The 2023 MDPI Annual Report has
been released!
 
16 pages, 2584 KiB  
Article
Formal Inconsistencies of Expertise Aggregation Techniques Commonly Employed in Engineering Teams
by Cynthia Stephen, Hanumanthrao Kannan and Alejandro Salado
Systems 2024, 12(5), 180; https://doi.org/10.3390/systems12050180 (registering DOI) - 18 May 2024
Abstract
Engineering managers leverage the expertise of engineers in their teams to inform decisions. Engineers may convey their expertise in the form of opinions and/or judgements. Given a decision, it is common to elicit and aggregate the expertise from various engineers to capture a [...] Read more.
Engineering managers leverage the expertise of engineers in their teams to inform decisions. Engineers may convey their expertise in the form of opinions and/or judgements. Given a decision, it is common to elicit and aggregate the expertise from various engineers to capture a broader set of experiences and knowledge. Establishing an internally and externally consistent aggregation framework is therefore paramount to yield a meaningful aggregation, that is, to make sure that the expertise of each engineer is accounted for reasonably. However, we contend that most de facto aggregation techniques lack such consistency and lead to the inadequate use and aggregation of engineering expertise. In this paper, we investigate the consistency or lack thereof of various expertise aggregation techniques. We derive implications of such inconsistencies and provide recommendations about how they may be overcome. We illustrate our discussion using safety decisions in engineering as a notional case. Full article
(This article belongs to the Section Project Management)
Show Figures

Figure 1

12 pages, 793 KiB  
Article
The Human-Centred Design of a Universal Module for Artificial Intelligence Literacy in Tertiary Education Institutions
by Daswin De Silva, Shalinka Jayatilleke, Mona El-Ayoubi, Zafar Issadeen, Harsha Moraliyage and Nishan Mills
Mach. Learn. Knowl. Extr. 2024, 6(2), 1114-1125; https://doi.org/10.3390/make6020051 (registering DOI) - 18 May 2024
Abstract
Generative Artificial Intelligence (AI) is heralding a new era in AI for performing a spectrum of complex tasks that are indistinguishable from humans. Alongside language and text, Generative AI models have been built for all other modalities of digital data, image, video, audio, [...] Read more.
Generative Artificial Intelligence (AI) is heralding a new era in AI for performing a spectrum of complex tasks that are indistinguishable from humans. Alongside language and text, Generative AI models have been built for all other modalities of digital data, image, video, audio, and code. The full extent of Generative AI and its opportunities, challenges, contributions, and risks are still being explored by academic researchers, industry practitioners, and government policymakers. While this deep understanding of Generative AI continues to evolve, the lack of fluency, literacy, and effective interaction with Generative and conventional AI technologies are common challenges across all domains. Tertiary education institutions are uniquely positioned to address this void. In this article, we present the human-centred design of a universal AI literacy module, followed by its four primary constructs that provide core competence in AI to coursework and research students and academic and professional staff in a tertiary education setting. In comparison to related work in AI literacy, our design is inclusive due to the collaborative approach between multiple stakeholder groups and is comprehensive given the descriptive formulation of the primary constructs of this module with exemplars of how they activate core operational competence across the four groups. Full article
(This article belongs to the Section Data)
Show Figures

Figure 1

15 pages, 520 KiB  
Article
Habit Transformation in Times of Crisis: How Green Values Promote Sustainable Mobility
by Thomas Freudenreich and Elfriede Penz
Sustainability 2024, 16(10), 4253; https://doi.org/10.3390/su16104253 (registering DOI) - 18 May 2024
Abstract
Going on holiday is often associated with taking the car or plane. Even for short distances, and where alternative, sustainable transportation modes would be available, we frequently choose the more unsustainable options. Affordability, comfortability, and time savings led to an increase in transportation, [...] Read more.
Going on holiday is often associated with taking the car or plane. Even for short distances, and where alternative, sustainable transportation modes would be available, we frequently choose the more unsustainable options. Affordability, comfortability, and time savings led to an increase in transportation, which in turn, negatively contributed to greenhouse gas emissions. The reduction in those emissions can be achieved by choosing public transportation. However, since transportation choices are often made unconsciously and habitually, it is crucial to transform those unsustainable habits into more sustainable ones. Contextual changes can serve as a catalyst. This research investigates whether pre-COVID-19 and pre-inflation unsustainable travel habits can be broken through the perceived impact of COVID-19, financial hardship, and green consumption values, increasing the intention for sustainable transportation modes using a survey design. We found that the context change, as such, does not predict future intentions to travel sustainably, but existing green consumption values do. Building on the self-activation theory, the results show that habits and the perceived impact of COVID-19 and financial hardship activate a person’s green consumption values. Consumers’ green values mediate the relationship between unsustainable habits and the intentions to use sustainable transportation modes, combining the habit discontinuity and self-activation hypotheses. Full article
(This article belongs to the Special Issue The COVID-19 Effect on Sustainable Consumption)
Show Figures

Figure 1

17 pages, 1637 KiB  
Article
Scrap Steel Recycling: A Carbon Emission Reduction Index for China
by Hao Hao, Haolong Wu, Fangfang Wei, Zhaoran Xu and Yi Xu
Sustainability 2024, 16(10), 4250; https://doi.org/10.3390/su16104250 (registering DOI) - 18 May 2024
Abstract
Accurately assessing carbon emissions from recycling scrap steel is essential for reducing emissions in the steel industry, especially in China, the world’s largest crude steel producer. In this study, a carbon emission reduction index was introduced to evaluate the effectiveness of recycling scrap [...] Read more.
Accurately assessing carbon emissions from recycling scrap steel is essential for reducing emissions in the steel industry, especially in China, the world’s largest crude steel producer. In this study, a carbon emission reduction index was introduced to evaluate the effectiveness of recycling scrap steel in reducing emissions. The index considers the three processes used in scrap steel recycling: blast furnace ironmaking, converter steelmaking, and electric arc furnace steelmaking. This study developed an evaluation model using fuzzy analytic hierarchy process and iterative cluster analysis to determine the reduction of carbon emission. From a life cycle perspective, this study identified primary factors contributing to emissions, including fuel, raw materials, electric energy, and auxiliary materials. Then, the carbon emission reduction index for scrap recycling was developed by examining the production of one ton of steel and each additional ton of scrap steel, which can provide valuable insights into the environmental impact of scrap recycling. Finally, the study forecasts the future Carbon Emission Reduction Index for steel scrap recycling. The study indicates an increase in the carbon emission reduction index for scrap recycling prior to 2017, followed by a decrease about 11.8% from 2017 to 2018 and increases from 2018 to 2021. Finally, it dropped by 8.7% per cent in 2022. Similarly, the carbon emission reduction index for electric furnace steelmaking increased prior to 2019, then subsequently decreased. It is changing by ten per cent a year. Additionally, the scrap recycling index experienced a significant decrease of 90% in 2015, followed by a gradual increase until 2017 and then a consistent decrease every year thereafter. The index suddenly rose in 2021 and then decreased change for policy reasons. The forecast results suggest a gradual increase in the carbon emission reduction index per ton of steel scrap in the future. In conclusion, the practicable modeling methodology has the ability to assist government organizations and private enterprises in devising efficient green and low-carbon development tactics. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

13 pages, 2622 KiB  
Article
A Novel Positive-Contrast Magnetic Resonance Imaging Line Marker for High-Dose-Rate (HDR) MRI-Assisted Radiosurgery (MARS)
by Li Wang, Yao Ding, Teresa L. Bruno, R. Jason Stafford, Eric Lin, Tharakeswara K. Bathala, Jeremiah W. Sanders, Matthew S. Ning, Jingfei Ma, Ann H. Klopp, Aradhana Venkatesan, Jihong Wang, Karen S. Martirosyan and Steven J. Frank
Cancers 2024, 16(10), 1922; https://doi.org/10.3390/cancers16101922 (registering DOI) - 18 May 2024
Abstract
Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the lumen of the HDR [...] Read more.
Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the lumen of the HDR applicator and precisely show the path of the HDR source on T1- and T2-weighted MRI sequences. We investigated a novel MRI positive-contrast HDR brachytherapy or interventional radiotherapy line marker, C4:S, consisting of C4 (visible on T1-weighted images) complexed with saline. Longitudinal relaxation time (T1) and transverse relaxation time (T2) for C4:S were measured on a 1.5 T MRI scanner. High-density polyethylene (HDPE) tubing filled with C4:S as an HDR brachytherapy line marker was tested for visibility on T1- and T2-weighted MRI sequences in a tissue-equivalent female ultrasound training pelvis phantom. Relaxivity measurements indicated that C4:S solution had good T1-weighted contrast (relative to oil [fat] signal intensity) and good T2-weighted contrast (relative to water signal intensity) at both room temperature (relaxivity ratio > 1; r2/r1 = 1.43) and body temperature (relaxivity ratio > 1; r2/r1 = 1.38). These measurements were verified by the positive visualization of the C4:S (C4/saline 50:50) HDPE tube HDR brachytherapy line marker on both T1- and T2-weighted MRI sequences. Orientation did not affect the relaxivity of the C4:S contrast solution. C4:S encapsulated in HDPE tubing can be visualized as a positive line marker on both T1- and T2-weighted MRI sequences. MRI-guided HDR planning may be possible with these novel line markers for HDR MARS for several types of cancer. Full article
(This article belongs to the Special Issue MRI-Assisted Radiosurgery (MARS))
Show Figures

Figure 1

15 pages, 8400 KiB  
Article
Correction Factors to Account for Seismic Directionality Effects: Case Study of the Costa Rican Strong Motion Database
by Luis A. Pinzón, Diego A. Hidalgo-Leiva and Luis G. Pujades
Geosciences 2024, 14(5), 139; https://doi.org/10.3390/geosciences14050139 (registering DOI) - 18 May 2024
Abstract
This article presents the findings of a study on the directionality effect observed in strong motion records. We set out to establish ratios between several seismic intensity measures that depend on sensor orientation (e.g., GMar, Larger) and others that are orientation-independent [...] Read more.
This article presents the findings of a study on the directionality effect observed in strong motion records. We set out to establish ratios between several seismic intensity measures that depend on sensor orientation (e.g., GMar, Larger) and others that are orientation-independent (e.g., RotDpp, GMRotDpp, and GMRotIpp), with the intention of proposing multiplicative correction factors. The analysis included an evaluation of the impact of site conditions, ground motion intensity, earthquake magnitude, and hypocentral distance on these ratios. Following a concise overview of the directionality effects and the associated intensity measures, the Costa Rican Strong Motion Database, comprising a total of 4199 horizontal accelerograms (two components), was employed to determine the correction factors. The analysis was carried out for 5% damped response spectra within the 0.01–5 s period range. The study focuses on orientation-independent intensity measures that are derived by combining the maximum values from the recorded motions. In the comprehensive analysis of the complete database, a trend was observed between these intensity measures and the magnitude of the earthquake along with the hypocentral distance. Specifically, records from earthquakes with greater magnitudes exhibited a lower maximum spectral response to the geometric mean of the response spectra of the as-recorded (ar) components ratio (RotD100/GMar), similar to records from earthquakes with larger hypocentral distances. Based on these findings, a proposal was put forth to estimate RotD100 values using GMar values. This ratio can prove useful in transforming data from previous seismic hazard studies, including those applied in many seismic codes, and in defining the maximum anticipated seismic intensity for design purposes in a more straightforward manner. Full article
(This article belongs to the Special Issue New Trends in Earthquake Engineering and Seismotectonics)
Show Figures

Figure 1

14 pages, 3296 KiB  
Article
Behavioral and Transcriptomic Analyses in the Indoxacarb Response of a Non-Target Damselfly Species
by Bin Jiang, Wei Wang, Yu Yao, Haobo Zhang, Yongmei Zhang and Yang Sun
Insects 2024, 15(5), 367; https://doi.org/10.3390/insects15050367 (registering DOI) - 18 May 2024
Abstract
Ischnura senegalensis, which widely spreads in paddy fields, has the potential to be used as a natural predator of insect pests. However, the application of insecticides in the field could pose a threat to the survival of I. senegalensis. Among these [...] Read more.
Ischnura senegalensis, which widely spreads in paddy fields, has the potential to be used as a natural predator of insect pests. However, the application of insecticides in the field could pose a threat to the survival of I. senegalensis. Among these pesticides, indoxacarb, an oxadiazine insecticide, is renowned for its broad-spectrum efficacy against numerous insect pests. In this study, we examined the toxicity of indoxacarb towards the larvae of I. senegalensis. Behavioral experiments and transcriptome analyses were conducted under indoxacarb treatments. Results revealed that indoxacarb induced abnormal body gestures and significant locomotory impairments, which could ultimately reduce the survival rate of the larvae in their natural habitat. Moreover, transcriptome analyses indicated that genes related to muscle function were significantly affected. Interestingly, at lower concentrations of indoxacarb (0.004 mg/L), the larvae seem to detoxify the indoxacarb with the aid of the cytochrome P450 gene. However, under higher concentrations (0.4 mg/L), the sensory abilities of the larvae were significantly diminished, and they were unable to degrade the toxicity of indoxacarb. Our study underscores the importance of carefully evaluating the impact of insecticides on non-target predatory insects before their widespread application. Full article
Show Figures

Figure 1

11 pages, 4615 KiB  
Communication
In Search of Better Peptide-(Derived from PD-L2)-Based Immune Checkpoint Inhibitors
by Boris Klebansky, Marina Backer, Vitaliy Gorbatyuk, Olga Vinogradova and Joseph Backer
Biomolecules 2024, 14(5), 597; https://doi.org/10.3390/biom14050597 (registering DOI) - 18 May 2024
Abstract
Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an [...] Read more.
Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein–protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics. Full article
Show Figures

Figure 1

15 pages, 4181 KiB  
Article
PPARγ Antagonists Exhibit Antitumor Effects by Regulating Ferroptosis and Disulfidptosis
by Shiyu Zhang, Ying Wang, Junjie Gu, Yang Yang, Jing Liang, Yimei Wang, Ning Ji, Ming Liu, Yingxin Zhang, Silu Sun, Qianming Chen and Jing Li
Biomolecules 2024, 14(5), 596; https://doi.org/10.3390/biom14050596 (registering DOI) - 18 May 2024
Abstract
Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the [...] Read more.
Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the development of OSCC has not been fully elucidated. Through transcriptome sequencing analysis, we discovered a notable enrichment of ferroptosis-related molecules upon treatment with PPARγ antagonist. We subsequently confirmed the occurrence of ferroptosis through transmission electron microscopy, iron detection, etc. Notably, ferroptosis inhibitors could not completely rescue the cell death caused by PPARγ inhibitors, and the rescue effect was the greatest when disulfidptosis and ferroptosis inhibitors coexisted. We confirmed that the disulfidptosis phenotype indeed existed. Mechanistically, through qPCR and Western blotting, we observed that the inhibition of PPARγ resulted in the upregulation of heme oxygenase 1 (HMOX1), thereby promoting ferroptosis, while solute carrier family 7 member 11 (SLC7A11) was also upregulated to promote disulfidptosis in OSCC. Finally, a flow cytometry analysis of flight and multiplex immunohistochemical staining was used to characterize the immune status of PPARγ antagonist-treated OSCC tissues in a mouse tongue orthotopic transplantation tumor model, and the results showed that the inhibition of PPARγ led to ferroptosis and disulfidptosis, promoted the aggregation of cDCs and CD8+ T cells, and inhibited the progression of OSCC. Overall, our findings reveal that PPARγ plays a key role in regulating cell death in OSCC and that targeting PPARγ may be a potential therapeutic approach for OSCC. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment 2.0)
Show Figures

Figure 1

14 pages, 1564 KiB  
Article
Age- and Sex-Dependent Effects of Moderate Exercise on Endogenous Pain Inhibition in Rats
by Renan F. do Espírito-Santo, Sarah M. Margerison, Youping Zhang, Joshua Pak, Jin Y. Ro and Joyce T. Da Silva
Biomedicines 2024, 12(5), 1122; https://doi.org/10.3390/biomedicines12051122 (registering DOI) - 18 May 2024
Abstract
Diffuse noxious inhibitory controls (DNICs), or the pain inhibits pain phenomenon, refer to reduced pain-like behaviors that are displayed following a noxious conditioning stimulus located far from the test stimulus and have also been referred to as “descending control of nociception” when measured [...] Read more.
Diffuse noxious inhibitory controls (DNICs), or the pain inhibits pain phenomenon, refer to reduced pain-like behaviors that are displayed following a noxious conditioning stimulus located far from the test stimulus and have also been referred to as “descending control of nociception” when measured in awake-behaving animals. In this study, we sought to determine the impact of moderate long-term exercise on the DCN response and determine if this effect differed across age and sex. After a six-week exercise program consisting of 30 min of moderate treadmill running 5 days a week, the animals’ forepaws were injected with capsaicin, and DCN responses were assessed using thermal withdrawal latencies of the hind paw. Young, exercised male and female rats displayed prolonged DCN responses relative to their sedentary counterparts, with the young exercised male group displaying longer-lasting DCN facilitation than the young exercised females. Exercise did not impact DCN responses in either male or female aged rats. Additionally, the serum testosterone levels did not change following exercise in any group. Importantly, the levels of corticosterone did not change following the exercise program, indicating that changes in the DCN response are not due to stress-induced analgesia. Our findings suggest that moderate exercise can facilitate the DCN response in young animals, even when this exercise does not change the levels of serum testosterone. Full article
(This article belongs to the Special Issue Chronic Pain: From Prevention to Therapeutic Strategies)
Show Figures

Figure 1

28 pages, 9546 KiB  
Article
Fortifying Slab Resilience against Touch-Off Explosions: Integration of Innovative Stud Reinforcements and Computational Analysis
by S. M. Anas, Rayeh Nasr Al-Dala’ien, Mohd Shariq and Mehtab Alam
Buildings 2024, 14(5), 1468; https://doi.org/10.3390/buildings14051468 (registering DOI) - 18 May 2024
Abstract
Explosions, once limited to military and accidental contexts, now occur frequently due to advances in warfare, local disputes, and global conflicts. Recent incidents, like urban bombings, emphasize the urgent need for infrastructure to withstand explosions. Slabs, critical in architectural frameworks, are vulnerable to [...] Read more.
Explosions, once limited to military and accidental contexts, now occur frequently due to advances in warfare, local disputes, and global conflicts. Recent incidents, like urban bombings, emphasize the urgent need for infrastructure to withstand explosions. Slabs, critical in architectural frameworks, are vulnerable to explosive forces due to their slimness, making them prime targets for sabotage. Scholars have explored various strategies to fortify slabs, including the use of advanced materials like CFRP laminates/strips, steel sheets and ultra-high-strength concrete, along with reinforcement techniques such as two-mesh and diagonal reinforcements. A novel approach introduced in current research involves integrating vertical short bars, or studs, to enhance slab resilience against touch-off explosions. The aim of this research endeavor is to assess the impact of studs and their utilization in bolstering the anti-contact-blast capabilities of a concrete slab. To achieve this goal, a specialized framework within the ABAQUS/Explicit 2020 software is employed for comprehensive analysis. Initially, a conventionally reinforced slab devoid of studs serves as the benchmark model for numerical validation, facilitating a comparative assessment of its anti-contact-blast effectiveness against the findings outlined by Zhao and colleagues in 2019. Following successful validation, six additional distinct slab models are formulated utilizing sophisticated software, incorporating studs of varying heights, namely, 15 mm and 10 mm. Each configuration encompasses three distinct welding scenarios: (i) integration with upper-layer bars, (ii) attachment to bottom-layer bars, and (iii) connection to both upper- and bottom-layer bars. The comparative merits of the slabs are evaluated and deliberated upon through the examination of diverse response parameters. The research revealed that the incorporation of studs within slabs yielded notable enhancements in blast resistance. Specifically, taller studs demonstrated exceptional resilience against deformation, cracking, and perforation, while also diminishing plastic damage energy. Particularly noteworthy was the superior performance observed in slabs with studs welded to both upper and lower layers of re-bars. This highlights the critical significance of both the integration of studs and their precise positioning in fortifying structural integrity against blast-induced loadings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 2296 KiB  
Article
Seasonal and Morphology Effects on Bioactive Compounds, Antioxidant Capacity, and Sugars Profile of Black Carrot (Daucus carota ssp. sativus var. atrorubens Alef.)
by José Luis Ordóñez-Díaz, Isabel Velasco-Ruiz, Cristina Velasco-Tejero, Gema Pereira-Caro and José Manuel Moreno-Rojas
Foods 2024, 13(10), 1575; https://doi.org/10.3390/foods13101575 (registering DOI) - 18 May 2024
Abstract
Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. [...] Read more.
Black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) is widely recognized for its bioactive compounds and antioxidant properties. The black carrot of Cuevas Bajas (Málaga) is a local variety characterized by a black/purple core, which differs from other black carrot varieties. Therefore, this autochthonous variety was characterized according to the root size and the harvesting season by means of a study of its antioxidant capacity analyzed by three methods, its total carotenoids content, and its sugars and phenolic compounds profile by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-MS). A total of 20 polyphenolic compounds were quantified in 144 samples analyzed. The anthocyanidins group was observed to be the most abundant, followed by the hydroxycinnamic acids group. Moreover, pelargonidin 3-sambubioside was observed in black carrot for the first time. The medium-sized carrots presented the highest content of phenolic compounds, largely due to their significantly higher anthocyanidins content. Comparatively, the small carrots showed a higher content of simple sugars than the large ones. Regarding the influence of season, significantly higher quantities of glucose and fructose were observed in the late-season carrots, while sucrose was the main sugar in early-season samples. No significant differences were observed in the total carotenoid content of black carrot. Full article
Show Figures

Graphical abstract

21 pages, 1126 KiB  
Article
Development and Validation of a 1D Dynamic Model of an Injection Moulding Process and Design of a Model-Based Nozzle Pressure Controller
by Rasmus Aagaard Hertz, Ole Therkelsen, Søren Kristiansen, Jesper Kjærsgaard Christensen, Frederik Agervig Hansson and Lasse Schmidt
Polymers 2024, 16(10), 1432; https://doi.org/10.3390/polym16101432 (registering DOI) - 18 May 2024
Abstract
A 1D model describing the dynamics of an injection moulding machine and the injection process is presented. The model describes an injection cylinder actuated by a dual-pump electro–hydraulic speed-variable drive and the filling, holding and cooling phases of the injection moulding process utilising [...] Read more.
A 1D model describing the dynamics of an injection moulding machine and the injection process is presented. The model describes an injection cylinder actuated by a dual-pump electro–hydraulic speed-variable drive and the filling, holding and cooling phases of the injection moulding process utilising amorphous polymers. The model is suggested as the foundation for the design of model-based pressure controllers of, e.g., the nozzle pressure. The focus is on using material, mould and machine properties to construct the model, making it possible to analyse and design the dynamic system prior to manufacturing hardware or conducting experiments. Both the presented model and the developed controller show good agreement with experimental results. The proposed method is general in nature and enables the design, analysis and evaluation of the machine, material and mould dynamics for controller design based solely on the physical properties of the system. Full article
(This article belongs to the Special Issue Recent Advances in Injection Molding of Polymers)
Show Figures

Figure 1

11 pages, 253 KiB  
Article
Differing Within-Household Food Security Statuses Are Associated with Varied Maternal Mental Health Outcomes
by Rachel A. Liebe, Chanit’a Holmes and Sarah A. Misyak
Nutrients 2024, 16(10), 1522; https://doi.org/10.3390/nu16101522 (registering DOI) - 18 May 2024
Abstract
Household food insecurity is not necessarily equally experienced by all household members, with mothers often changing their intake first when food resources are limited. The purpose of this study was to understand the association between maternal mental health and intrahousehold differences in food [...] Read more.
Household food insecurity is not necessarily equally experienced by all household members, with mothers often changing their intake first when food resources are limited. The purpose of this study was to understand the association between maternal mental health and intrahousehold differences in food security statuses. A cross-sectional survey was administered to Virginia mothers with low income (August–October 2021), assessing validated measures of food security, mental and physical health and related factors. Participants (n = 570) were grouped according to the food security status of adults and children within the household. Linear regression was used to assess the outcomes of interest by group and controlled for key demographic variables. Mothers in households with any food insecurity reported worse overall mental health and used 3–4 more food coping strategies than households experiencing food security (p < 0.05). Only mothers in households where adults experienced food insecurity reported significantly greater anxiety and depressive symptoms (61.5 and 58.1, respectively) compared to households experiencing food security (55.7 and 52.4, p < 0.001). While any experience of household food insecurity is associated with worse maternal mental health, there were differences by the within-household food security status. Future research should explore screening measures that capture specific household members’ food security to connect households with available resources. Full article
13 pages, 636 KiB  
Article
Hydration and Fortification of Common Bean (Phaseolus vulgaris L.) with Grape Skin Phenolics—Effects of Ultrasound Application and Heating
by Gloria Bonassi and Vera Lavelli
Antioxidants 2024, 13(5), 615; https://doi.org/10.3390/antiox13050615 (registering DOI) - 18 May 2024
Abstract
Ultrasound (US)-assisted soaking combined with fortification with red grape skin (GS) phenolics was applied on two Phaseolus varieties, namely White Kidney Bean (WKB) and Cranberry Bean (CB), before heat treatment. The aims were to investigate: (a) the effect of US application on the [...] Read more.
Ultrasound (US)-assisted soaking combined with fortification with red grape skin (GS) phenolics was applied on two Phaseolus varieties, namely White Kidney Bean (WKB) and Cranberry Bean (CB), before heat treatment. The aims were to investigate: (a) the effect of US application on the kinetic of hydration; (b) the extent of absorption of different phenolic classes of GS into the beans and the resulting effect on antioxidant activity; (c) the effects of heat treatment on the phenolic fraction and antioxidant activity of GS extract- and water-soaked beans. US fastened the soaking step of both WKB and CB beans, which showed the sigmoidal and the downward concave shape hydration curves, respectively. Anthocyanins, flavonols, flavanol and phenolic acids levels increased with GS soaking, but US application was effective only for increasing the level of flavonols, while it favored the loss of endogenous phenolic acids and it did not affect the uptake of anthocyanins and flavanols. Heat treatment decreased the levels of most of phenolic compounds, but increased the levels of monomeric flavanols. Overall, the antioxidant activity was 40% higher in WKB and 53% higher in CB upon GS-fortification than in the control beans, despite the effects of heating. This fortification strategy could be applied for value addition of varieties low in phenolics or as a pre-treatment before intensive processing. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

23 pages, 49920 KiB  
Article
Evaluation of the Surface Topography of Microfinishing Abrasive Films in Relation to Their Machining Capability of Nimonic 80A Superalloy
by Katarzyna Tandecka, Wojciech Kacalak, Filip Szafraniec, Michał Wieczorowski and Thomas G. Mathia
Materials 2024, 17(10), 2430; https://doi.org/10.3390/ma17102430 (registering DOI) - 18 May 2024
Abstract
This study investigates the surface topography of microfinishing abrasive films and their machining capability on the Nimonic 80A superalloy, a high-performance nickel-based alloy commonly used in aerospace and gas turbine engine applications. Surface analysis was conducted on three abrasive films with nominal grain [...] Read more.
This study investigates the surface topography of microfinishing abrasive films and their machining capability on the Nimonic 80A superalloy, a high-performance nickel-based alloy commonly used in aerospace and gas turbine engine applications. Surface analysis was conducted on three abrasive films with nominal grain sizes of 30, 15, and 9 μm, exploring wear patterns, contact frequency, and distribution. To assess the distribution of grain apexes, Voronoi cells were employed. Results revealed distinct wear mechanisms, including torn abrasive grains and cracked bond surfaces, highlighting the importance of efficient chip removal mechanisms in microfinishing processes. Larger grain sizes exhibited fewer contacts with the workpiece but provided more storage space for machining products, while smaller grain sizes facilitated smoother surface finishes. The research demonstrated the effectiveness of microfinishing abrasive films in reducing surface irregularities. Additionally, surface analysis of worn abrasive tools provided insights into wear mechanisms and chip formation, with the segmentation of microchips contributing to efficient chip removal. These findings underscore the significance of selecting appropriate abrasive films and implementing effective chip removal mechanisms to optimize microfinishing processes and improve surface finishing quality in advanced material machining applications. It is worth emphasizing that no prior research has investigated the microfinishing of components crafted from Nimonic 80A utilizing abrasive films, rendering this study truly unique in its contribution to the field. Full article
Show Figures

Figure 1

12 pages, 1779 KiB  
Article
Efficacy of a Single-Bout of Auditory Feedback Training on Gait Performance and Kinematics in Healthy Young Adults
by Yosuke Tomita, Yoshihiro Sekiguchi and Nancy E. Mayo
Sensors 2024, 24(10), 3206; https://doi.org/10.3390/s24103206 (registering DOI) - 18 May 2024
Abstract
This study investigated the immediate effects of auditory feedback training on gait performance and kinematics in 19 healthy young adults, focusing on bilateral changes, despite unilateral training. Baseline and post-training kinematic measurements, as well as the feedback training were performed on a treadmill [...] Read more.
This study investigated the immediate effects of auditory feedback training on gait performance and kinematics in 19 healthy young adults, focusing on bilateral changes, despite unilateral training. Baseline and post-training kinematic measurements, as well as the feedback training were performed on a treadmill with a constant velocity. Significant improvements were seen in step length (trained: 590.7 mm to 611.1 mm, 95%CI [7.609, 24.373]; untrained: 591.1 mm to 628.7 mm, 95%CI [10.698, 30.835]), toe clearance (trained: 13.9 mm to 16.5 mm, 95%CI [1.284, 3.503]; untrained: 11.8 mm to 13.7 mm, 95%CI [1.763, 3.612]), ankle dorsiflexion angle at terminal stance (trained: 8.3 deg to 10.5 deg, 95%CI [1.092, 3.319]; untrained: 9.2 deg to 12.0 deg, 95%CI [1.676, 3.573]), hip flexion angular velocity, (trained: −126.5 deg/s to −131.0 deg/s, 95%CI [−9.054, −2.623]; untrained: −130.2 deg/s to −135.3 deg/s, 95%CI [−10.536, −1.675]), ankle angular velocity at terminal stance (trained: −344.7 deg/s to −359.1 deg/s, 95%CI [−47.540, −14.924]; untrained: −340.3 deg/s to −376.9 deg/s, 95%CI [−37.280, −13.166s]), and gastrocnemius EMG activity (trained: 0.60 to 0.66, 95%CI [0.014, 0.258]; untrained: 0.55 to 0.65, 95%CI [0.049, 0.214]). These findings demonstrate the efficacy of auditory feedback training in enhancing key gait parameters, highlighting the bilateral benefits from unilateral training. Full article
Show Figures

Figure 1

14 pages, 7833 KiB  
Article
Compositional Diversity of Early Mesozoic Granites in South Qinling: Derivation from Heterogenous Basement Rocks in the Orogenic Belt
by Risheng Ye, Weiyong Li, Dongyang Huo, Jingxin Zhao, Xiguang Huang, Jun He and Fukun Chen
Geosciences 2024, 14(5), 138; https://doi.org/10.3390/geosciences14050138 (registering DOI) - 18 May 2024
Abstract
Granitic rocks forming in the syn- to post-orogenic stages can trace the compositional and structural complexity of the crust beneath an orogenic belt. The Qinling orogenic belt undertook multiple stages of tectonics and magmatism, resulting in the multifaceted evolution and compositional diversity of [...] Read more.
Granitic rocks forming in the syn- to post-orogenic stages can trace the compositional and structural complexity of the crust beneath an orogenic belt. The Qinling orogenic belt undertook multiple stages of tectonics and magmatism, resulting in the multifaceted evolution and compositional diversity of the crust. In the present study, the Guangtoushan and Miba plutons in South Qinling were chosen to reveal the crustal heterogeneity in study area via isotopic geochemistry and zircon geochronology. The Guangtoushan pluton was emplaced between ~215 Ma and ~202 Ma and the Miba pluton formed at ~213 Ma, as constrained by zircon U-Pb isotopic dating. Granitic rocks of the Miba pluton are characterized by amphibole bearing and homogeneous composition, with relatively depleted Sr-Nd isotopic compositions (initial 87Sr/86Sr values of 0.7060 to 0.7084 and initial εNd values of −5.4 to −9.5) and high Pb isotopic values. The Guangtoushan pluton contains muscovite and complex inherited zircon grains and has variable Sr-Nd isotopic composition (initial 87Sr/86Sr values of 0.7050 to 0.7091 and initial εNd values of −4.5 to −12.9) and low Pb isotopic values. Felsic magmas of the Guangtoushan pluton should be derived mainly from meta-sedimentary rocks beneath South Qinling, while the Miba pluton originated primarily from partial melting of meta-igneous rocks. The compositional diversity recorded in the Early Mesozoic plutons was caused by the heterogeneous crust, and partial melting was induced by heating of the up-welling asthenosphere in a post-collision setting. Full article
Show Figures

Figure 1

9 pages, 213 KiB  
Article
Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit
by Sherri Huang, Ashley Perry, Carlos Sanchez Parra, Adriana Gonzalez Torriente, Haider Ghumman, Shaun Charkowick, Joshua Colon, McKenzi Heide, Michael Jaglal, Rahul Mhaskar and Juan Felipe Rico
J. Clin. Med. 2024, 13(10), 2974; https://doi.org/10.3390/jcm13102974 (registering DOI) - 18 May 2024
Abstract
Background/Objectives: The hypercoagulable state associated with COVID-19 infection is associated with adverse outcomes and mortality. Studies have also demonstrated high rates of venous thromboembolism (VTE) events among patients with sepsis. We aimed to evaluate how the increase in thrombotic events in critically ill [...] Read more.
Background/Objectives: The hypercoagulable state associated with COVID-19 infection is associated with adverse outcomes and mortality. Studies have also demonstrated high rates of venous thromboembolism (VTE) events among patients with sepsis. We aimed to evaluate how the increase in thrombotic events in critically ill patients with COVID-19 infection compares to that of critically ill patients with non-COVID-19 sepsis. Methods: A chart review was performed of patients 18 years or older admitted to the intensive care unit (ICU) at Tampa General Hospital between 1 January 2020 and 31 December 2020 diagnosed with COVID-19 or sepsis secondary to other pathogens. Non-COVID-19 sepsis patients and COVID-19 patients were propensity-matched 3:1 on the Charlson Comorbidity Index. Multivariate analyses adjusting for confounding were conducted to report odds ratio (OR) and 95% confidence intervals (95% CIs) of predictors for thrombotic events and overall mortality. Results: After propensity score matching, 492 sepsis patients and 164 COVID-19 patients were included in the analysis. COVID-19 patients were significantly older (p = 0.021) and showed higher BMI (p < 0.001) than sepsis patients. COVID-19 patients did not show significantly higher odds of thrombosis after adjustment for confounders (OR 0.85, 95% CI 0.42–1.72), but had significantly lower odds of mortality than sepsis patients (OR 0.33, 95% CI 0.16–0.66). Conclusions: Our results suggest that further study is required to lower the rate of VTE in COVID-19 and non-COVID-19 sepsis patients admitted to the ICU; it is also reasonable to consider similar thromboembolism practices between these two patient groups. Full article
(This article belongs to the Section Intensive Care)
12 pages, 3210 KiB  
Article
Improving Ammonia Emission Model of Urea Fertilizer Fluidized Bed Granulation System Using Particle Swarm Optimization for Sustainable Fertilizer Manufacturing Practice
by Norhidayah Mohamad, Nor Azlina Ab. Aziz, Anith Khairunnisa Ghazali and Mohd Rizal Salleh
Processes 2024, 12(5), 1025; https://doi.org/10.3390/pr12051025 (registering DOI) - 18 May 2024
Abstract
Granulation is an important class of production processes in food, chemical and pharmaceutical manufacturing industries. In urea fertilizer manufacturing, fluidized beds are often used for the granulation system. However, the granulation processes release ammonia to the environment. Ammonia gas can contribute to eutrophication, [...] Read more.
Granulation is an important class of production processes in food, chemical and pharmaceutical manufacturing industries. In urea fertilizer manufacturing, fluidized beds are often used for the granulation system. However, the granulation processes release ammonia to the environment. Ammonia gas can contribute to eutrophication, which is an oversupply of nitrogen and acidification to the ecosystems. Eutrophication may cause major disruptions of aquatic ecosystems. It is estimated that global ammonia emissions from urea fertilizer processes are approximately at 10 to 12 Tg N/year, which represents 23% of overall ammonia released globally. Therefore, accurate modeling of the ammonia emission by the urea fertilizer fluidized bed granulation system is important. It allows for the system to be operated efficiently and within sustainable condition. This research attempts to optimize the model of the system using the particle swarm optimization (PSO) algorithm. The model takes pressure (Mpa), binder feed rate (rpm) and inlet temperature (°C) as the manipulated variables. The PSO searches for the model’s optimal coefficients. The accuracy of the model is measured using mean square error (MSE) between the model’s simulated value and the actual data of ammonia released which is collected from an experiment. The proposed method reduces the MSE to 0.09727, indicating that the model can accurately simulate the actual system. Full article
Show Figures

Figure 1

22 pages, 13002 KiB  
Article
Study on Sulfide Ore Dust Dispersion and Dust Reduction Measures Based on Simulation
by Zijun Li, Pengyu Hu and Yuanyuan Xu
Minerals 2024, 14(5), 523; https://doi.org/10.3390/min14050523 (registering DOI) - 18 May 2024
Abstract
Sulfide ore dust is at risk of explosion. To analyze the concentration distribution of sulfide ore dust in the ore loading, transporting, and unloading operations, the migration and dispersion processes of sulfide ore dust were simulated by using FLUENT software and taking the [...] Read more.
Sulfide ore dust is at risk of explosion. To analyze the concentration distribution of sulfide ore dust in the ore loading, transporting, and unloading operations, the migration and dispersion processes of sulfide ore dust were simulated by using FLUENT software and taking the dust generation rate, roadway air velocity, and dust source position as variables. The concentration of sulfide ore dust was analyzed from the four-dimensional perspective of time and space. The results show that the maximum concentration of sulfide ore dust is determined by the dust generation rate. The roadway air velocity exhibits dual effects on the migration and deposition of sulfide ore dust. The ore loading position significantly impacts the distribution of sulfide ore dust, manifesting in varying degrees of superposition effects. Based on the results, this paper proposes a comprehensive dust reduction measure in the form of water curtain and dynamic ventilation, effectively minimizing the concentration of sulfide mine dust within the roadway. Full article
Show Figures

Figure 1

20 pages, 23249 KiB  
Article
Ecological Security Pattern Construction in Loess Plateau Areas—A Case Study of Shanxi Province, China
by Yongyong Fu, Wenjia Zhang, Feng Gao, Xu Bi, Ping Wang and Xiaojun Wang
Land 2024, 13(5), 709; https://doi.org/10.3390/land13050709 (registering DOI) - 18 May 2024
Abstract
Strong soil erosion and increasing human activities have made Loess Plateau areas ecologically fragile regions. Constructing the ecological security pattern (ESP) is imperative to maintain their ecosystem functions and sustainable development. However, it is still challenging to establish the ESP in such an [...] Read more.
Strong soil erosion and increasing human activities have made Loess Plateau areas ecologically fragile regions. Constructing the ecological security pattern (ESP) is imperative to maintain their ecosystem functions and sustainable development. However, it is still challenging to establish the ESP in such an unstable and scattered ecological environment. In this study, we take Shanxi Province, which suffers severe ecological problems in Loess Plateau areas, as an example to construct the ESP in a pattern of “source-resistance-corridor”. The proposed methods include the following steps: (1) potential ecological sources are selected with important ecosystem functions based on contributions of soil and water conservation, habitat quality, and carbon storage; (2) ecological sources are determined by considering core areas at the landscape scale based on morphological spatial pattern analysis (MSPA) along with stability based on dynamic assessment on previous sources; (3) the comprehensive resistance surface is constructed by multiple resistance factors and remotely sensed nighttime light data; (4) ecological corridors are simulated and extracted based on circuit theory. As a result, the proposed ESP in our study area mainly includes 13,592 km2 of ecological sources, 8519.64 km of ecological corridors, and 277 ecological nodes. Meanwhile, an ecological framework of “two axes, three belts, and three zones” was proposed based on the optimization and reorganization of ecological components within the ESP. Our research lays a methodological and practical foundation for regional ESP construction and sustainable development in Loess Plateau areas. Full article
(This article belongs to the Special Issue Local and Regional Planning for Sustainable Development)
Show Figures

Figure 1

15 pages, 3489 KiB  
Article
Short-Term Electrical Load Forecasting Using an Enhanced Extreme Learning Machine Based on the Improved Dwarf Mongoose Optimization Algorithm
by Haocheng Wang, Yu Zhang and Lixin Mu
Symmetry 2024, 16(5), 628; https://doi.org/10.3390/sym16050628 (registering DOI) - 18 May 2024
Abstract
Accurate short-term electrical load forecasting is crucial for the stable operation of power systems. Given the nonlinear, periodic, and rapidly changing characteristics of short-term power load forecasts, this paper introduces a novel forecasting method employing an Extreme Learning Machine (ELM) enhanced by an [...] Read more.
Accurate short-term electrical load forecasting is crucial for the stable operation of power systems. Given the nonlinear, periodic, and rapidly changing characteristics of short-term power load forecasts, this paper introduces a novel forecasting method employing an Extreme Learning Machine (ELM) enhanced by an improved Dwarf Mongoose Optimization Algorithm (Local escape Dwarf Mongoose Optimization Algorithm, LDMOA). This method addresses the significant prediction errors of conventional ELM models and enhances prediction accuracy. The enhancements to the Dwarf Mongoose Optimization Algorithm include three key modifications: initially, a dynamic backward learning strategy is integrated at the early stages of the algorithm to augment its global search capabilities. Subsequently, a cosine algorithm is employed to locate new food sources, thereby expanding the search scope and avoiding local optima. Lastly, a “madness factor” is added when identifying new sleeping burrows to further widen the search area and effectively circumvent local optima. Comparative analyses using benchmark functions demonstrate the improved algorithm’s superior convergence and stability. In this study, the LDMOA algorithm optimizes the weights and thresholds of the ELM to establish the LDMOA-ELM prediction model. Experimental forecasts utilizing data from China’s 2016 “The Electrician Mathematical Contest in Modeling” demonstrate that the LDMOA-ELM model significantly outperforms the original ELM model in terms of prediction error and accuracy. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop