective ligands for anchoring metal cations, thereby overcoming the awkward limitation. The research results of this study indicate BPA in water matrix can be effectively removed in the M-N-C/PMS system, in which the obtained nitrogen-rich ZIF-8-derived Cu-N-C presented excellent activity and stability on the PMS activation, as well as the outstanding resistance towards the variation of environmental factors. Moreover, the biological toxicity of BPA and its degradation intermediates were investigated via the Toxicity Estimation Software Tool (T.E.S.T.) based on the ECOSAR system. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
19 pages, 6791 KiB  
Article
Hypermethylation of the Gene Body in SRCIN1 Is Involved in Breast Cancer Cell Proliferation and Is a Potential Blood-Based Biomarker for Early Detection and a Poor Prognosis
by Hsieh-Tsung Shen, Chin-Sheng Hung, Clilia Davis, Chih-Ming Su, Li-Min Liao, Hsiu-Ming Shih, Kuan-Der Lee, Muhamad Ansar and Ruo-Kai Lin
Biomolecules 2024, 14(5), 571; https://doi.org/10.3390/biom14050571 (registering DOI) - 12 May 2024
Abstract
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To [...] Read more.
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients. Full article
(This article belongs to the Special Issue DNA Methylation in Human Diseases)
Show Figures

Graphical abstract

16 pages, 263 KiB  
Article
ICT-Enabled Education for Sustainability Justice in South East Asian Universities
by Vassilios Makrakis, Michele Biasutti, Nelly Kostoulas-Makrakis, Munirah Ghazali, Widad Othman, Mohammad Ali, Nanung Agus Fitriyanto and Katerina Mavrantonaki
Sustainability 2024, 16(10), 4049; https://doi.org/10.3390/su16104049 (registering DOI) - 12 May 2024
Abstract
This study aims to investigate the role of Information and Communication Technologies-enabled Education for Sustainability (ICTeEfS), critical reflection, and transformative teaching and learning beliefs in predicting students’ attitudes about seeking sustainability justice. A total of 1497 students from seven universities in Indonesia (374), [...] Read more.
This study aims to investigate the role of Information and Communication Technologies-enabled Education for Sustainability (ICTeEfS), critical reflection, and transformative teaching and learning beliefs in predicting students’ attitudes about seeking sustainability justice. A total of 1497 students from seven universities in Indonesia (374), Malaysia (426), and Vietnam (697) trialed four new scales measuring (a) knowledge of merging ICT with education for sustainability, (b) critical reflective practice, (c) sustainability justice attitudes, and (d) transformative teaching and learning beliefs. The findings show that the four scales are reliable and could be used in other research on education for sustainability. Differences were observed for gender, year of study, subject of study, ICT skills, and knowledge of education for sustainability. Regression analysis highlighted that sustainability justice is a multidimensional concept composed of several constructs with a specific reference to critical reflection, transformative teaching and learning beliefs. The implications for education, practice and further research are discussed. Full article
23 pages, 12176 KiB  
Article
Broken Rotor Bar Detection Based on Steady-State Stray Flux Signals Using Triaxial Sensor with Random Positioning
by Marko Zubčić, Ivan Pavić, Petar Matić and Adam Polak
Sensors 2024, 24(10), 3080; https://doi.org/10.3390/s24103080 (registering DOI) - 12 May 2024
Abstract
This paper investigates the detection of broken rotor bar in squirrel cage induction motors using a novel approach of randomly positioning a triaxial sensor over the motor surface. This study is conducted on two motors under laboratory conditions, where one motor is kept [...] Read more.
This paper investigates the detection of broken rotor bar in squirrel cage induction motors using a novel approach of randomly positioning a triaxial sensor over the motor surface. This study is conducted on two motors under laboratory conditions, where one motor is kept in a healthy state, and the other is subjected to a broken rotor bar (BRB) fault. The induced electromotive force of the triaxial coils, recorded over ten days with 100 measurements per day, is statistically analyzed. Normality tests and graphical interpretation methods are used to evaluate the data distribution. Parametric and non-parametric approaches are used to analyze the data. Both approaches show that the measurement method is valid and consistent over time and statistically distinguishes healthy motors from those with BRB defects when a reference or threshold value is specified. While the comparison between healthy motors shows a discrepancy, the quantitative analysis shows a smaller estimated difference in mean values between healthy motors than comparing healthy and BRB motors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 1180 KiB  
Article
Extracting Accurate Parameters from a Proton Exchange Membrane Fuel Cell Model Using the Differential Evolution Ameliorated Meta-Heuristics Algorithm
by Badreddine Kanouni and Abdelbaset Laib
Energies 2024, 17(10), 2333; https://doi.org/10.3390/en17102333 (registering DOI) - 12 May 2024
Abstract
The electrochemical proton exchange membrane fuel cell (PEMFC) is an electrical generator that utilizes a chemical reaction mechanism to produce electricity, serving as a sustainable and environmentally friendly energy source. To thoroughly analyze and develop the features and performance of a PEMFC, it [...] Read more.
The electrochemical proton exchange membrane fuel cell (PEMFC) is an electrical generator that utilizes a chemical reaction mechanism to produce electricity, serving as a sustainable and environmentally friendly energy source. To thoroughly analyze and develop the features and performance of a PEMFC, it is essential to use a precise model that incorporates exact parameters to effectively suit the polarization curve. In addition, parameter extraction plays a crucial role in the simulation analysis, evaluation, optimum control, and fault detection of the proton exchange membrane fuel cell (PEMFC) system. Despite the development of many algorithms for parameter extraction in PEMFC, obtaining accurate and trustworthy results rapidly remains a challenge. This study presents a hybridized algorithm, namely differential evolution ameliorated (DEA) for reliably estimating PEMFC model parameters. To evaluate the proposed DEA-based parameter identification, a comparison analysis with previously published methods is conducted using MATLAB/SimulinkTM (R2016b, MathWorks, Natick, MA, USA) in terms of system correctness and convergence process. The proposed DEA algorithm is tested to extract the parameters of two PEMFC models: SR-12,500 W and 250 W. The sum of the squared errors (SSE) between the experimental and the obtained voltage data is defined as an objective function. The simulation results prove that the suggested DEA algorithm is capable of identifying the optimal PEMFC parameters rapidly and accurately in comparison with other optimization algorithms. Full article
16 pages, 4105 KiB  
Article
Characterization of the Plastid Genomes of Four Caroxylon Thunb. Species from Kazakhstan
by Shyryn Almerekova, Moldir Yermagambetova, Bektemir Osmonali, Polina Vesselova, Saule Abugalieva and Yerlan Turuspekov
Plants 2024, 13(10), 1332; https://doi.org/10.3390/plants13101332 (registering DOI) - 12 May 2024
Abstract
The family Chenopodiaceae Vent. (Amaranthaceae s.l.) is known for its taxonomic complexity, comprising species of significant economic and ecological importance. Despite its significance, the availability of plastid genome data for this family remains limited. This study involved assembling and characterizing the complete [...] Read more.
The family Chenopodiaceae Vent. (Amaranthaceae s.l.) is known for its taxonomic complexity, comprising species of significant economic and ecological importance. Despite its significance, the availability of plastid genome data for this family remains limited. This study involved assembling and characterizing the complete plastid genomes of four Caroxylon Thunb. species within the tribe Salsoleae s.l., utilizing next-generation sequencing technology. We compared genome features, nucleotide diversity, and repeat sequences and conducted a phylogenetic analysis of ten Salsoleae s.l. species. The size of the plastid genome varied among four Caroxylon species, ranging from 150,777 bp (C. nitrarium) to 151,307 bp (C. orientale). Each studied plastid genome encoded 133 genes, including 114 unique genes. This set of genes includes 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Eight divergent regions (accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3) were identified in ten Salsoleae s.l. plastid genomes, which could be potential DNA-barcoding markers. Additionally, 1106 repeat elements were detected, consisting of 814 simple sequence repeats, 92 tandem repeats, 88 forward repeats, 111 palindromic repeats, and one reverse repeat. The phylogenetic analysis provided robust support for the relationships within Caroxylon species. These data represent a valuable resource for future phylogenetic studies within the genus. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
32 pages, 1183 KiB  
Review
Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria
by Raja Veerapandian, Shrikanth S. Gadad, Chinnaswamy Jagannath and Subramanian Dhandayuthapani
Vaccines 2024, 12(5), 530; https://doi.org/10.3390/vaccines12050530 (registering DOI) - 12 May 2024
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either [...] Read more.
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins. Full article
(This article belongs to the Special Issue Novel Vaccines for Infectious Pathogens)
17 pages, 692 KiB  
Article
Clinical Neurophysiological Methods Verify Improvement in the Motor Neural Transmission in Patients with Surgically Treated Idiopathic Scoliosis in Long-Term Follow-up
by Przemysław Daroszewski, Juliusz Huber, Katarzyna Kaczmarek, Piotr Janusz, Paweł Główka, Marek Tomaszewski, Łukasz Kubaszewski, Mikołaj Dąbrowski and Tomasz Kotwicki
Appl. Sci. 2024, 14(10), 4105; https://doi.org/10.3390/app14104105 (registering DOI) - 12 May 2024
Abstract
The evaluation of patients after the surgical correction of idiopathic scoliosis in a long-term follow-up with clinical neurophysiological methods has not been presented in detail. This study aimed to compare the results of neurophysiological studies in 45 girls with scoliosis of Lenke types [...] Read more.
The evaluation of patients after the surgical correction of idiopathic scoliosis in a long-term follow-up with clinical neurophysiological methods has not been presented in detail. This study aimed to compare the results of neurophysiological studies in 45 girls with scoliosis of Lenke types 1–3 performed pre- (T0) and postoperatively, 1 week after surgery (T1) and 6 months after surgery (T2). The parameter values of the surface electromyography while attempting maximal contraction (mcsEMG) and the transcranial motor-evoked potentials (MEPs) recorded in the anterior tibial muscles, as well as the electroneurography (ENG) of the peripheral transmission in the peroneal nerve motor fibers, were compared. The results indicate that efferent neural conduction functioned both centrally and peripherally, and TA muscle function slightly improved immediately after the surgical correction of scoliosis, and further normalization appeared after six months in the long-term follow-up (at p = 0.03). The sEMG recordings indicate that half a year after surgical treatment in IS patients, the TA muscle motor unit recruitment function, as well as the muscle strength evaluated with Lovett’s scale, was comparable to the normal condition. The ENG recording results indicate a gradual reduction in the motor fiber injury symptoms, mainly of the axonal type, in the peroneal nerves. The surgeries also improved the lumbar ventral roots’ neural transmission to a normal functional status. The MEP amplitude parameter values recorded after the surgical scoliosis corrections in T1 indicated a slight improvement in the efferent transmission of neural impulses within the fibers of the spinal tracts; in the long-term T2 observation period, they reached values comparable to those recorded in healthy volunteers, bilaterally. Preoperatively (T0), the results of all the neurophysiological study parameters in the IS patients were asymmetrical at p = 0.036–0.05 and recorded as worse on the concave side, suggesting the lateralization of neurological motor deficits. One week postoperatively (T1), this asymmetry was recorded as gradually reduced, showing almost no difference between the right and left sides six months later (T2). The presented algorithm for the neurophysiological assessments performed in the pre-, intra-, and long-term postoperative periods using the mcsEMG, MEP, and ENG neurophysiological examinations, together with the clinical studies, may help in the comprehensive functional evaluation of the spinal cord tracts and ventral root neural conduction, which allows the detection of the subclinical neurological changes related to scoliosis itself and the consequences of the corrective surgery. Such an evaluation can also be significant in making final decisions regarding IS surgeries and their personalization after attempting conservative treatments with bracing and kinesiotherapy. Neurophysiological studies, as a sensitive biomarker, allowed us to predict and ascertain the final result of IS treatment in the long-term follow-up, which showed the health status of patients as being comparable to that of healthy volunteers. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
17 pages, 1113 KiB  
Article
Seasonal Variation in Short-Term Ambient Air Pollutants and ST-Elevation Myocardial Infarction Admissions: An Innovative Exploration of Air Pollution’s Health Consequences
by Andreea-Alexandra Rus, Raluca Şoşdean, Mihai-Andrei Lazăr, Marius Simonescu, Silvia-Ana Luca, Ciprian Nicuşor Dima, Alexandra-Cătălina Frişan, Dan Gaiţă and Cristian Mornoş
Atmosphere 2024, 15(5), 590; https://doi.org/10.3390/atmos15050590 (registering DOI) - 12 May 2024
Abstract
Cardiovascular diseases (CVDs) persist as a significant contributor to global morbidity and mortality despite advances in medical technology. Air pollution has emerged as a significant contemporary challenge due to increased energy consumption and rapid economic development. The study utilized multivariable Poisson regression and [...] Read more.
Cardiovascular diseases (CVDs) persist as a significant contributor to global morbidity and mortality despite advances in medical technology. Air pollution has emerged as a significant contemporary challenge due to increased energy consumption and rapid economic development. The study utilized multivariable Poisson regression and Distributed Lag Models (DLM) to assess the link between brief exposure to outdoor air pollutants (PM10—particulate matter with a diameter ≤ 10 μm, NO2—nitrogen dioxide, and O3—ozone) and the risk of acute myocardial infarction with ST-segment elevation (STEMI) hospitalization, stratified by season. The research was conducted from January 2019 to December 2021 at the University Hospital in Timisoara, Romania, and daily records were collected for STEMI admissions, atmospheric pollutant levels, and meteorological parameters. The most pronounced impacts were observed with each 10 μg/m3 increase at lag 07 for PM10 during summer, leading to a 2% increase in STEMI admissions, and for NO2 during spring at lag 07, resulting in a 0.9% rise in CVD incidence. Men, middle-aged adults, and older adults exhibited greater susceptibility to elevated NO2 and PM10 concentrations than women and younger individuals. Brief exposure to diverse air pollutants heightens the likelihood of hospitalization due to STEMI, particularly among men and adults over 45. Effective measures must be implemented to mitigate these impacts, especially for vulnerable populations. Full article
(This article belongs to the Special Issue New Insights into Exposure and Health Impacts of Air Pollution)
Show Figures

Figure 1

13 pages, 656 KiB  
Article
Periodic Solutions in a Simple Delay Differential Equation
by Anatoli Ivanov and Sergiy Shelyag
Math. Comput. Appl. 2024, 29(3), 36; https://doi.org/10.3390/mca29030036 (registering DOI) - 12 May 2024
Abstract
A simple-form scalar differential equation with delay and nonlinear negative periodic feedback is considered. The existence of several types of slowly oscillating periodic solutions is shown with the same and double periods of the feedback coefficient. The periodic solutions are built explicitly in [...] Read more.
A simple-form scalar differential equation with delay and nonlinear negative periodic feedback is considered. The existence of several types of slowly oscillating periodic solutions is shown with the same and double periods of the feedback coefficient. The periodic solutions are built explicitly in the case with piecewise constant nonlinearities involved. The periodic dynamics are shown to persist under small perturbations of the equation, which make it smooth. The theoretical results are verified through extensive numerical simulations. Full article
22 pages, 7403 KiB  
Article
A Hybrid Semi-Automated Workflow for Systematic and Literature Review Processes with Large Language Model Analysis
by Anjia Ye, Ananda Maiti, Matthew Schmidt and Scott J. Pedersen
Future Internet 2024, 16(5), 167; https://doi.org/10.3390/fi16050167 (registering DOI) - 12 May 2024
Abstract
Systematic reviews (SRs) are a rigorous method for synthesizing empirical evidence to answer specific research questions. However, they are labor-intensive because of their collaborative nature, strict protocols, and typically large number of documents. Large language models (LLMs) and their applications such as gpt-4/ChatGPT [...] Read more.
Systematic reviews (SRs) are a rigorous method for synthesizing empirical evidence to answer specific research questions. However, they are labor-intensive because of their collaborative nature, strict protocols, and typically large number of documents. Large language models (LLMs) and their applications such as gpt-4/ChatGPT have the potential to reduce the human workload of the SR process while maintaining accuracy. We propose a new hybrid methodology that combines the strengths of LLMs and humans using the ability of LLMs to summarize large bodies of text autonomously and extract key information. This is then used by a researcher to make inclusion/exclusion decisions quickly. This process replaces the typical manually performed title/abstract screening, full-text screening, and data extraction steps in an SR while keeping a human in the loop for quality control. We developed a semi-automated LLM-assisted (Gemini-Pro) workflow with a novel innovative prompt development strategy. This involves extracting three categories of information including identifier, verifier, and data field (IVD) from the formatted documents. We present a case study where our hybrid approach reduced errors compared with a human-only SR. The hybrid workflow improved the accuracy of the case study by identifying 6/390 (1.53%) articles that were misclassified by the human-only process. It also matched the human-only decisions completely regarding the rest of the 384 articles. Given the rapid advances in LLM technology, these results will undoubtedly improve over time. Full article
(This article belongs to the Section Big Data and Augmented Intelligence)
Show Figures

Figure 1

22 pages, 2035 KiB  
Review
The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond
by Meng-Yao Niu, Yan-Jun Liu, Jin-Jin Shi, Ru-Yi Chen, Shun Zhang, Chang-Yun Li, Jia-Feng Cao, Guan-Jun Yang and Jiong Chen
Biomolecules 2024, 14(5), 572; https://doi.org/10.3390/biom14050572 (registering DOI) - 12 May 2024
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and [...] Read more.
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment. Full article
(This article belongs to the Special Issue Emerging Roles of Epigenetic Regulators in Inflammatory Diseases)
27 pages, 30061 KiB  
Article
Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice
by Ching-Wei Yang, Hsuan-Miao Liu, Zi-Yu Chang, Geng-Hao Liu, Hen-Hong Chang, Po-Yu Huang and Tzung-Yan Lee
Int. J. Mol. Sci. 2024, 25(10), 5274; https://doi.org/10.3390/ijms25105274 (registering DOI) - 12 May 2024
Abstract
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver [...] Read more.
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin’s beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin’s potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities. Full article
(This article belongs to the Special Issue Gut Microbiota in Gastroenterology and Hepatology 2.0)
23 pages, 2173 KiB  
Article
Encoder–Decoder Based LSTM and GRU Architectures for Stocks and Cryptocurrency Prediction
by Joy Dip Das, Ruppa K. Thulasiram, Christopher Henry and Aerambamoorthy Thavaneswaran
J. Risk Financial Manag. 2024, 17(5), 200; https://doi.org/10.3390/jrfm17050200 (registering DOI) - 12 May 2024
Abstract
This work addresses the intricate task of predicting the prices of diverse financial assets, including stocks, indices, and cryptocurrencies, each exhibiting distinct characteristics and behaviors under varied market conditions. To tackle the challenge effectively, novel encoder–decoder architectures, AE-LSTM and AE-GRU, integrating the encoder–decoder [...] Read more.
This work addresses the intricate task of predicting the prices of diverse financial assets, including stocks, indices, and cryptocurrencies, each exhibiting distinct characteristics and behaviors under varied market conditions. To tackle the challenge effectively, novel encoder–decoder architectures, AE-LSTM and AE-GRU, integrating the encoder–decoder principle with LSTM and GRU, are designed. The experimentation involves multiple activation functions and hyperparameter tuning. With extensive experimentation and enhancements applied to AE-LSTM, the proposed AE-GRU architecture still demonstrates significant superiority in forecasting the annual prices of volatile financial assets from the multiple sectors mentioned above. Thus, the novel AE-GRU architecture emerges as a superior choice for price prediction across diverse sectors and fluctuating volatile market scenarios by extracting important non-linear features of financial data and retaining the long-term context from past observations. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance)
18 pages, 3113 KiB  
Article
Study on Microscopic Characteristics and Rock Mechanical Properties of Tight Sandstone after Acidification–Supercritical CO2 Composite Action: Case Study from Xujiahe Formation, China
by Yunfei Zhao, Gun Huang, Qinming Liang and Qiang Chen
Appl. Sci. 2024, 14(10), 4108; https://doi.org/10.3390/app14104108 (registering DOI) - 12 May 2024
Abstract
Acidified CO2 fracturing is a viable method for increasing production in deep, tight sandstone reservoirs. However, the potential mechanism of changes in pore structure and mechanical properties of sandstone under acidified CO2 supercritical composite is not clear. Understanding this mechanism is [...] Read more.
Acidified CO2 fracturing is a viable method for increasing production in deep, tight sandstone reservoirs. However, the potential mechanism of changes in pore structure and mechanical properties of sandstone under acidified CO2 supercritical composite is not clear. Understanding this mechanism is important for the study of crack initiation and extension in tight sandstone reservoirs. This study utilizes sandstone samples from the Xujiahe Formation reservoir in Rongchang District as experimental specimens. The primary focus is to analyze the changes in pore structure and mechanical properties of these samples after acidification–supercritical CO2 composite action. Nuclear magnetic resonance (NMR) and uniaxial compression tests are employed as the main investigative techniques. The results show that there was a physicochemical synergy between the acidification–supercritical CO2 composite effect; the crack initial stress, damage stress, and peak stress of the sandstone after 16 MPa supercritical CO2 acidification treatment were reduced by 20%, 49.5%, and 49.8%, respectively; the crack volumetric strain accelerated and the sandstone evolved from brittle to ductile damage; and the larger pore space and microcracks of the sandstone increased significantly after the treatment, which can be attributed to the gradual dissolution of intergranular cement leading to the formation of new pores connected to the existing pore network. The change mechanism of sandstone after acidification–supercritical CO2 compound treatment is also proposed. Full article
(This article belongs to the Special Issue Advances in Geo-Energy Development and Enhanced Oil/Gas Recovery)
16 pages, 7789 KiB  
Article
Local Path Planner for Mobile Robot Considering Future Positions of Obstacles
by Xianhua Ou, Zhongnan You and Xiongxiong He
Processes 2024, 12(5), 984; https://doi.org/10.3390/pr12050984 (registering DOI) - 12 May 2024
Abstract
Local path planning is a necessary ability for mobile robot navigation, but existing planners are not sufficiently effective at dynamic obstacle avoidance. In this article, an improved timed elastic band (TEB) planner based on the requirements of mobile robot navigation in dynamic environments [...] Read more.
Local path planning is a necessary ability for mobile robot navigation, but existing planners are not sufficiently effective at dynamic obstacle avoidance. In this article, an improved timed elastic band (TEB) planner based on the requirements of mobile robot navigation in dynamic environments is proposed. The dynamic obstacle velocities and TEB poses are fully integrated through two-dimensional (2D) lidar and multi-obstacle tracking. First, background point filtering and clustering are performed on the lidar points to obtain obstacle clusters. Then, we calculate the data association matrix of the obstacle clusters of the current and previous frame so that the clusters can be matched. Thirdly, a Kalman filter is adopted to track clusters and obtain the optimal estimates of their velocities. Finally, the TEB poses and obstacle velocities are associated: we predict the obstacle position corresponding to the TEB pose through the detected obstacle velocity and add this constraint to the corresponding TEB pose vertex. Then, a pose sequence considering the future positions of obstacles is obtained through a graph optimization algorithm. Compared with the original TEB, our method reduces the total running time by 22.87%, reduces the running distance by 19.23%, and increases the success rate by 21.05%. Simulations and experiments indicate that the improved TEB enables robots to efficiently avoid dynamic obstacles and reach the goal as quickly as possible. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop