The 2023 MDPI Annual Report has
been released!
 
22 pages, 7013 KiB  
Article
In Situ Test and Numerical Analysis of the Subway-Induced Vibration Influence in Historical and Cultural Reserves
by Jie Su, Xingyi Liu, Yuzhe Wang, Xingyu Lu, Xiaokai Niu and Jiangtao Zhao
Sensors 2024, 24(9), 2860; https://doi.org/10.3390/s24092860 (registering DOI) - 30 Apr 2024
Abstract
Although the rapid expansion of urban rail transit offers convenience to citizens, the issue of subway vibration cannot be overlooked. This study investigates the spatial distribution characteristics of vibration in the Fayuan Temple historic and cultural reserve. It involves using a V001 magnetoelectric [...] Read more.
Although the rapid expansion of urban rail transit offers convenience to citizens, the issue of subway vibration cannot be overlooked. This study investigates the spatial distribution characteristics of vibration in the Fayuan Temple historic and cultural reserve. It involves using a V001 magnetoelectric acceleration sensor capable of monitoring low amplitudes with a sensitivity of 0.298 V/(m/s2), a measuring range of up to 20 m/s2, and a frequency range span from 0.5 to 100 Hz for in situ testing, analyzing the law of vibration propagation in this area, evaluating the impact on buildings, and determining the vibration reduction scheme. The reserve is divided into three zones based on the vertical vibration level measured during the in situ test as follows: severely excessive, generally excessive, and non-excessive vibration. Furthermore, the research develops a dynamic coupling model of vehicle–track–tunnel–stratum–structure to verify the damping effect of the wire spring floating plate track and periodic pile row. It compares the characteristics of three vibration reduction schemes, namely, internal vibration reduction reconstruction, periodic pile row, and anti-vibration reinforcement or reconstruction of buildings, proposing a comprehensive solution. Considering the construction conditions, difficulty, cost, and other factors, a periodic pile row is recommended as the primary treatment measure. If necessary, anti-vibration reinforcement or reconstruction of buildings can serve as supplemental measures. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

13 pages, 7284 KiB  
Article
Design a Friendly Nanoscale Chemical Sensor Based on Gold Nanoclusters for Detecting Thiocyanate Ions in Food Industry Applications
by Reham Ali and Sayed M. Saleh
Biosensors 2024, 14(5), 223; https://doi.org/10.3390/bios14050223 (registering DOI) - 30 Apr 2024
Abstract
The surfactant cetyltrimethylammonium bromide (CTAB) induces the aggregation of gold nanoclusters (GNCs), leading to the development of a proposed fluorometric technique for detecting thiocyanate (SCN) ions based on an anti-aggregation mechanism. This approach is straightforward to execute, highly sensitive, and selective. [...] Read more.
The surfactant cetyltrimethylammonium bromide (CTAB) induces the aggregation of gold nanoclusters (GNCs), leading to the development of a proposed fluorometric technique for detecting thiocyanate (SCN) ions based on an anti-aggregation mechanism. This approach is straightforward to execute, highly sensitive, and selective. A significant quenching effect occurs in fluorescence upon using the aggregation agent CTAB in GNCs synthesis, resulting in a transition from intense red fluorescence to dim red. The decrease in fluorescence intensity of GNCs in the presence of CTAB is caused by the mechanism of fluorescence quenching mediated by aggregation. As the levels of SCN rise, the fluorescence of CTAB-GNCs increases; this may be detected using spectrofluorometry or by visually inspecting under UV irradiation. The recovery of red fluorescence of CTAB-GNCs in the presence of SCN enables the precise and discerning identification of SCN within the concentration range of 2.86–140 nM. The minimum detectable concentration of the SCN ions was 1 nM. The selectivity of CTAB-GNCs towards SCN ions was investigated compared to other ions, and it was demonstrated that CTAB-GNCs exhibit exceptional selectivity. Furthermore, we believe that CTAB-GNCs have novel possibilities as favorable sensor candidates for various industrial applications. Our detection technique was validated by analyzing SCN ions in milk samples, which yielded promising results. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Graphical abstract

29 pages, 1637 KiB  
Review
Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer
by Ghosoon Albahri, Adnan Badran, Zaher Abdel Baki, Mohamad Alame, Akram Hijazi, Anis Daou and Elias Baydoun
Pharmaceuticals 2024, 17(5), 574; https://doi.org/10.3390/ph17050574 (registering DOI) - 30 Apr 2024
Abstract
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these [...] Read more.
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored. Full article
Show Figures

Figure 1

14 pages, 1870 KiB  
Article
Enrofloxacin, Effective Treatment of Pseudomonas aeruginosa and Enterococcus faecalis Infection in Oreochromis niloticus
by Ibrahim Aboyadak and Nadia Gabr Ali
Microorganisms 2024, 12(5), 901; https://doi.org/10.3390/microorganisms12050901 (registering DOI) - 30 Apr 2024
Abstract
Enrofloxacin is a broad-spectrum synthetic antimicrobial drug widely used in veterinary medicine. The present study aimed to determine the effective enrofloxacin dose for treating Pseudomonas aeruginosa and Enterococcus faecalis infection in Oreochromis niloticus. P. aeruginosa and E. faecalis isolates were verified using selective differential [...] Read more.
Enrofloxacin is a broad-spectrum synthetic antimicrobial drug widely used in veterinary medicine. The present study aimed to determine the effective enrofloxacin dose for treating Pseudomonas aeruginosa and Enterococcus faecalis infection in Oreochromis niloticus. P. aeruginosa and E. faecalis isolates were verified using selective differential media and biochemically using the Vitek 2 test. Bacterial isolates were virulent for O. niloticus with LD50 equal to 2.03 × 106 and 2.22 × 107 CFU fish−1 for P. aeruginosa and E. faecalis, respectively. Infected fish suffered from decreased feed intake followed by off-food, tail erosion, darkening of the external body surface, exophthalmia, ascites, and loss of escape reflex. Internally, congested hemorrhagic hepatopancreas with engorged distended gall bladder were dominant. The posterior kidney was congested with enlarged spleen, and empty elementary tract. Pathologically, severe degenerative changes were dominant in the hepatopancreas, posterior kidney, spleen, stomach, and gills of infected fish. Antimicrobial sensitivity test indicated the high susceptibility of P. aeruginosa and E. faecalis to enrofloxacin with MIC estimated at 1 and 0.0625 µg/mL, respectively. Enrofloxacin effectively protected O. niloticus against E. faecalis and P. aeruginosa infection when used with medicated feed at doses of 10 and 20 mg kg−1 body weight. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

21 pages, 4493 KiB  
Article
Preliminary Impact Assessment of the Ad Hoc Separation Minima: A New Separation Mode
by Lidia Serrano-Mira, Luis Pérez Sanz, Javier A. Pérez-Castán, Adrián Casado López, Eduardo S. Ayra and Marta Pérez Maroto
Appl. Sci. 2024, 14(9), 3824; https://doi.org/10.3390/app14093824 (registering DOI) - 30 Apr 2024
Abstract
A major challenge for the Air Traffic Management system is the need to boost airspace capacity, which is near saturation in some situations. Separation minima are one of the factors related to airspace capacity, and the SESAR program promotes research into advanced separation [...] Read more.
A major challenge for the Air Traffic Management system is the need to boost airspace capacity, which is near saturation in some situations. Separation minima are one of the factors related to airspace capacity, and the SESAR program promotes research into advanced separation modes. Ad Hoc separation, a novel separation mode, involves applying different pairwise separation minima in the same volume of airspace depending on a set of factors, such as encounter geometry, aircraft models, and flight level, among others. This research examines the impact of implementing this concept in different en-route scenarios. The goal is to determine whether applying this concept proves advantageous or, conversely, results in an increase in the complexity of the system without significant benefits in the key performance areas of capacity, environment, and cost-efficiency. Fast Time Simulations are conducted in RAMS software, with the concept being implemented in the LECMZMU, LECMTLU, and LECMDGU sectors of the Madrid ACC. The results reveal favorable capacity outcomes with increases of around 2% and the LECMZMU sector exhibits the most significant environmental and cost-efficiency benefits. Furthermore, implementing the Ad Hoc concept in a larger scenario could yield even greater environmental and cost-efficiency benefits. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

17 pages, 2597 KiB  
Article
Effect of Sugar- and Polyphenol-Rich, Diluted Cloudy Apple Juice on the Intestinal Barrier after Moderate Endurance Exercise and in Ultra-Marathon Runners
by Sarah Valder, Raphaela Staltner, Daniel Alexander Bizjak, Tuba Esatbeyoglu, Volker Herdegen, Magdalena Köpsel, Tihomir Kostov, Ina Bergheim and Patrick Diel
Nutrients 2024, 16(9), 1353; https://doi.org/10.3390/nu16091353 (registering DOI) - 30 Apr 2024
Abstract
Background: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). Method: The IB function [...] Read more.
Background: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). Method: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides—LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. Results: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. Conclusions: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

14 pages, 2508 KiB  
Article
A Method of Reducing Errors Due to Sampling in the Measurement of Electric Power
by Constantin-Daniel Oancea
Appl. Sci. 2024, 14(9), 3827; https://doi.org/10.3390/app14093827 (registering DOI) - 30 Apr 2024
Abstract
Although data acquisition is a very usual technique, several aspects are not always considered, such as the synchronization of the acquired measures and the evaluation of the resulting errors. This paper aims to highlight this fact by the mathematical determination of the necessary [...] Read more.
Although data acquisition is a very usual technique, several aspects are not always considered, such as the synchronization of the acquired measures and the evaluation of the resulting errors. This paper aims to highlight this fact by the mathematical determination of the necessary correction and the implementation of software meant to evaluate the performances of acquisition systems. As an example, a three-phased acquisition system was developed in order to monitor the currents and voltages on the three phases. Also, other measures were performed, such as of power and phase. The components on each phase did not have to be fully identified because a whole system calibration could be performed in the first stage. The calibration consisted in finding the weighting coefficients for each measured quantity. The implemented solution for three-phased measure acquisition started from the hypothesis of a sampling frequency that respected the Shannon theorem. The distance between two samples was small enough to consider a linear evolution between two moments for the same measure. Errors that affected the above-mentioned measures, due to the fact that the samples were examined in different moments, were analyzed and brought to the minimum value. Finding a solution to reduce the sampling errors is closely related to reducing the costs. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

22 pages, 359 KiB  
Article
Nephilim in Aotearoa New Zealand: Reading Māori Narratives of Tāwhaki with Gen 6:1–4’s Ancient Divine Heroes
by Deane Galbraith
Religions 2024, 15(5), 568; https://doi.org/10.3390/rel15050568 (registering DOI) - 30 Apr 2024
Abstract
The 2023 Bible Society New Zealand’s translation of sample biblical passages into the Māori language, He Tīmatanga, caused controversy by incorporating names of Māori gods. Those who objected typically assumed inconsistency with the Bible’s purported monotheism. But ‘monotheism’, in the sense that [...] Read more.
The 2023 Bible Society New Zealand’s translation of sample biblical passages into the Māori language, He Tīmatanga, caused controversy by incorporating names of Māori gods. Those who objected typically assumed inconsistency with the Bible’s purported monotheism. But ‘monotheism’, in the sense that only one god exists, is not present in the Bible. Moreover, missionary adherence to monotheism in the mid-nineteenth century widely assumed a ‘degeneration model’ that also promoted European religious, moral, and cultural superiority. This article adopts a hermeneutical strategy to counter monotheistic misreadings of the Bible, and their racist effects, by reading Māori stories of the ancient divine hero Tāwhaki alongside the ancient divine heroes who feature in Gen 6:1–4’s account of the Nephilim. First, the comparison provides resources for the translation of Gen 6:1–4 into the Māori language and worldview. Second, the Tāwhaki narratives stimulate a reappraisal of longstanding problems in the interpretation of Gen 6:1–4, especially the meaning of the phrase “the sons of the gods”. Supported by analysis also of the Sumerian King List, this article argues that all three major interpretations of “the sons of the gods” are fundamentally consistent: they are gods, elite human rulers, and also Sethites. Full article
(This article belongs to the Special Issue The Intercultural Hermeneutics of the Bible in Aotearoa-New Zealand)
23 pages, 6769 KiB  
Article
Research on Capacity Configuration for Green Power Substitution in an Isolated Grid Containing Electrolytic Aluminum
by Min You, Yunguang Wang, Haiyun Wang, Aisikaer Wusiman and Liangnian Lv
Energies 2024, 17(9), 2136; https://doi.org/10.3390/en17092136 (registering DOI) - 30 Apr 2024
Abstract
The deployment of a green power alternative within an isolated network, powered by renewable energy sources, in the “Three North” region of China can facilitate the substitution of high-energy-consuming industrial loads with green power. However, an inadequate power supply configuration may lead to [...] Read more.
The deployment of a green power alternative within an isolated network, powered by renewable energy sources, in the “Three North” region of China can facilitate the substitution of high-energy-consuming industrial loads with green power. However, an inadequate power supply configuration may lead to economic and reliability issues. To address this problem, effective capacity allocation within the green power alternative isolated network is proposed. The capacity allocation process starts with the design of a network structure that aligns with local conditions. Subsequently, a capacity allocation model is developed, considering economic factors, renewable energy utilization efficiency, and system reliability. The gray wolf optimizer is enhanced to establish a capacity allocation method for the green power alternative isolated network. This method is then employed to simulate and assess the performance of the network. The results indicate that the green alternative isolated grid can successfully facilitate green power substitution, satisfying the energy requirements of the loads. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 2150 KiB  
Article
IPAttributor: Cyber Attacker Attribution with Threat Intelligence-Enriched Intrusion Data
by Xiayu Xiang, Hao Liu, Liyi Zeng, Huan Zhang and Zhaoquan Gu
Mathematics 2024, 12(9), 1364; https://doi.org/10.3390/math12091364 (registering DOI) - 30 Apr 2024
Abstract
In the dynamic landscape of cyberspace, organizations face a myriad of coordinated advanced threats that challenge the traditional defense paradigm. Cyber Threat Intelligence (CTI) plays a crucial role, providing in-depth insights into adversary groups and enhancing the detection and neutralization of complex cyber [...] Read more.
In the dynamic landscape of cyberspace, organizations face a myriad of coordinated advanced threats that challenge the traditional defense paradigm. Cyber Threat Intelligence (CTI) plays a crucial role, providing in-depth insights into adversary groups and enhancing the detection and neutralization of complex cyber attacks. However, attributing attacks poses significant challenges due to over-reliance on malware samples or network detection data alone, which falls short of comprehensively profiling attackers. This paper proposes an IPv4-based threat attribution model, IPAttributor, that improves attack characterization by merging a real-world network behavior dataset comprising 39,707 intrusion entries with commercial threat intelligence from three distinct sources, offering a more nuanced context. A total of 30 features were utilized from the enriched dataset for each IP to create a feature matrix to assess the similarities and linkage of associated IPs, and a dynamic weighted threat segmentation algorithm was employed to discern attacker communities. The experiments affirm the efficacy of our method in pinpointing attackers sharing a common origin, achieving the highest accuracy of 88.89%. Our study advances the relatively underexplored line of work of cyber attacker attribution, with a specific interest in IP-based attribution strategies, thereby enhancing the overall understanding of the attacker’s group regarding their capabilities and intentions. Full article
(This article belongs to the Special Issue Advanced Research on Information System Security and Privacy)
Show Figures

Figure 1

13 pages, 2280 KiB  
Review
Drug-Induced Myopathies: A Comprehensive Review and Update
by Sebastian Miernik, Agata Matusiewicz and Marzena Olesińska
Biomedicines 2024, 12(5), 987; https://doi.org/10.3390/biomedicines12050987 (registering DOI) - 30 Apr 2024
Abstract
Drug-induced myopathies are a common cause of muscle pain, and the range of drugs that can cause muscle side effects is constantly expanding. In this article, the authors comprehensively discuss the diagnostic and therapeutic process in patients with myalgia, and present the spectrum [...] Read more.
Drug-induced myopathies are a common cause of muscle pain, and the range of drugs that can cause muscle side effects is constantly expanding. In this article, the authors comprehensively discuss the diagnostic and therapeutic process in patients with myalgia, and present the spectrum of drug-induced myopathies. The review provides a detailed analysis of the literature on the incidence of myopathy during treatment with hypolipemic drugs, beta-blockers, amiodarone, colchicine, glucocorticosteroids, antimalarials, cyclosporine, zidovudine, and checkpoint inhibitors, a group of drugs increasingly used in the treatment of malignancies. The article considers the clinical course of the different types of myopathies, their pathogenesis, histopathological features, and treatment methods of these disorders. The aim of this paper is to gather from the latest available literature up-to-date information on the course, pathophysiology, and therapeutic options of drug-induced myopathies, to systematize the knowledge of drug-induced myopathies and to draw the attention of internists to the fact that these clinical issues are an important therapeutic problem. Full article
(This article belongs to the Special Issue State-of-the-Art Drug Discovery and Development in Poland)
Show Figures

Figure 1

20 pages, 7606 KiB  
Article
Mechanistic Study of Failure in CFRP Hybrid Bonded–Bolted Interference Connection Structures under Tensile Loading
by Bin Luo, Liyang Xue, Qingsong Wang and Peng Zou
Materials 2024, 17(9), 2117; https://doi.org/10.3390/ma17092117 (registering DOI) - 30 Apr 2024
Abstract
Hybrid bonded–bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes [...] Read more.
Hybrid bonded–bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes damage to the adhesive layer and composite laminate around the holes, leading to issues with interface damage. In this study, we employed experimental and finite element methods. Initially, different interference-fit sizes were selected for bolt insertion to analyze the damage mechanism of the adhesive layer during interference-fit bolt installation. Subsequently, a finite element tensile model considering damage to the adhesive layer and composite laminate around the holes post-insertion was established. This study aimed to investigate damage in composite bonded–bolted hybrid joints, explore load-carrying rules and failure modes, and reveal the mechanisms of interference effects on structural damage and failure. The research results indicate that the finite element prediction model considering initial damage around the holes is more effective. As the interference-fit size increases, damage to the adhesive layer transitions from surface debonding to local cracking, while damage to the composite matrix shifts from slight compression failure to severe delamination and fiber-bending fracturing. The structural strength shows a trend of initially increasing and then decreasing, with the maximum strength observed at an interference-fit size of 1.1%. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 2063 KiB  
Article
The Effect of Phenolic-Rich Extracts of Rubus fruticosus, R. ulmifolius and Morus nigra on Oxidative Stress and Caco-2 Inhibition Growth
by Mariana S. Martins, Márcio Rodrigues, José David Flores-Félix, Cristina Garcia-Viguera, Diego A. Moreno, Gilberto Alves, Luís R. Silva and Ana C. Gonçalves
Nutrients 2024, 16(9), 1361; https://doi.org/10.3390/nu16091361 (registering DOI) - 30 Apr 2024
Abstract
Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human [...] Read more.
Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human dermal fibroblasts (NHDF) and human colon carcinoma cell line (Caco-2) cells of phenolic-rich extracts from three red fruits highly appreciated by consumers: two species of blackberries (Rubus fruticosus and Rubus ulmifolius) and one species of mulberry (Morus nigra). A total of 19 different phenolics were identified and quantified by HPLC-DAD-ESI/MSn and HPLC-DAD, respectively. Focusing on the biological potential of the phenolic-rich extracts, all of them revealed notable scavenging abilities. Concerning the antiproliferative properties, R. fruticosus presented a cytotoxic selectivity for Caco-2 cells compared to NHDF cells. To deeper explore the biological potential, combinations with positive controls (ascorbic acid and 5-fluorouracil) were also conducted. Finally, the obtained data are another piece of evidence that the combination of phenolic-rich extracts from natural plants with positive controls may reduce clinical therapy costs and the possible toxicity of chemical drugs. Full article
(This article belongs to the Special Issue The Role of Bioactive Compounds in Blood Glucose Control)
Show Figures

Figure 1

20 pages, 7180 KiB  
Article
Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method
by Kosuke Ichikawa and Haruo Sato
Minerals 2024, 14(5), 477; https://doi.org/10.3390/min14050477 (registering DOI) - 30 Apr 2024
Abstract
Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies [...] Read more.
Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies provide few mechanical and thermodynamic data on Ca-montmorillonite. In this study, thermodynamic data on Ca-montmorillonite were obtained as a function of water content by measuring relative humidity (RH) and temperature. The activities of water and the relative partial molar Gibbs free energies of water were determined from the experimental results, and the swelling stress of Ca-bentonite was calculated using the thermodynamic model and compared with measured data. The activities of water and the relative partial molar Gibbs free energies obtained in the experiments decreased with decreasing water content in water contents lower than about 25%. This trend was similar to that of Na-montmorillonite. The swelling stress calculated based on the thermodynamic model was approximately 200 MPa at a montmorillonite partial density of 2.0 Mg/m3 and approximately 10 MPa at a montmorillonite partial density of 1.4 Mg/m3. The swelling stresses in the high-density region (around 2.0 Mg/m3) were higher than that of Na-montmorillonite and were similar levels in the low-density region (around 1.5 Mg/m3). Comparison with measured data showed the practicality of the thermodynamic model. Full article
(This article belongs to the Special Issue Environmental Mineralogy, 2nd Edition)
Show Figures

Figure 1

18 pages, 5314 KiB  
Article
Designing Antitrypanosomal and Antileishmanial BODIPY Derivatives: A Computational and In Vitro Assessment
by Raquel C. R. Gonçalves, Filipe Teixeira, Pablo Peñalver, Susana P. G. Costa, Juan C. Morales and M. Manuela M. Raposo
Molecules 2024, 29(9), 2072; https://doi.org/10.3390/molecules29092072 (registering DOI) - 30 Apr 2024
Abstract
Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations [...] Read more.
Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 μM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 μM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme. Full article
(This article belongs to the Special Issue Boron Dipyrromethene (BODIPY) Dyes and Their Derivatives)
Show Figures

Figure 1

12 pages, 5524 KiB  
Article
The Mechanism of Short-Circuit Oscillations in Automotive-Grade Multi-Chip Parallel Power Modules and an Effective Mitigation Approach
by Kun Ma, Yameng Sun, Xun Liu, Yifan Song, Xuehan Li, Huimin Shi, Zheng Feng, Xiao Zhang, Yang Zhou and Sheng Liu
Sensors 2024, 24(9), 2858; https://doi.org/10.3390/s24092858 (registering DOI) - 30 Apr 2024
Abstract
This paper presents an in-depth analysis of the oscillation phenomenon occurring in multi-chip parallel automotive-grade power modules under short-circuit conditions and investigates three suppression methods. We tested and analyzed two commercial automotive-grade power modules, one containing two chips and the other containing a [...] Read more.
This paper presents an in-depth analysis of the oscillation phenomenon occurring in multi-chip parallel automotive-grade power modules under short-circuit conditions and investigates three suppression methods. We tested and analyzed two commercial automotive-grade power modules, one containing two chips and the other containing a single chip, and found that short-circuit gate oscillations were more likely to occur in multi-chip parallel packaged modules than in single-chip packaged modules. Through experimental and simulation analyses, we observed that gate oscillations were mainly caused by the interaction between internal parasitic parameters of the module and the external drive circuit, and we found that high drive resistance and low common emitter inductance between parallel chips could effectively suppress gate voltage oscillations. We also analyzed the two mainstream suppression schemes, increasing the drive gate resistance and placing the drive capacitors in parallel. Unfortunately, we found that these suppression schemes were not ideal solutions because both schemes changed the switching characteristics of the power module. As an alternative, we propose a simple and effective solution that involves adding parallel connections between the parallel chips. Simulation calculations showed that this optimized method reduced the emitter inductance between parallel chips in the upper bridge arm by about 30% and in the lower bridge arm by 35%. Through short-circuit experiments conducted at different DC bus voltages, it has been verified that the new optimized solution effectively resolves gate oscillation issues without affecting the switching characteristics of the power module. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 6570 KiB  
Article
An Experimental Method to Capture the Thermal Conductivity Coefficient of Fine-Grained Concretes during Transition from Liquid to Solid
by Yannik Schwarz, Denis Ratke, David Sanio, Thomas Meurer and Peter Mark
Materials 2024, 17(9), 2115; https://doi.org/10.3390/ma17092115 (registering DOI) - 30 Apr 2024
Abstract
During the transition from liquid to solid, the thermal conductivity coefficient λ of concrete decreases. Although λ of hardened concrete is well investigated, there is limited research on the transition from liquid to solid and how it depends on hydration. Currently, only simplified [...] Read more.
During the transition from liquid to solid, the thermal conductivity coefficient λ of concrete decreases. Although λ of hardened concrete is well investigated, there is limited research on the transition from liquid to solid and how it depends on hydration. Currently, only simplified qualitative approaches exist for the liquid state and the transient process. An experimental method is not available. For this purpose, a test rig is designed to experimentally capture the evolution of λ for fine-grain concretes during transition. The performance of the test setup is evaluated on a characteristic high-performance concrete (HPC). The results are compared to theoretical predictions from the literature. The developed test rig is mapped in a digital twin to investigate extended boundary conditions, such as different heat sources and temperatures of the experimental setup. It allows the experiment to be repeated and optimized for different setups with little effort. The test principle is as follows: A liquid concrete sample is heated through a controlled external source, while the transient temperature distribution over the height is measured with a fiber optic sensor. The thermal conductivity is derived from the heat flux induced and the temperature distribution over an evaluation length. Experiments show that λ in the liquid state is approximately 1.4 times greater than in the solid state and exponentially decreases for the transient process. Numerical results on the digital twin indicate that the robustness of the results increases with the temperature of the heat source. Moreover, the derivation in λ turns out to be strongly dependent on the evaluation length. A length of three times the maximum grain diameter is recommended. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 6024 KiB  
Article
Air Quality Class Prediction Using Machine Learning Methods Based on Monitoring Data and Secondary Modeling
by Qian Liu, Bingyan Cui and Zhen Liu
Atmosphere 2024, 15(5), 553; https://doi.org/10.3390/atmos15050553 (registering DOI) - 30 Apr 2024
Abstract
Addressing the constraints inherent in traditional primary Air Quality Index (AQI) forecasting models and the shortcomings in the exploitation of meteorological data, this research introduces a novel air quality prediction methodology leveraging machine learning and the enhanced modeling of secondary data. The dataset [...] Read more.
Addressing the constraints inherent in traditional primary Air Quality Index (AQI) forecasting models and the shortcomings in the exploitation of meteorological data, this research introduces a novel air quality prediction methodology leveraging machine learning and the enhanced modeling of secondary data. The dataset employed encompasses forecast data on primary pollutant concentrations and primary meteorological conditions, alongside actual meteorological observations and pollutant concentration measurements, spanning from 23 July 2020 to 13 July 2021, sourced from long-term air quality projections at various monitoring stations within Jinan, China. Initially, through a rigorous correlation analysis, ten meteorological factors were selected, comprising both measured and forecasted data across five categories each. Subsequently, the significance of these ten factors was assessed and ranked based on their impact on different pollutant concentrations, utilizing a combination of univariate and multivariate significance analyses alongside a random forest approach. Seasonal characteristic analysis highlighted the distinct seasonal impacts of temperature, humidity, air pressure, and general atmospheric conditions on the concentrations of six key air pollutants. The performance evaluation of various machine learning-based classification prediction models revealed the Light Gradient Boosting Machine (LightGBM) classifier as the most effective, achieving an accuracy rate of 97.5% and an F1 score of 93.3%. Furthermore, experimental results for AQI prediction indicated the Long Short-Term Memory (LSTM) model as superior, demonstrating a goodness-of-fit of 91.37% for AQI predictions, 90.46% for O3 predictions, and a perfect fit for the primary pollutant test set. Collectively, these findings affirm the reliability and efficacy of the employed machine learning models in air quality forecasting. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

19 pages, 5244 KiB  
Article
Trajectory Deviation Estimation Method for UAV-Borne Through-Wall Radar
by Luying Chen, Xiaolu Zeng, Shichao Zhong, Junbo Gong and Xiaopeng Yang
Remote Sens. 2024, 16(9), 1593; https://doi.org/10.3390/rs16091593 (registering DOI) - 30 Apr 2024
Abstract
Mini–unmanned aerial vehicles (mini-UAVs) are emerging as a promising platform for through-wall radar to sense the enclosed space in cities, especially high-rise buildings, due to their excellent maneuverability. However, due to unavoidable environmental interference such as airflow, mini-UAVs are prone to trajectory deviation [...] Read more.
Mini–unmanned aerial vehicles (mini-UAVs) are emerging as a promising platform for through-wall radar to sense the enclosed space in cities, especially high-rise buildings, due to their excellent maneuverability. However, due to unavoidable environmental interference such as airflow, mini-UAVs are prone to trajectory deviation thus degrading their sensing accuracy. Most of the existing approaches model the impact of trajectory deviation into a polynomial phase error on the received signal, which cannot fit the space-variant motion error well. Moreover, the large trajectory deviations of UAVs introduce the unavoidable envelope error. This article proposes an autofocusing algorithm based on the back projection (BP) image, which directly estimates the trajectory deviations between the actual and measured track. Thus, the problem of the 2D space variability of the motion error can be circumvented. The proposed method mainly consists of two steps. First, we estimate the trajectory deviation in the line-of-sight (LOS) direction by exploring the underlying linear property of the wall embedded in the BP imaging result. Then, the estimated trajectory deviation in the LOS direction is compensated for to obtain an updated BP image, followed by a Particle Swarm Optimization (PSO) approach to estimate the trajectory deviation along the track through focusing targets behind the wall. Simulations and practical experiments show that the proposed algorithm can accurately estimate the serious trajectory deviations larger than the range resolution, improving the sensing robustness of UAV-borne through-wall radar greatly. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

18 pages, 1165 KiB  
Article
Towards Just Energy Transition: Renewable Energy Transition Dynamics and Sectorial Employment in Ghana
by Clement Oteng, Omowumi Iledare, James Atta Peprah and Pius Gamette
Sustainability 2024, 16(9), 3761; https://doi.org/10.3390/su16093761 (registering DOI) - 30 Apr 2024
Abstract
Energy transition and the creation of sustainable jobs are major concerns towards achieving Sustainable Development Goals (SDGs) 7 and 13, particularly in emerging petroleum-producing economies such as Ghana. Our study examines Ghana’s sectorial employment vulnerability to the dynamics of energy transition. Employing a [...] Read more.
Energy transition and the creation of sustainable jobs are major concerns towards achieving Sustainable Development Goals (SDGs) 7 and 13, particularly in emerging petroleum-producing economies such as Ghana. Our study examines Ghana’s sectorial employment vulnerability to the dynamics of energy transition. Employing a dynamic ARDL simulation model, we use quarterly data from 2011 to 2021 from Ghana’s Energy Commission, the Bank of Ghana, and the Public Interest and Accounting Committee. We find that transition scenarios increase industrial sector employment. Also, industrial sector employment changes more favorably under the 5% scenario than under the 1% scenario. Agriculture industry employment is positively impacted by the 1% energy transition scenarios but negatively impacted by the 5% scenarios. Up to the sixth year, both transition scenarios increase employment in the services sector; however, employment opportunities are more affected by the 1% scenario than by the 5% scenario. Therefore, developing a policy architecture that aids Ghana’s transition to renewable energy is essential. Full article
Show Figures

Figure 1

15 pages, 935 KiB  
Article
Testing Textual and Territorial Boundaries in Bulat Okudzhava’s Song “And We to the Doorman: ‘Open the Doors!’”
by Alexander Zholkovsky
Arts 2024, 13(3), 81; https://doi.org/10.3390/arts13030081 (registering DOI) - 30 Apr 2024
Abstract
This paper contextualizes Okudzhava’s song “And We to the Doorman” (AWD), initially marginal in the Soviet poetic mainstream. It explores its shifts in tone, irregular rhythms, colloquial language, and semi-criminal undertones. AWD’s structure, with uneven stanzas and no clear refrain, reveals underlying symmetry [...] Read more.
This paper contextualizes Okudzhava’s song “And We to the Doorman” (AWD), initially marginal in the Soviet poetic mainstream. It explores its shifts in tone, irregular rhythms, colloquial language, and semi-criminal undertones. AWD’s structure, with uneven stanzas and no clear refrain, reveals underlying symmetry and recurring themes. The meter is predominantly iambic but varies. Unconventional verse endings and various rhyme schemes, including distant chains, characterize its prosody. The narrative touches on social cohesion and class conflict. The style reflects a challenging attitude toward privilege, employing rhetorical devices and indirect threats. The melody aligns with thematic elements, featuring repetitive patterns and a spoken quality. Semantically, AWD presents an ambiguous message on class struggle and moral issues. In sum, this analysis uncovers Okudzhava’s song’s formal complexities, thematic nuances, and stylistic innovations. Full article
Show Figures

Figure 1

21 pages, 9226 KiB  
Article
Moving Object Detection in Freely Moving Camera via Global Motion Compensation and Local Spatial Information Fusion
by Zhongyu Chen, Rong Zhao, Xindong Guo, Jianbin Xie and Xie Han
Sensors 2024, 24(9), 2859; https://doi.org/10.3390/s24092859 (registering DOI) - 30 Apr 2024
Abstract
Motion object detection (MOD) with freely moving cameras is a challenging task in computer vision. To extract moving objects, most studies have focused on the difference in motion features between foreground and background, which works well for dynamic scenes with relatively regular movements [...] Read more.
Motion object detection (MOD) with freely moving cameras is a challenging task in computer vision. To extract moving objects, most studies have focused on the difference in motion features between foreground and background, which works well for dynamic scenes with relatively regular movements and variations. However, abrupt illumination changes and occlusions often occur in real-world scenes, and the camera may also pan, tilt, rotate, and jitter, etc., resulting in local irregular variations and global discontinuities in motion features. Such complex and changing scenes bring great difficulty in detecting moving objects. To solve this problem, this paper proposes a new MOD method that effectively leverages local and global visual information for foreground/background segmentation. Specifically, on the global side, to support a wider range of camera motion, the relative inter-frame transformations are optimized to absolute transformations referenced to intermediate frames in a global form after enriching the inter-frame matching pairs. The global transformation is fine-tuned using the spatial transformer network (STN). On the local side, to address the problem of dynamic background scenes, foreground object detection is optimized by utilizing the pixel differences between the current frame and the local background model, as well as the consistency of local spatial variations. Then, the spatial information is combined using optical flow segmentation methods, enhancing the precision of the object information. The experimental results show that our method achieves a detection accuracy improvement of over 1.5% compared with the state-of-the-art methods on the datasets of CDNET2014, FBMS-59, and CBD. It demonstrates significant effectiveness in challenging scenarios such as shadows, abrupt changes in illumination, camera jitter, occlusion, and moving backgrounds. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 2149 KiB  
Article
Inter-Departure Time Correlations in PH/G/1 Queues
by Ruth Sagron and Uri Yechiali
Mathematics 2024, 12(9), 1362; https://doi.org/10.3390/math12091362 (registering DOI) - 30 Apr 2024
Abstract
In non-Markovian tandem queueing networks the output process of one site, which is the input process to the next site, is not renewal. Consequently, the correlation analysis of that output processes is essential when studying such networks. A correlation analysis in the M/G/1 [...] Read more.
In non-Markovian tandem queueing networks the output process of one site, which is the input process to the next site, is not renewal. Consequently, the correlation analysis of that output processes is essential when studying such networks. A correlation analysis in the M/G/1 queue has been studied in the literature via derivation of the joint Laplace-Stieltjes transform (LST) of the sum of two consecutive inter-departure times. That LST is obtained by considering all possible cases at departure epochs. However, those epochs are expressed via dependent variables. In this paper, we first extend the analysis to the more general PH/G/1 queue, and investigate various queues, such as E2/G/1 and C2/C2/1. Then, we consider the lag-n correlation, which requires derivation of the joint LST of sum of n + 1 consecutive inter-departure times. Yet, deriving this LST by the common approach becomes impractical for n + 1 ≥ 3, as the number of all possible cases at departure epochs increases significantly. To overcome this obstacle, we derive a corresponding single-parameter LST, which expresses the sum of n+1 consecutive inter-departure times via the (n + 1)-st departure epoch only. Consequently, the latter LST is expressed via a much fewer number of possible cases, and not less important, as a function of independent variables only, eliminating the need to derive the corresponding joint density. Considering the M/G/1 and the E2/G/1 queues, we demonstrate that the joint LST can be reconstructed directly via the corresponding single-parameter LST when n + 1 = 2. We further conjecture that the multi-parameter joint LST can be reconstructed from the corresponding single-parameter LST in more general queues and for values of n + 1 > 2. The conjecture is validated for various PH/G/1 queues and proved for n + 1 = 3 in the M/G/1 case. The new approach facilitates the calculation of lag-n correlation of the departure process from PH/G/1 queue for n + 1 ≥ 3. Our analysis illuminates the cases when using renewal approximation of the output process provides a proper approximation when studying non-Markovian stochastic networks. Full article
(This article belongs to the Special Issue Advances in Queueing Theory, 2nd Edition)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop