The 2023 MDPI Annual Report has
been released!
 
13 pages, 5262 KiB  
Article
Metal-Doped NASICON/Polymer Composite Solid Electrolyte for Lithium Titania Anode in Lithium-Ion Batteries
by Chien-Te Hsieh, Tzu-Shaing Cho, Jeng-Kuei Chang and Jagabandhu Patra
Polymers 2024, 16(9), 1251; https://doi.org/10.3390/polym16091251 (registering DOI) - 30 Apr 2024
Abstract
This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability [...] Read more.
This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability and excellent cycling performance. The high Li+-conductivity LATP samples are successfully synthesized through a modified sol–gel method followed by thermal calcination. We find that the cation dopants clearly influence the substitution of Al for Ti, with the type of dopant serving as a crucial factor in determining the ionic conductivity and interfacial resistance of the solid electrolyte. The CSE containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and Sn-LATP shows an ionic conductivity of 1.88 × 10−4 S cm−1 at ambient temperature. The optimum conductivity can be attributed to alterations in the lattice parameters and Li+ transport pathways owing to Sn doping. The solid-state cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrates both excellent high rate capability at 5 C (with a capacity retention of 86% compared to the value measured at 0.2 C) and superior cycling stability, maintaining high Coulombic efficiency (>99.0%) over 510 cycles. These findings indicate that the proposed CSE is highly promising for use in solid-state lithium batteries with desirable charge–discharge properties and high durability. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

22 pages, 6238 KiB  
Article
Development and Validation of a Novel Surface Defect Index (SDI) Method for the Effective Quality Evaluation of Concrete Surfaces
by Fatima Zohra Badi, Salah Eddine Bensebti, Abdelhafid Chabane, Cherif Belebchouche, Tien Tung Ngo, El Hadj Kadri and Slawomir Czarnecki
Appl. Sci. 2024, 14(9), 3828; https://doi.org/10.3390/app14093828 (registering DOI) - 30 Apr 2024
Abstract
Concrete defects have a significant impact on concrete constructions. These defects should be considered not only aesthetic defects but also structural defects. In this study, a novel Surface Defect Index (SDI) method was developed to quantify the defect volume according to liquids’ penetrating [...] Read more.
Concrete defects have a significant impact on concrete constructions. These defects should be considered not only aesthetic defects but also structural defects. In this study, a novel Surface Defect Index (SDI) method was developed to quantify the defect volume according to liquids’ penetrating properties by applying ready-mixed plaster (RMP). The SDI refers to the volumetric proportion of all apparent and unapparent defects in a given area of concrete, and it is expressed as a percentage of the total volume affected by defects. The proposed SDI method was validated and tested under various controlled defect configurations. Regardless of the specific characteristics of each defect configuration, the SDI method consistently demonstrated a high level of consistency, repeatability, and reproducibility, with coefficients of variation (CVr and CVR) below 5% and with correlation coefficients of R2 = 0.9968. The method succeeded in assessing the surface quality levels through the SDI, demonstrating a significant correlation between this index and the volume of defects. The proposed index was tested on real concrete surfaces, affirming its efficacy in accurately quantifying the volume of surface defects; thus, it can provide an important metric for quality control. Moreover, it provides an excellent evaluation of the quality of concrete surfaces. Full article
Show Figures

Figure 1

14 pages, 4514 KiB  
Article
Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis
by Qianmei Gong, Xiaoming Wang, Yongshi Liu, Heling Yuan, Zifeng Ge, Yuzhou Li, Jinhu Huang, Yufan Liu, Ming Chen, Wenjun Xiao, Ruiting Liu, Rongmei Shi and Liping Wang
Toxics 2024, 12(5), 328; https://doi.org/10.3390/toxics12050328 (registering DOI) - 30 Apr 2024
Abstract
The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin’s effect and mechanism in acute hepatic injury. [...] Read more.
The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin’s effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1β, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent. Full article
(This article belongs to the Special Issue Research on Veterinary Toxicology)
Show Figures

Figure 1

18 pages, 6372 KiB  
Article
Multi-Criteria Decision Analysis of an Innovative Additive Manufacturing Technique for Onboard Maintenance
by Ioannis Falkonakis, Saeid Lotfian and Baran Yeter
Sustainability 2024, 16(9), 3763; https://doi.org/10.3390/su16093763 (registering DOI) - 30 Apr 2024
Abstract
Access to spare parts in the maritime industry is limited throughout most of a ship’s life cycle. The limitation is caused by both the geographical distance of vessels from suppliers and the often limited turnaround time during which parts can be delivered. Manufacturing [...] Read more.
Access to spare parts in the maritime industry is limited throughout most of a ship’s life cycle. The limitation is caused by both the geographical distance of vessels from suppliers and the often limited turnaround time during which parts can be delivered. Manufacturing some parts onboard is possible, but it is a time-consuming and labour-intensive process. Advanced manufacturing techniques could be used to improve access to spare parts at sea by combining the desirable materials properties and flexibility of Direct Energy Deposition (DED) and the higher dimensional tolerances of Computer Numerical Control (CNC) manufacturing. The present study assesses the comparative viability of onboard implementation of advanced manufacturing techniques for offshore assets as a capital investment in different modes against an option of no onboard advanced manufacturing using a multi-criteria decision analysis method. To this end, a Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) is employed considering the techno-economic and environmental aspects of the decision-making process as well as the inherent challenges that come with a new area of research. Finally, the challenges, opportunities, and pathways to onboard maintenance using additive manufacturing are discussed within the scope of the sustainable future for ship and offshore energy assets. Full article
(This article belongs to the Special Issue Sustainable Maritime Transportation)
Show Figures

Figure 1

24 pages, 12805 KiB  
Article
Endurance Training Provokes Arrhythmogenic Right Ventricular Cardiomyopathy Phenotype in Heterozygous Desmoglein-2 Mutants: Alleviation by Preload Reduction
by Larissa Fabritz, Lisa Fortmueller, Katja Gehmlich, Sebastian Kant, Marcel Kemper, Dana Kucerova, Fahima Syeda, Cornelius Faber, Rudolf E. Leube, Paulus Kirchhof and Claudia A. Krusche
Biomedicines 2024, 12(5), 985; https://doi.org/10.3390/biomedicines12050985 (registering DOI) - 30 Apr 2024
Abstract
Desmoglein-2 mutations are detected in 5–10% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Endurance training accelerates the development of the ARVC phenotype, leading to earlier arrhythmic events. Homozygous Dsg2 mutant mice develop a severe ARVC-like phenotype. The phenotype of heterozygous mutant ( [...] Read more.
Desmoglein-2 mutations are detected in 5–10% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Endurance training accelerates the development of the ARVC phenotype, leading to earlier arrhythmic events. Homozygous Dsg2 mutant mice develop a severe ARVC-like phenotype. The phenotype of heterozygous mutant (Dsg2mt/wt) or haploinsufficient (Dsg20/wt) mice is still not well understood. To assess the effects of age and endurance swim training, we studied cardiac morphology and function in sedentary one-year-old Dsg2mt/wt and Dsg20/wt mice and in young Dsg2mt/wt mice exposed to endurance swim training. Cardiac structure was only occasionally affected in aged Dsg20/wt and Dsg2mt/wt mice manifesting as small fibrotic foci and displacement of Connexin 43. Endurance swim training increased the right ventricular (RV) diameter and decreased RV function in Dsg2mt/wt mice but not in wild types. Dsg2mt/wt hearts showed increased ventricular activation times and pacing-induced ventricular arrhythmia without obvious fibrosis or inflammation. Preload-reducing therapy during training prevented RV enlargement and alleviated the electrophysiological phenotype. Taken together, endurance swim training induced features of ARVC in young adult Dsg2mt/wt mice. Prolonged ventricular activation times in the hearts of trained Dsg2mt/wt mice are therefore a potential mechanism for increased arrhythmia risk. Preload-reducing therapy prevented training-induced ARVC phenotype pointing to beneficial treatment options in human patients. Full article
(This article belongs to the Special Issue Advanced Research in Arrhythmogenic Cardiomyopathy)
Show Figures

Graphical abstract

22 pages, 8658 KiB  
Article
Insights into Wheat Genotype‒Sphaerodes mycoparasitica Interaction to Improve Crop Yield and Defence against Fusarium graminearum: An Integration of FHB Biocontrol in Canadian Wheat Breeding Programmes
by Antonia Powell, Seon Hwa Kim, Pierre Hucl and Vladimir Vujanovic
Pathogens 2024, 13(5), 372; https://doi.org/10.3390/pathogens13050372 (registering DOI) - 30 Apr 2024
Abstract
Fusarium head blight (FHB) is a major threat to wheat crop production and food security worldwide. The creation of resistant wheat cultivars is an essential component of an integrated strategy against Fusarium graminearum, the primary aetiological agent that causes FHB. The results [...] Read more.
Fusarium head blight (FHB) is a major threat to wheat crop production and food security worldwide. The creation of resistant wheat cultivars is an essential component of an integrated strategy against Fusarium graminearum, the primary aetiological agent that causes FHB. The results of this study show that the deployment of proto-cooperative interactions between wheat genotypes and mycoparasitic biocontrol agents (BCAs) can improve crop yield and plant resistance in controlling the devastating effects of FHB on wheat agronomic traits. A Fusarium-specific mycoparasite, Sphaerodes mycoparasitica, was found to be compatible with common and durum wheat hosts, thus allowing the efficient control of F. graminearum infection in plants. Four genotypes of wheat, two common wheat, and two durum wheat cultivars with varying FHB resistance levels were used in this greenhouse study. The BCA treatments decreased FHB symptoms in all four cultivars and improved the agronomic traits such as spike number, spike weight, seed weight, plant biomass, and plant height which are vital to grain yield. Conversely, the F. graminearum 3ADON chemotype treatment decreased the agronomic trait values by up to 44% across cultivars. Spike number, spike weight, and seed weight were the most improved traits by the BCA. A more measurable improvement in agronomic traits was observed in durum wheat cultivars compared to common wheat. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

18 pages, 2175 KiB  
Article
An NLOS Ranging Error Mitigation Method for 5G Positioning in Indoor Environments
by Jingrong Liu, Zhongliang Deng and Enwen Hu
Appl. Sci. 2024, 14(9), 3830; https://doi.org/10.3390/app14093830 (registering DOI) - 30 Apr 2024
Abstract
Positioning based on wireless signals such as mobile communication networks has become an important means to provide high-precision location services in environments where satellite signals are blocked. In complex environments such as indoors and underground, wireless signal propagation is obstructed and non-line-of-sight (NLOS) [...] Read more.
Positioning based on wireless signals such as mobile communication networks has become an important means to provide high-precision location services in environments where satellite signals are blocked. In complex environments such as indoors and underground, wireless signal propagation is obstructed and non-line-of-sight (NLOS) phenomena appear due to serious occlusion and reflection. The time delay caused by NLOS effects has little impact on communication system but can significantly increase positioning errors in positioning systems. Therefore, the effective suppression of NLOS errors is crucial to improving 5G positioning accuracy. To address the insufficient feature extraction of existing NLOS error suppression methods, the neglect of residual NLOS measurement errors, and poor stability of position estimation results, this paper innovatively proposes an NLOS mitigation and location estimation method for 5G positioning terminals. Simulation and experimental test results demonstrate that the proposed method outperforms the comparative methods both theoretically and practically, achieving an average positioning accuracy of 1.85 m in complex indoor NLOS environments. The method proposed in this paper provides a new strategy for NLOS error suppression in indoor 5G positioning, which can significantly contribute to high-precision location services based on commercial 5G networks. Full article
Show Figures

Figure 1

34 pages, 8458 KiB  
Review
The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders
by Annalisa Palmisano, Siddhartha Pandit, Carmelo L. Smeralda, Ilya Demchenko, Simone Rossi, Lorella Battelli, Davide Rivolta, Venkat Bhat and Emiliano Santarnecchi
Life 2024, 14(5), 578; https://doi.org/10.3390/life14050578 (registering DOI) - 30 Apr 2024
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders’ etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic [...] Read more.
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders’ etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms. Full article
(This article belongs to the Special Issue Physiology and Pathology: Feature Review Papers)
Show Figures

Figure 1

18 pages, 9508 KiB  
Article
Formyl-Peptide Receptor 2 Signaling Modulates SLC7A11/xCT Expression and Activity in Tumor Cells
by Tiziana Pecchillo Cimmino, Carolina Punziano, Iolanda Panico, Zeudi Petrone, Myrhiam Cassese, Raffaella Faraonio, Vincenza Barresi, Gabriella Esposito, Rosario Ammendola and Fabio Cattaneo
Antioxidants 2024, 13(5), 552; https://doi.org/10.3390/antiox13050552 (registering DOI) - 30 Apr 2024
Abstract
Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is [...] Read more.
Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is reduced to cysteine in the cytosol through a NADPH-consuming reduction reaction. SLC7A11/xCT expression is under the control of stress-inducing conditions and of several transcription factors, such as NRF2 and ATF4. Formyl-peptide receptor 2 (FPR2) belongs to the FPR family, which transduces chemotactic signals mediating either inflammatory or anti-inflammatory responses according to the nature of its ligands and/or FPR2 binding with other FPR isoforms. The repertoire of FPR2 agonists with anti-inflammatory activities comprises WKYMVm peptide and Annexin A1 (ANXA1), and the downstream effects of the intracellular signaling cascades triggered by FPR2 include NADPH oxidase (NOX)-dependent generation of reactive oxygen species. Herein, we demonstrate that stimulation of CaLu-6 cells with either WKYMVm or ANXA1: (i) induces the redox-regulated activation of SLC7A11/xCT; (ii) promotes the synthesis of glutathione; (iii) prevents lipid peroxidation; and (iv) favors NRF2 nuclear translocation and activation. In conclusion, our overall results demonstrate that FPR2 agonists and NOX modulate SLC7A11/xCT expression and activity, thereby identifying a novel regulative pathway of the cystine/glutamate antiport that represents a new potential therapeutical target for the treatment of human cancers. Full article
Show Figures

Figure 1

11 pages, 2063 KiB  
Article
Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models
by Ivan Brandić, Lato Pezo, Neven Voća and Ana Matin
Energies 2024, 17(9), 2137; https://doi.org/10.3390/en17092137 (registering DOI) - 30 Apr 2024
Abstract
The research conducted focused on the capabilities of various non-linear and machine learning (ML) models in estimating the higher heating value (HHV) of biomass using proximate analysis data as inputs. The research was carried out to identify the most appropriate model for the [...] Read more.
The research conducted focused on the capabilities of various non-linear and machine learning (ML) models in estimating the higher heating value (HHV) of biomass using proximate analysis data as inputs. The research was carried out to identify the most appropriate model for the estimation of HHV, which was determined by a statistical analysis of the modeling error. In this sense, artificial neural networks (ANNs), support vector machine (SVM), random forest regression (RFR), and higher-degree polynomial models were compared. After statistical analysis of the modeling error, the ANN model was found to be the most suitable for estimating the HHV biomass and showed the highest specific regression coefficient, with an R2 of 0.92. SVM (R2 = 0.81), RFR, and polynomial models (R2 = 0.84), on the other hand, also exhibit a high degree of estimation, albeit with somewhat larger modelling errors. The study conducted suggests that ANN models are best suited for the non-linear modeling of HHV of biomass, as they can generalize and search for links between input and output data that are more robust but also more complex in structure. Full article
(This article belongs to the Special Issue Bioenergy Economics: Analysis, Modeling and Application)
Show Figures

Figure 1

15 pages, 2369 KiB  
Article
Toxicity and Teratogenic Potential of Piplartine from Piper tuberculatum Jacq. during Embryonic Development in Mice (Mus musculus)
by Giulliano Rezende Silva, Lívia Thaís Gontijo Miranda, Shirley Aline da Costa Arteaga da Silva, Laise Rodrigues de Andrade, Natanael Carvalho de Souza, Bruno Silva Sá, Elivaldo Ribeiro de Santana, Andreanne Gomes Vasconcelos, Daniel Carneiro Moreira, Aline Pic-Taylor, Alessandra Durazzo, Massimo Lucarini, Lydia Fumiko Yamaguchi, Massuo Jorge Kato, Amilcar Sabino Damazo, Daniel Dias Rufino Arcanjo, José Roberto de Souza de Almeida Leite and José Eduardo Baroneza
Drugs Drug Candidates 2024, 3(2), 353-367; https://doi.org/10.3390/ddc3020021 (registering DOI) - 30 Apr 2024
Abstract
Piplartine, also known as piperlongumine, is a natural and biologically active amide alkaloid found in various Piper species within the Piperaceae family. It possesses numerous beneficial properties that can be leveraged in the development of nanotechnological and pharmaceutical products. However, information on the [...] Read more.
Piplartine, also known as piperlongumine, is a natural and biologically active amide alkaloid found in various Piper species within the Piperaceae family. It possesses numerous beneficial properties that can be leveraged in the development of nanotechnological and pharmaceutical products. However, information on the effects of piplartine on mammalian embryonic development is scarce. This study aims to assess the general toxicity and teratogenic potential of piplartine during the embryonic development of mice. Pregnant mice received daily treatments of 25, 50, or 100 mg/kg of piplartine via gavage from the sixth day of gestation (implantation) to the eighteenth. On the eighteenth day, the mice were euthanized, and whole organs, blood samples (for hematological and biochemical analyses), and bone marrow cells (for DNA fragmentation and cell cycle assays) were collected. The uterus was examined for implantation sites and embryo resorptions. Additionally, fetuses were collected to assess for fetal anomalies. Piplartine did not result in maternal or embryo-fetal toxicity, induce fetal anomalies, cause hematological and biochemical alterations, or lead to DNA fragmentation. The oral administration of piplartine is safe and does not exhibit toxicity or teratogenic effects in mice. This finding opens avenues for the development of piplartine-based biotechnological products for therapeutic interventions in disease treatment. Full article
(This article belongs to the Section Preclinical Research)
Show Figures

Figure 1

16 pages, 8385 KiB  
Article
Research on the Multifactor Synergistic Corrosion of N80 and P110 Steel Tubing in Shale Gas Wells in Sichuan Basin
by Yufei Li, Dajiang Zhu, Jian Yang, Qiang Liu, Lin Zhang, Linfeng Lu, Xiangkang Liu and Shuai Wang
Processes 2024, 12(5), 920; https://doi.org/10.3390/pr12050920 (registering DOI) - 30 Apr 2024
Abstract
We aimed to investigate the corrosion patterns and the main controlling factors of N80 steel and P110 steel tubing under different sections. Conducting weight loss corrosion experiments for 168 h using high-temperature and high-pressure autoclaves to simulate the corrosion behavior of two types [...] Read more.
We aimed to investigate the corrosion patterns and the main controlling factors of N80 steel and P110 steel tubing under different sections. Conducting weight loss corrosion experiments for 168 h using high-temperature and high-pressure autoclaves to simulate the corrosion behavior of two types of casing materials, N80 steel and P110 steel, in different well sections under specific conditions of CO2 content, chloride ion concentration, temperature, pressure, and sulfate-reducing bacteria population in highly mineralized formation water. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to analyze the corrosion products, surface morphology, and elemental composition of the two steel pipes. Additionally, 3D microscopy was employed to observe the morphology and measure the dimensions of localized corrosion pits. Under different well sections, the corrosion products formed on N80 steel and P110 steel mainly consist of FeCO3, and crystalline salts of chlorides present in the solution medium. Under low-water-cut conditions, narrow and deep corrosion defects were observed, while narrow and shallow corrosion defects were found under high-water-cut conditions. In the upper wellbore section, both steel pipes exhibited dispersed and thin corrosion product films that suffered from rupture and detachment, resulting in severe localized corrosion. In the middle wellbore section, the corrosion product film on N80 steel comprised irregularly arranged polygonal grains, some of which exhibited significant gaps, leading to extremely severe corrosion. For P110 steel, the corrosion product film was also dispersed and thin, with extensive detachment and extremely severe corrosion. In the lower wellbore section, both steel pipes were covered with a dense layer of grains, with smaller gaps between them, effectively protecting the metal matrix from corrosion. Consequently, the corrosion rate decreased compared to the middle section but still exhibited severe corrosion. In low-water-cut conditions, attention should be given to the risk of column safety due to corrosion from condensate water and CO2, as well as the size of narrow and deep corrosion defects in the middle wellbore section. In high-water-cut conditions, it is recommended to use corrosion inhibitors in combination while focusing on SRB bacteria corrosion in the upper wellbore section, condensate water in the middle section, CO2 content and chloride ion coupling in the lower section, and the size of narrow and shallow corrosion defects causing column safety risks. Full article
Show Figures

Figure 1

14 pages, 1520 KiB  
Article
Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes
by Alissa A. Nolden, Maik Behrens, John E. McGeary, Wolfgang Meyerhof and John E. Hayes
Nutrients 2024, 16(9), 1357; https://doi.org/10.3390/nu16091357 (registering DOI) - 30 Apr 2024
Abstract
Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to [...] Read more.
Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to PAV homozygotes and heterozygotes, and these differences may influence alcohol and vegetable intake. Within a diplotype, substantial variation in suprathreshold bitterness persists, and some AVI homozygotes report moderate bitterness at high concentrations. A second receptor encoded by a gene containing a functional polymorphism may explain this. Early work has suggested that PROP might activate TAS2R4 in vitro, but later work did not replicate this. Here, we identify three TAS2R4 SNPs that result in three diplotypes—SLN/SLN, FVS/SLN, and FVS/FVS—which make up 25.1%, 44.9%, and 23.9% of our sample. These TAS2R4 haplotypes show minimal linkage disequilibrium with TAS2R38, so we examined the suprathreshold bitterness as a function of both. The participants (n = 243) rated five PROP concentrations in duplicate, interleaved with other stimuli. As expected, the TAS2R38 haplotypes explained ~29% (p < 0.0001) of the variation in the bitterness ratings, with substantial variation within the haplotypes (AVI/AVI, PAV/AVI, and PAV/PAV). Notably, the TAS2R4 diplotypes (independent of the TAS2R38 haplotypes) explained ~7–8% of the variation in the bitterness ratings (p = 0.0001). Given this, we revisited if PROP could activate heterologously expressed TAS2R4 in HEK293T cells, and calcium imaging indicated 3mM PROP is a weak TAS2R4 agonist. In sum, our data are consistent with the second receptor hypothesis and may explain the recovery of the PROP tasting phenotype in some AVI homozygotes; further, this finding may potentially help explain the conflicting results on the TAS2R38 diplotype and food intake. Full article
Show Figures

Figure 1

19 pages, 26924 KiB  
Article
Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance
by Léa Garneau, Erin E. Mulvihill, Steven R. Smith, Lauren M. Sparks and Céline Aguer
Int. J. Mol. Sci. 2024, 25(9), 4889; https://doi.org/10.3390/ijms25094889 (registering DOI) - 30 Apr 2024
Abstract
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this [...] Read more.
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1β, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation. Full article
(This article belongs to the Special Issue Molecular Insights into the Role of Exercise in Disease and Health)
Show Figures

Figure 1

16 pages, 1543 KiB  
Article
Nutritional Composition and Chemical Safety of Wagashi Gassirè Cheese Sold in the Southern Benin Markets
by Alphonse Wanignon Dossou, Baké Marie Thérèse Seko Orou, Gwladys Komagbe, Philippe Sessou, Abdou Karim Issaka Youssao, Souaïbou Farougou, Joseph Djidjoho Hounhouigan, Jacques Mahillon, Roch Mongbo, Marc Poncelet, Samiha Boutaleb, Sylvie Gobert, Yann Eméric Madode, Paulin Azokpota, Antoine Clinquart, Marie-Louise Scippo and Caroline Douny
Dairy 2024, 5(2), 271-286; https://doi.org/10.3390/dairy5020022 (registering DOI) - 30 Apr 2024
Abstract
In this study, the nutritional composition and the chemical safety of Wagashi Gassirè (WG) cheese sold in southern Benin markets were assessed. For this purpose, 15 WG were analysed for fatty acids, essential minerals, and chemical hazards (dioxins, aflatoxin M1 (AFM1), biogenic amines, [...] Read more.
In this study, the nutritional composition and the chemical safety of Wagashi Gassirè (WG) cheese sold in southern Benin markets were assessed. For this purpose, 15 WG were analysed for fatty acids, essential minerals, and chemical hazards (dioxins, aflatoxin M1 (AFM1), biogenic amines, metals, antibiotic and pesticide residues). The risks related to arsenic, lead, aluminium, AFM1, histamine, and tyramine were calculated using the methods recommended by the European Food Safety Authority. Oleic, palmitic and stearic acids, calcium, and phosphorus were the main fatty acids and minerals detected. Lead (0.08 ± 0.06 mg/kg) and AFM1 (0.3 ± 0.0 µg/kg) were detected in all samples and exceeded the maximum level set by the international standard. Cadaverine and tyramine were the main biogenic amines found. No pesticide residues were detected using a multi-residue method targeting compounds. Residues of quinolones, tetracyclines, and colistin antibiotics were also detected. The calculated chronic exposure indicated no public health concern for the chemical contaminants targeted. Moreover, the average cancer risk related to AFM1 intake was 3 × 10−4 cases/105 persons/year for the Benin population through WG consumption. This study contributes to the nutritional characterization of WG and identifies lead and AFM1 as the most relevant chemical hazards of this product. Full article
(This article belongs to the Section Milk and Human Health)
Show Figures

Figure 1

18 pages, 2571 KiB  
Article
QTL Mapping for Agronomic Important Traits in Well-Adapted Wheat Cultivars
by Jingxian Liu, Danfeng Wang, Mingyu Liu, Meijin Jin, Xuecheng Sun, Yunlong Pang, Qiang Yan, Cunzhen Liu and Shubing Liu
Agronomy 2024, 14(5), 940; https://doi.org/10.3390/agronomy14050940 (registering DOI) - 30 Apr 2024
Abstract
Wheat (Triticum aestivum L.) is one of the most important food crops worldwide and provides the staple food for 40% of the world’s population. Increasing wheat production has become an important goal to ensure global food security. The grain yield of wheat [...] Read more.
Wheat (Triticum aestivum L.) is one of the most important food crops worldwide and provides the staple food for 40% of the world’s population. Increasing wheat production has become an important goal to ensure global food security. The grain yield of wheat is a complex trait that is usually influenced by multiple agronomically important traits. Thus, the genetic dissection and discovery of quantitative trait loci (QTL) of wheat-yield-related traits are very important to develop high-yield cultivars to improve wheat production. To analyze the genetic basis and discover genes controlling important agronomic traits in wheat, a recombinant inbred lines (RILs) population consisting of 180 RILs derived from a cross between Xinong822 (XN822) and Yannong999 (YN999), two well-adapted cultivars, was used to map QTL for plant height (PH), spike number per spike (SNS), spike length (SL), grain number per spike (GNS), spike number per plant (SN), 1000- grain weight (TGW), grain length (GL), grain width (GW), length/width of grain (GL/GW), perimeter of grain (Peri), and surface area of grains (Sur) in three environments. A total of 64 QTL were detected and distributed on all wheat chromosomes except 3A and 5A. The identified QTL individually explained 2.24–38.24% of the phenotypic variation, with LOD scores ranging from 2.5 to 29. Nine of these QTL were detected in multiple environments, and seven QTL were associated with more than one trait. Additionally, Kompetitive Allele Specific PCR (KASP) assays for five major QTL QSns-1A.2 (PVE = 6.82), QPh-2D.1 (PVE = 37.81), QSl-2D (PVE = 38.24), QTgw-4B (PVE = 8.78), and QGns-4D (PVE = 13.54) were developed and validated in the population. The identified QTL and linked markers are highly valuable in improving wheat yield through marker-assisted breeding, and the large-effect QTL can be fine-mapped for further QTL cloning of yield-related traits in wheat. Full article
Show Figures

Figure 1

22 pages, 8538 KiB  
Article
Enhancing Data Preservation and Security in Industrial Control Systems through Integrated IOTA Implementation
by Iuon-Chang Lin, Pai-Ching Tseng, Pin-Hsiang Chen and Shean-Juinn Chiou
Processes 2024, 12(5), 921; https://doi.org/10.3390/pr12050921 (registering DOI) - 30 Apr 2024
Abstract
Within the domain of industrial control systems, safeguarding data integrity stands as a pivotal endeavor, especially in light of the burgeoning menace posed by malicious tampering and potential data loss. Traditional data storage paradigms, tethered to physical hard disks, are fraught with inherent [...] Read more.
Within the domain of industrial control systems, safeguarding data integrity stands as a pivotal endeavor, especially in light of the burgeoning menace posed by malicious tampering and potential data loss. Traditional data storage paradigms, tethered to physical hard disks, are fraught with inherent susceptibilities, underscoring the pressing need for the deployment of resilient preservation frameworks. This study delves into the transformative potential offered by distributed ledger technology (DLT), with a specific focus on IOTA, within the expansive landscape of the Internet of Things (IoT). Through a meticulous examination of the intricacies inherent to data transmission protocols, we present a novel paradigm aimed at fortifying data security. Our approach advocates for the strategic placement of IOTA nodes on lower-level devices, thereby streamlining the transmission pathway and curtailing vulnerabilities. This concerted effort ensures the seamless preservation of data confidentiality and integrity from inception to storage, bolstering trust in the convergence of IoT and DLT technologies. By embracing proactive measures, organizations can navigate the labyrinthine terrain of data management, effectively mitigate risks, and cultivate an environment conducive to innovation and progress. Full article
(This article belongs to the Special Issue Process Automation and Smart Manufacturing in Industry 4.0/5.0)
Show Figures

Figure 1

14 pages, 778 KiB  
Article
Case Ascertainment of Measles during a Large Outbreak—Laboratory Compared to Epidemiological Confirmation
by Chen Stein-Zamir, Nitza Abramson, Irina Sokolov, Lia Mor-Shimshi and Hanna Shoob
Diagnostics 2024, 14(9), 943; https://doi.org/10.3390/diagnostics14090943 (registering DOI) - 30 Apr 2024
Abstract
Measles is a highly contagious viral disease, and hence, sufficient herd immunity is obligatory to prevent infection transmission. Measles is still a cause of considerable disease burden globally, mainly in children. During a national measles outbreak in Israel in 2018–2019, the peak incidence [...] Read more.
Measles is a highly contagious viral disease, and hence, sufficient herd immunity is obligatory to prevent infection transmission. Measles is still a cause of considerable disease burden globally, mainly in children. During a national measles outbreak in Israel in 2018–2019, the peak incidence rates occurred in the Jerusalem district. Most measles cases in the Jerusalem district (75.5%, 1702) were observed in children younger than 15 years of age, 49.2% (1109) were in children under 5 years of age, and 18.9% (425) were in infants under 1 year of age. The routine measles vaccination schedule includes two doses at 1 and 6 years of age. Most cases (1828, 81.1%) were unvaccinated (zero measles vaccine doses). These cases comprised the 425 affected infants under 1 year of age, who were ineligible for vaccination, along with the 1403 children over 1 year of age, who were otherwise unvaccinated. This study aimed to describe the epidemiologic and laboratory features of this measles outbreak, and to investigate case ascertainment (laboratory confirmed compared to epidemiologically confirmed cases). The study population included 2254 measles cases notified during the period spanning June 2018 to May 2019 in the Jerusalem district (incidence rate 176 per 10,000 population). Of the 2254 cases, 716 (31.8%) were laboratory confirmed, and 1538 (68.2%) were confirmed as epidemiologically linked. Most laboratory confirmed cases (420, 58.7%) underwent real-time PCR tests. Serological tests (measles IgM and IgG) were used in 189 (26.4%) cases, and a combination of RT-PCR and serology was used in 107 (14.9%) cases. In a multivariate model analysis, the variables significantly associated (after adjustment) with higher odds for laboratory confirmation included month of disease onset (late), additional measles cases in the household (single case), place of medical treatment (hospital; either emergency department, or hospitalization) and vaccination status (at least one prior vaccine dose). The measles outbreak described demonstrates the urgency of addressing vaccination gaps with appropriate outbreak prevention programs. The road to measles elimination needs to be paved with robust public health infrastructure, excellent field epidemiology for outbreak surveillance, investigation, and control, and laboratory proficiency. Full article
(This article belongs to the Special Issue Laboratory Diagnosis of Infectious Diseases)
Show Figures

Figure 1

25 pages, 8632 KiB  
Systematic Review
Wound Modulations in Glaucoma Surgery: A Systematic Review
by Bhoomi Dave, Monica Patel, Sruthi Suresh, Mahija Ginjupalli, Arvind Surya, Mohannad Albdour and Karanjit S. Kooner
Bioengineering 2024, 11(5), 446; https://doi.org/10.3390/bioengineering11050446 (registering DOI) - 30 Apr 2024
Abstract
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there [...] Read more.
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there is a need to develop novel treatments which provide increased effectiveness and specificity. This review aims to provide insight into the pathophysiology behind wound healing in glaucoma surgery, as well as the current and promising future wound healing agents that are less toxic and may provide better IOP control. Full article
(This article belongs to the Special Issue Meeting Challenges in the Diagnosis and Treatment of Glaucoma)
Show Figures

Graphical abstract

22 pages, 6153 KiB  
Article
Effect of Emotionalizing Sounds on the Estimation and Evaluation of Displayed Safety Distances
by Manuel Petersen, Deniz Yüksel and Albert Albers
Acoustics 2024, 6(2), 386-407; https://doi.org/10.3390/acoustics6020021 (registering DOI) - 30 Apr 2024
Abstract
Musicological and traffic psychology research shows that emotions can be changed by certain tone combinations or sound characteristics and that emotions, in turn, influence our driving behavior. Nevertheless, there are no studies on how a dynamic active sound design could influence driving behavior [...] Read more.
Musicological and traffic psychology research shows that emotions can be changed by certain tone combinations or sound characteristics and that emotions, in turn, influence our driving behavior. Nevertheless, there are no studies on how a dynamic active sound design could influence driving behavior via changing the emotional state of drivers in certain driving situations. Based on a previous study, emotionalizing sounds, characterized by their capacity to evoke specific emotional responses in individuals, were created and used to investigate their effect on the perception of safety distances in an online study. To test this, participants made statements on the safety distance shown in videos of cars following scenarios combined with emotionalizing sounds. The results show a significant difference in the estimated safety distance for videos combined with sounds invoking positive emotions like light-heartedness vs. sounds invoking negative emotions like feeling threatened. The odds of the safety distance being evaluated as too small compared with appropriate were two to three times higher for some threatening sounds vs. the positive sounds. The results further suggest that threatening sounds influenced participants’ wishes to increase the depicted safety distances. The results show that emotionalizing sounds had effects on the participants, though not all were statistically significant. Full article
Show Figures

Figure 1

14 pages, 529 KiB  
Review
Best Practices for Managing Patients with Unresectable Metastatic Gastric and Gastroesophageal Junction Cancer in Canada
by Stephanie Snow, Denise Gabrielson, Howard Lim, Mustapha Tehfe and Christine Brezden-Masley
Curr. Oncol. 2024, 31(5), 2552-2565; https://doi.org/10.3390/curroncol31050191 (registering DOI) - 30 Apr 2024
Abstract
Gastric cancer (GC) is one of the most common types of cancer and is associated with relatively low survival rates. Despite its considerable burden, there is limited guidance for Canadian clinicians on the management of unresectable metastatic GC and gastroesophageal junction cancer (GEJC). [...] Read more.
Gastric cancer (GC) is one of the most common types of cancer and is associated with relatively low survival rates. Despite its considerable burden, there is limited guidance for Canadian clinicians on the management of unresectable metastatic GC and gastroesophageal junction cancer (GEJC). Therefore, we aimed to discuss best practices and provide expert recommendations for patient management within the current Canadian unresectable GC and GEJC landscape. A multidisciplinary group of Canadian healthcare practitioners was assembled to develop expert recommendations via a working group. The often-rapid progression of unresectable GC and GEJC and the associated malnutrition have a significant impact on the patient’s quality of life and ability to tolerate treatment. Hence, recommendations include early diagnosis, identification of relevant biomarkers to improve personalized treatment, and relevant support to manage comorbidities. A multidisciplinary approach including early access to registered dietitians, personal support networks, and palliative care services, is needed to optimize possible outcomes for patients. Where possible, patients with unresectable GC and GEJC would benefit from access to clinical trials and innovative treatments. Full article
Show Figures

Figure 1

8 pages, 608 KiB  
Article
A Sublethal Concentration of Chlorine Induces Antibiotic Resistance in Salmonella via Production of Reactive Oxygen Species
by Mohammed Aljuwayd, Israa Abdullah Malli, Steven C. Ricke and Young Min Kwon
Appl. Microbiol. 2024, 4(2), 745-752; https://doi.org/10.3390/applmicrobiol4020051 (registering DOI) - 30 Apr 2024
Abstract
Studies have shown that the production of reactive oxygen species (ROS) is triggered by bactericidal antibiotics, which contributes significantly to the killing of bacterial cells and increasing mutations in surviving cells. In this study, we hypothesized that exposure of Salmonella to sublethal concentrations [...] Read more.
Studies have shown that the production of reactive oxygen species (ROS) is triggered by bactericidal antibiotics, which contributes significantly to the killing of bacterial cells and increasing mutations in surviving cells. In this study, we hypothesized that exposure of Salmonella to sublethal concentrations of hypochlorite (NaOCl), a commonly used sanitizer in household and food industries increases mutation rates, leading to the development of antibiotic resistance. We found that a sublethal concentration (20 ppm) of NaOCl increased the mutation rates of S. typhimurium 14028s significantly (p < 0.05), which was prevented by the ROS scavenger thiourea, supporting that the increased mutation was due to NaOCl-triggered ROS production. We further found that the exposure of S. typhimurium 14028s to the same sublethal concentration of NaOCl increases resistance to kanamycin among the 3 antibiotics evaluated. The results of this study suggest that when NaOCl applied as a sanitizer fails to kill Salmonella due to diluted local concentrations or presence of organic materials, it can cause an adverse outcome of developing antibiotic resistance of the pathogen. Full article
Show Figures

Figure 1

19 pages, 283 KiB  
Article
Do Government Subsidies Induce Green Transition of Construction Industry? Evidence from Listed Firms in China
by Feifei Zhang, Bingquan Liu and Guixin An
Buildings 2024, 14(5), 1261; https://doi.org/10.3390/buildings14051261 (registering DOI) - 30 Apr 2024
Abstract
The construction industry is a major energy consumer and carbon emitter, and identifying the key drivers for its green transition has attracted increasing attention. Although government subsidies are one of the most effective and direct ways to induce a green transition, few academics [...] Read more.
The construction industry is a major energy consumer and carbon emitter, and identifying the key drivers for its green transition has attracted increasing attention. Although government subsidies are one of the most effective and direct ways to induce a green transition, few academics have examined their effects at a micro level. Therefore, this study used the Chinese construction industry as an example to study the influence of subsidies on its green transition. Given the ambiguity of the green transition concept, this study employed the number of green patents and Environmental, Social, and Governance (ESG) ratings to represent the narrow sense and the wide sense of green transition, respectively. According to the empirical findings, subsidies can successfully induce green technology innovation and thus facilitate a green transition. The results of heterogeneity analysis show that government subsidies have a significant incentive-based effect solely on state-owned firms, but an insufficient effect on private and other enterprises. Furthermore, while government subsidies have little effect on ESG ratings, they can promote green transition of enterprises by increasing ESG ratings. The government should increase the types of subsidy packages available to enterprises, while attaching more importance to social responsibility. Full article
(This article belongs to the Special Issue Research on Green and Low-Carbon Buildings)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop