The 2023 MDPI Annual Report has
been released!
 
3 pages, 184 KiB  
Editorial
Editorial for Special Issue “Various Approaches for Generalized Integral Transforms”
by Hwajoon Kim
Symmetry 2024, 16(5), 576; https://doi.org/10.3390/sym16050576 (registering DOI) - 07 May 2024
Abstract
The Laplace transform can be interpreted as a method of converting a function from the time domain to the complex domain [...] Full article
(This article belongs to the Special Issue Various Approaches for Generalized Integral Transforms)
11 pages, 2097 KiB  
Article
Fast Bacterial Succession Associated with the Decomposition of Larix gmelinii Litter in Wudalianchi Volcano
by Lihong Xie, Jiahui Cheng, Hongjie Cao, Fan Yang, Mingyue Jiang, Maihe Li and Qingyang Huang
Microorganisms 2024, 12(5), 948; https://doi.org/10.3390/microorganisms12050948 (registering DOI) - 07 May 2024
Abstract
In order to understand the role of microorganisms in litter decomposition and the nutrient cycle in volcanic forest ecosystems, the dominant forest species Larix gmelinii in the volcanic lava plateau of the Wudalianchi volcano was considered as the research object. We analyzed the [...] Read more.
In order to understand the role of microorganisms in litter decomposition and the nutrient cycle in volcanic forest ecosystems, the dominant forest species Larix gmelinii in the volcanic lava plateau of the Wudalianchi volcano was considered as the research object. We analyzed the response of bacterial community structure and diversity to litter decomposition for 1 year, with an in situ decomposition experimental design using litter bags and Illumina MiSeq high-throughput sequencing. The results showed that after 365 days, the litter quality residual rate of Larix gmelinii was 77.57%, and the litter N, P, C:N, C:P, and N:P showed significant differences during the decomposition period (p < 0.05). The phyla Cyanobacteria and the genus unclassified_o_Chloroplast were the most dominant groups in early decomposition (January and April). The phyla Proteobacteria, Actinobacteriota, and Acidobacteriota and the genera Massilia, Pseudomonas, and Sphingomona were higher in July and October. The microbial communities showed extremely significant differences during the decomposition period (p < 0.05), with PCoa, RDA, and litter QRR, C:P, and N as the main factors driving litter bacteria succession. Microbial functional prediction analysis showed that Chloroplasts were the major functional group in January and April. Achemoheterotrophy and aerobic chemoheterotrophy showed a significant decrease as litter decomposition progressed. Full article
(This article belongs to the Topic Litter Decompositions: From Individuals to Ecosystems)
Show Figures

Figure 1

14 pages, 6901 KiB  
Article
A Hybrid Deep Learning Architecture for Apple Foliar Disease Detection
by Adnane Ait Nasser and Moulay A. Akhloufi
Computers 2024, 13(5), 116; https://doi.org/10.3390/computers13050116 (registering DOI) - 07 May 2024
Abstract
Incorrectly diagnosing plant diseases can lead to various undesirable outcomes. This includes the potential for the misuse of unsuitable herbicides, resulting in harm to both plants and the environment. Examining plant diseases visually is a complex and challenging procedure that demands considerable time [...] Read more.
Incorrectly diagnosing plant diseases can lead to various undesirable outcomes. This includes the potential for the misuse of unsuitable herbicides, resulting in harm to both plants and the environment. Examining plant diseases visually is a complex and challenging procedure that demands considerable time and resources. Moreover, it necessitates keen observational skills from agronomists and plant pathologists. Precise identification of plant diseases is crucial to enhance crop yields, ultimately guaranteeing the quality and quantity of production. The latest progress in deep learning (DL) models has demonstrated encouraging outcomes in the identification and classification of plant diseases. In the context of this study, we introduce a novel hybrid deep learning architecture named “CTPlantNet”. This architecture employs convolutional neural network (CNN) models and a vision transformer model to efficiently classify plant foliar diseases, contributing to the advancement of disease classification methods in the field of plant pathology research. This study utilizes two open-access datasets. The first one is the Plant Pathology 2020-FGVC-7 dataset, comprising a total of 3526 images depicting apple leaves and divided into four distinct classes: healthy, scab, rust, and multiple. The second dataset is Plant Pathology 2021-FGVC-8, containing 18,632 images classified into six categories: healthy, scab, rust, powdery mildew, frog eye spot, and complex. The proposed architecture demonstrated remarkable performance across both datasets, outperforming state-of-the-art models with an accuracy (ACC) of 98.28% for Plant Pathology 2020-FGVC-7 and 95.96% for Plant Pathology 2021-FGVC-8. Full article
36 pages, 1632 KiB  
Article
Synthesis, In Silico Study, and In Vitro Antifungal Activity of New 5-(1,3-Diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-Dihydrooxazoles
by Neively Tlapale-Lara, Julio López, Elizabeth Gómez, Lourdes Villa-Tanaca, Edson Barrera, Carlos H. Escalante, Joaquín Tamariz, Francisco Delgado, Dulce Andrade-Pavón and Omar Gómez-García
Int. J. Mol. Sci. 2024, 25(10), 5091; https://doi.org/10.3390/ijms25105091 (registering DOI) - 07 May 2024
Abstract
The increase in multi-drug resistant Candida strains has caused a sharp rise in life-threatening fungal infections in immunosuppressed patients, including those with SARS-CoV-2. Novel antifungal drugs are needed to combat multi-drug-resistant yeasts. This study aimed to synthesize a new series of 2-oxazolines and [...] Read more.
The increase in multi-drug resistant Candida strains has caused a sharp rise in life-threatening fungal infections in immunosuppressed patients, including those with SARS-CoV-2. Novel antifungal drugs are needed to combat multi-drug-resistant yeasts. This study aimed to synthesize a new series of 2-oxazolines and evaluate the ligands in vitro for the inhibition of six Candida species and in silico for affinity to the CYP51 enzymes (obtained with molecular modeling and protein homology) of the same species. The 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j were synthesized using the Van Leusen reaction between 1,3-diphenyl-4-formylpyrazoles 4a-j and TosMIC 5 in the presence of K2CO3 or KOH without heating, resulting in short reaction times, high compound purity, and high yields. The docking studies revealed good affinity for the active site of the CYP51 enzymes of the Candida species in the following order: 6a-j > 4a-j > fluconazole (the reference drug). The in vitro testing of the compounds against the Candida species showed lower MIC values for 6a-j than 4a-j, and for 4a-j than fluconazole, thus correlating well with the in silico findings. According to growth rescue assays, 6a-j and 4a-j (like fluconazole) inhibit ergosterol synthesis. The in silico toxicity assessment evidenced the safety of compounds 6a-j, which merit further research as possible antifungal drugs. Full article
(This article belongs to the Special Issue Antifungal Drug Design, Synthesis and Molecular Mechanisms)
12 pages, 5521 KiB  
Article
The Production of Three-Dimensional Metal Objects Using Oscillatory-Strain-Assisted Fine Wire Shaping and Joining
by Anagh Deshpande and Keng Hsu
Materials 2024, 17(10), 2188; https://doi.org/10.3390/ma17102188 (registering DOI) - 07 May 2024
Abstract
Material shaping and joining are the two fundamental processes that lie at the core of many forms of metal manufacturing techniques, including additive manufacturing. Current metal additive manufacturing processes such as laser/e-beam powder bed fusion and Directed Energy Deposition predominantly use heat and [...] Read more.
Material shaping and joining are the two fundamental processes that lie at the core of many forms of metal manufacturing techniques, including additive manufacturing. Current metal additive manufacturing processes such as laser/e-beam powder bed fusion and Directed Energy Deposition predominantly use heat and subsequent melt–fusion and solidification to achieve shaping and joining. The energy efficiency of these processes is severely limited due to energy conversion losses before energy is delivered at the point of melt–fusion for shaping and joining, and due to losses through heat transfer to the surrounding environment. This manuscript demonstrates that by using the physical phenomenon of lowered yield stress of metals and enhanced diffusion in the presence of low amplitude high frequency oscillatory strain, metal shaping and joining can be performed in an energy-efficient way. The two performed simultaneously enable a metal additive manufacturing process, namely Resonance-Assisted Deposition (RAD), that has several unique capabilities, like the ability to print net-shape components from hard-to-weld alloys like Al6061 and the ability to print components with a very high aspect ratio. In this study, we show this process’s capabilities by printing solid components using aluminum-based metal alloys. Full article
(This article belongs to the Special Issue Advances in Materials Joining and Additive Manufacturing)
Show Figures

Figure 1

13 pages, 677 KiB  
Review
Gout and Gout-Related Comorbidities: Insight and Limitations from Population-Based Registers in Sweden
by Panagiota Drivelegka, Lennart TH Jacobsson and Mats Dehlin
Gout Urate Cryst. Depos. Dis. 2024, 2(2), 144-156; https://doi.org/10.3390/gucdd2020013 (registering DOI) - 07 May 2024
Abstract
Population-based databases in Nordic countries offer unique opportunities for large-scale population-based epidemiological studies. The personal identity number enables researchers to link different registers at the individual level, which can be used for large-scale epidemiological population-based studies. This review outlines how these opportunities have [...] Read more.
Population-based databases in Nordic countries offer unique opportunities for large-scale population-based epidemiological studies. The personal identity number enables researchers to link different registers at the individual level, which can be used for large-scale epidemiological population-based studies. This review outlines how these opportunities have been used so far in the field of gout research, as well as the potential challenges and limitations. Their major advantage is that they cover the entire population, minimizing problems such as selection bias and loss to follow-up. This has enabled us to provide information on gout regarding risk factors; occurrence; association with comorbidities in relation to gout onset; treatment patterns; as well as its effect on other outcomes, such as sick leave and mortality. Validity issues, missing data, and legal issues are some of the challenges that researchers need to deal with. Choosing the most appropriate combination of databases to use for a specific question is crucial in order to maximize validity and adjust for confounders. Despite challenges and potential limitations, the Swedish registers have provided valuable epidemiological results and will continue to play an important role in the years to come. Full article
Show Figures

Figure 1

20 pages, 5093 KiB  
Article
Investigating Post-Disaster Reconstruction since the 2011 Great East Japan Earthquake: A Study on the Ōtsuchi-chō, Iwate Prefecture through Timelines
by Daqian Yang, Masaaki Minami, Kosuke Sato and Ashraf Uddin Fahim
Sustainability 2024, 16(10), 3907; https://doi.org/10.3390/su16103907 (registering DOI) - 07 May 2024
Abstract
Since the 2011 Great East Japan Earthquake, 13 years have passed, and many areas have completed post-disaster reconstruction. Therefore, it is necessary to further summarise and analyse the experiences gained from this post-disaster reconstruction. This study conducted door-to-door interviews with residents of Ōtsuchi-chō, [...] Read more.
Since the 2011 Great East Japan Earthquake, 13 years have passed, and many areas have completed post-disaster reconstruction. Therefore, it is necessary to further summarise and analyse the experiences gained from this post-disaster reconstruction. This study conducted door-to-door interviews with residents of Ōtsuchi-chō, Iwate Prefecture, in the 13 years following the earthquake. It recorded the residents’ perspectives on post-disaster reconstruction and its shortcomings. By collecting locally published materials like newspapers, and local government records and integrating them with interview records, the first “Great East Japan Earthquake Timeline” for Ōtsuchi-chō was compiled. We primarily divided this timeline into the following three phases: the disaster and early reconstruction period (2011), the mid-reconstruction period (2012–2015), and the late reconstruction period (2016–Present). This timeline has yielded the following results: firstly, some issues have arisen during this prolonged reconstruction process. For example, continuous relocation hinders community rebuilding, especially in the context of an ageing society. Secondly, the “Ōtsuchi-chō Reconstruction Timeline” was created, which can be used for post-disaster reconstruction in contemporary Japanese villages facing severe ageing. This timeline provides a clear understanding of how disaster-affected areas can rebuild housing and infrastructure, and recover economically. It offers guidance for the reconstruction of Japanese villages after a disaster. Therefore, post-disaster reconstruction in the region should accelerate infrastructure development and continuously listen to residents’ voices, providing corresponding services to make reconstruction comprehensive and specific. At the same time, it also contributes to the post-disaster reconstruction of villages in other developed countries. Full article
16 pages, 2879 KiB  
Article
Biofortification and Valorization of Celery Byproducts Using Selenium and PGPB under Reduced Nitrogen Regimes
by Jacinta Collado-González, María Carmen Piñero, Ginés Otálora Alcón, Josefa López-Marín and Francisco M. del Amor
Foods 2024, 13(10), 1437; https://doi.org/10.3390/foods13101437 (registering DOI) - 07 May 2024
Abstract
Due to climate change and exacerbated population growth, the search for new sustainable strategies that allow for greater food productivity and that provide greater nutritional quality has become imperative. One strategy for addressing this problem is the combined use of fertilization with a [...] Read more.
Due to climate change and exacerbated population growth, the search for new sustainable strategies that allow for greater food productivity and that provide greater nutritional quality has become imperative. One strategy for addressing this problem is the combined use of fertilization with a reduced dose of nitrogen and biostimulants. Celery processing produces a large amount of waste with its concomitant pollution. Therefore, it is necessary to address the valorization of its byproducts. Our results revealed reductions in the biomass, Na, P, Mn, B, sugars, and proteins in the byproducts and increased lipid peroxidation, Fe (all celery parts), and K (byproducts) when the N supplied was reduced. Plants inoculated with Azotobacter salinestris obtained a greater biomass, a higher accumulation of K (byproducts), a build-up of sugars and proteins, reduced concentrations of P, Cu, Mn, B, Fe (petioles), and Zn (byproducts), and reduced lipid peroxidation. The application of Se at 8 μM reinforced the beneficial effect obtained after inoculation with Azotobacter salinestris. In accordance with our results, edible celery parts are recommended as an essential ingredient in the daily diet. Furthermore, the valorization of celery byproducts with health-promoting purposes should be considered. Full article
16 pages, 3975 KiB  
Article
Performance Comparison of CFD Microbenchmarks on Diverse HPC Architectures
by Flavio C. C. Galeazzo, Marta Garcia-Gasulla, Elisabetta Boella, Josep Pocurull, Sergey Lesnik, Henrik Rusche, Simone Bnà, Matteo Cerminara, Federico Brogi, Filippo Marchetti, Daniele Gregori, R. Gregor Weiß and Andreas Ruopp
Computers 2024, 13(5), 115; https://doi.org/10.3390/computers13050115 (registering DOI) - 07 May 2024
Abstract
OpenFOAM is a CFD software widely used in both industry and academia. The exaFOAM project aims at enhancing the HPC scalability of OpenFOAM, while identifying its current bottlenecks and proposing ways to overcome them. For the assessment of the software components and the [...] Read more.
OpenFOAM is a CFD software widely used in both industry and academia. The exaFOAM project aims at enhancing the HPC scalability of OpenFOAM, while identifying its current bottlenecks and proposing ways to overcome them. For the assessment of the software components and the code profiling during the code development, lightweight but significant benchmarks should be used. The answer was to develop microbenchmarks, with a small memory footprint and short runtime. The name microbenchmark does not mean that they have been prepared to be the smallest possible test cases, as they have been developed to fit in a compute node, which usually has dozens of compute cores. The microbenchmarks cover a broad band of applications: incompressible and compressible flow, combustion, viscoelastic flow and adjoint optimization. All benchmarks are part of the OpenFOAM HPC Technical Committee repository and are fully accessible. The performance using HPC systems with Intel and AMD processors (x86_64 architecture) and Arm processors (aarch64 architecture) have been benchmarked. For the workloads in this study, the mean performance with the AMD CPU is 62% higher than with Arm and 42% higher than with Intel. The AMD processor seems particularly suited resulting in an overall shorter time-to-solution. Full article
(This article belongs to the Special Issue Best Practices, Challenges and Opportunities in Software Engineering)
17 pages, 548 KiB  
Review
Insights and Advancements in Periodontal Tissue Engineering and Bone Regeneration
by Angela Angjelova, Elena Jovanova, Alessandro Polizzi, Marco Annunziata, Ludovica Laganà, Simona Santonocito and Gaetano Isola
Medicina 2024, 60(5), 773; https://doi.org/10.3390/medicina60050773 (registering DOI) - 07 May 2024
Abstract
The regeneration of periodontal bone defects continues to be an essential therapeutic concern in dental biomaterials. Numerous biomaterials have been utilized in this sector so far. However, the immune response and vascularity in defect regions may be disregarded when evaluating the effectiveness of [...] Read more.
The regeneration of periodontal bone defects continues to be an essential therapeutic concern in dental biomaterials. Numerous biomaterials have been utilized in this sector so far. However, the immune response and vascularity in defect regions may be disregarded when evaluating the effectiveness of biomaterials for bone repair. Among several regenerative treatments, the most recent technique of in situ tissue engineering stands out for its ability to replicate endogenous restorative processes by combining scaffold with particular growth factors. Regenerative medicine solutions that combine biomaterials/scaffolds, cells, and bioactive substances have attracted significant interest, particularly for bone repair and regeneration. Dental stem cells (DSCs) share the same progenitor and immunomodulatory properties as other types of MSCs, and because they are easily isolable, they are regarded as desirable therapeutic agents in regenerative dentistry. Recent research has demonstrated that DSCs sown on newly designed synthetic bio-material scaffolds preserve their proliferative capacity while exhibiting increased differentiation and immuno-suppressive capabilities. As researchers discovered how short peptide sequences modify the adhesion and proliferative capacities of scaffolds by activating or inhibiting conventional osteogenic pathways, the scaffolds became more effective at priming MSCs. In this review, the many components of tissue engineering applied to bone engineering will be examined, and the impact of biomaterials on periodontal regeneration and bone cellular biology/molecular genetics will be addressed and updated. Full article
(This article belongs to the Section Dentistry)
12 pages, 1152 KiB  
Article
Performance of a High-Speed Pyroelectric Receiver as Cryogen-Free Detector for Terahertz Absorption Spectroscopy Measurements
by Jente R. Wubs, Uwe Macherius, Xiang Lü, Lutz Schrottke, Matthias Budden, Johannes Kunsch, Klaus-Dieter Weltmann and Jean-Pierre H. van Helden
Appl. Sci. 2024, 14(10), 3967; https://doi.org/10.3390/app14103967 (registering DOI) - 07 May 2024
Abstract
The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in [...] Read more.
The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in astronomy, atmospheric research, and plasma diagnostics. However, the lack of easy-to-use and miniaturised detectors has hampered the development of compact THz spectroscopy systems out of the laboratory environment. In this paper, we introduce a new high-speed pyroelectric receiver as a cryogen-free detector for THz absorption spectroscopy. Its performance is characterised by absorption spectroscopy measurements on a reference gas cell (RGC) with ammonia using a tunable THz quantum cascade laser at approximately 4.75 THz as the light source. It is shown that the receiver can record spectra up to 281 Hz without any artefacts to the observed spectral absorption profile, and the results reproduce the known pressure of ammonia in the RGC. This demonstrates that the pyroelectric receiver can be reliably used as an alternative to helium-cooled bolometers for absorption spectroscopy measurements in the THz range, with its main advantages being the high bandwidth, compactness, relatively low cost, and room-temperature operation. Its simplicity and high sensitivity make this receiver a key component for compact THz spectroscopy systems. Full article
(This article belongs to the Special Issue Terahertz Technologies and Applications)
Show Figures

Figure 1

11 pages, 1959 KiB  
Article
Nonribosomal Peptide Synthetase Specific Genome Amplification Using Rolling Circle Amplification for Targeted Gene Sequencing
by Yoshiko Okamura, Masahiro Suemitsu, Takato Ishikawa and Hirokazu Takahashi
Int. J. Mol. Sci. 2024, 25(10), 5089; https://doi.org/10.3390/ijms25105089 (registering DOI) - 07 May 2024
Abstract
Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can [...] Read more.
Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 1632 KiB  
Review
Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023
by Huai Shi, Guohong Liu and Qianqian Chen
Sustainability 2024, 16(10), 3906; https://doi.org/10.3390/su16103906 (registering DOI) - 07 May 2024
Abstract
Nitrification inhibitors are essential in agricultural and environmental production practices. They play a crucial role in promoting agricultural and environmental sustainability by enhancing nitrogen use efficiency, boosting crop yields, and mitigating the adverse environmental effects of nitrogen losses. This bibliometric analysis covers the [...] Read more.
Nitrification inhibitors are essential in agricultural and environmental production practices. They play a crucial role in promoting agricultural and environmental sustainability by enhancing nitrogen use efficiency, boosting crop yields, and mitigating the adverse environmental effects of nitrogen losses. This bibliometric analysis covers the period from 2004 to 2023, offering a detailed examination of the development of nitrification inhibitor research. The study demonstrates a consistent growth in research publications, indicating sustained interest and dedication to advancing the field. It identifies key contributors, such as institutions and researchers, and underscores the significance of their work through citation analysis. Keyword co-occurrence analysis reveals four distinct clusters focusing on enhancing crop yields, understanding microbial community dynamics, exploring grazing pasture applications, and addressing environmental impact mitigation. The cutting-edge area of keyword burst detection research has transitioned from fundamental research to comprehensive nitrogen management practices. This analysis provides insights into the current research landscape of nitrification inhibitors and proposes future research directions, underscoring the critical role of this field in tackling global agricultural and environmental challenges. Full article
25 pages, 698 KiB  
Article
What Affects the Willingness of Farmers to Participate in Forest Ticket Trading? Empirical Analysis Based on Incomplete Information Theory
by Boyao Song, Xiao Han, Siyao Lv, Qiushuang Fang, Zhongping Wang and Hongxun Li
Forests 2024, 15(5), 821; https://doi.org/10.3390/f15050821 (registering DOI) - 07 May 2024
Abstract
Forest tickets refer to a type of forest resource usufruct certificate characterized by “cooperative operation, quantification of rights and interests, free circulation, and guaranteed dividends”. It is an important means to build a market-oriented mechanism for realizing the value of ecological resources. Incomplete [...] Read more.
Forest tickets refer to a type of forest resource usufruct certificate characterized by “cooperative operation, quantification of rights and interests, free circulation, and guaranteed dividends”. It is an important means to build a market-oriented mechanism for realizing the value of ecological resources. Incomplete information, based on field survey data from thirteen villages in eight townships (towns) in Sanming City, Fujian Province, China, and a binary logit model were used to explore the moderating effects of factors affecting farmers’ willingness to participate in forest ticket trading, the heterogeneity of farmers, and social capital. We found the following: In an environment with incomplete information, farmers’ willingness to participate in forest ticket trading is influenced by heterogeneity expectations, social capital, government propaganda, and individual family characteristics. There are certain differences in the influencing factors and degree of farmers’ willingness to participate in forest ticket trading among different groups of farmers with different levels of education and part-time employment. Social capital can strengthen the positive impact of income expectations and policy sustainability expectations, and alleviate the negative impact of risk expectations. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
20 pages, 5048 KiB  
Article
An Accurate Representation of the Number of bZIP Transcription Factors in the Triticum aestivum (Wheat) Genome and the Regulation of Functional Genes during Salt Stress
by Xin Liu, Selvakumar Sukumaran, Esteri Viitanen, Nupur Naik, Sameer Hassan and Henrik Aronsson
Curr. Issues Mol. Biol. 2024, 46(5), 4417-4436; https://doi.org/10.3390/cimb46050268 (registering DOI) - 07 May 2024
Abstract
Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many [...] Read more.
Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many areas. A solution to this problem is increasing the salt tolerance of crop plants. Transcription factors (TFs) within crop plants represent a key to understanding salt tolerance, as these proteins play important roles in the regulation of functional genes linked to salt stress. The basic leucine zipper (bZIP) TF has a well-documented role in the regulation of salt tolerance. To better understand how bZIP TFs are linked to salt tolerance, we performed a genome-wide analysis in wheat using the Chinese spring wheat genome, which has been assembled by the International Wheat Genome Sequencing Consortium. We identified 89 additional bZIP gene sequences, which brings the total of bZIP gene sequences in wheat to 237. The majority of these 237 sequences included a single bZIP protein domain; however, different combinations of five other domains also exist. The bZIP proteins are divided into ten subfamily groups. Using an in silico analysis, we identified five bZIP genes (ABF2, ABF4, ABI5, EMBP1, and VIP1) that were involved in regulating salt stress. By scrutinizing the binding properties to the 2000 bp upstream region, we identified putative functional genes under the regulation of these TFs. Expression analyses of plant tissue that had been treated with or without 100 mM NaCl revealed variable patterns between the TFs and functional genes. For example, an increased expression of ABF4 was correlated with an increased expression of the corresponding functional genes in both root and shoot tissues, whereas VIP1 downregulation in root tissues strongly decreased the expression of two functional genes. Identifying strategies to sustain the expression of the functional genes described in this study could enhance wheat’s salt tolerance. Full article
(This article belongs to the Special Issue Advanced Research in Wheat Genome and Breeding)
Show Figures

Figure 1

14 pages, 1415 KiB  
Article
Algal Oil Mitigates Sodium Taurocholate-Induced Pancreatitis by Alleviating Calcium Overload, Oxidative Stress, and NF-κB Activation in Pancreatic Acinar Cells
by Yi Fang, Sung-Yen Lin, Chung-Hwan Chen and Hui-Chen Lo
Curr. Issues Mol. Biol. 2024, 46(5), 4403-4416; https://doi.org/10.3390/cimb46050267 (registering DOI) - 07 May 2024
Abstract
Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of [...] Read more.
Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of AP. Rat pancreatic acinar AR42J cells were pretreated with AO containing 0, 50, 100, or 150 μM of docosahexaenoic acid (DHA) 2 h prior to AP induction using sodium taurocholate (STC). After 1 h of STC treatment, AR42J cells exhibited a significant increase in intracellular Ca2+ concentration and the production of amylase, lipase, reactive oxygen species, and pro-inflammatory mediators, including tumor necrosis factor-α and interleukin-6. These STC-induced increases were markedly reduced in cells pretreated with AO. In comparison to cells without AO, those treated with a high dose of AO before STC exposure demonstrated a significant increase in mitochondrial membrane potential and a decrease in lipid peroxidation. Furthermore, STC-activated nuclear factor kappa-B (NF-κB) was attenuated in AO-pretreated cells, as evidenced by a significant decrease in activated NF-κB. In conclusion, AO may prevent damage to pancreatic acinar cells by alleviating intracellular Ca2+ overload, mitigating mitochondrial dysfunction, reducing oxidative stress, and attenuating NF-κB-targeted inflammation. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Figure 1

20 pages, 2991 KiB  
Article
Morphological and Molecular Characters Differentiate Common Morphotypes of Atlantic Holopelagic Sargassum
by Amy N. S. Siuda, Aurélie Blanfuné, Skye Dibner, Marc Verlaque, Charles-François Boudouresque, Solène Connan, Deborah S. Goodwin, Valérie Stiger-Pouvreau, Frédérique Viard, Florence Rousseau, Valérie Michotey, Jeffrey M. Schell, Thomas Changeaux, Didier Aurelle and Thierry Thibaut
Phycology 2024, 4(2), 256-275; https://doi.org/10.3390/phycology4020014 (registering DOI) - 07 May 2024
Abstract
Since 2011, massive new strandings of holopelagic Sargassum have been reported on the coasts of the Caribbean, northern Brazil, Guiana, and West Africa, causing severe economic and ecological damage. Three common morphotypes (S. fluitans III, S. natans I, and S. natans VIII) [...] Read more.
Since 2011, massive new strandings of holopelagic Sargassum have been reported on the coasts of the Caribbean, northern Brazil, Guiana, and West Africa, causing severe economic and ecological damage. Three common morphotypes (S. fluitans III, S. natans I, and S. natans VIII) were identified as responsible for these catastrophic events, with dominance shifts between them over time. However, the taxonomic status of these holopelagic Sargassum morphotypes remains unclear. Using an integrative taxonomy framework, combining a morphological study and molecular analyses, this study aimed to clarify their taxonomic status. Morphological analyses of 54 characters revealed no intermediate form between the three morphotypes, with the overall shape, nature of the axis, and size and shape of blades and vesicles being the most discriminating. An analysis of mitochondrial (IGS, cox2, cox3, mt16S rRNA, and nad6) and plastid (rbcL) markers confirmed the genetic divergence among the three morphotypes, with a lower level of divergence between the two S. natans morphotypes. Without additional molecular characterization, these morphotypes cannot be classified as three distinct species. However, due to their distinct morphological characteristics and sympatry within drifting aggregations, a revision of holopelagic species names is proposed, with Sargassum fluitans var. fluitans (for S. fluitans III), Sargassum natans var. natans (for S. natans I), and S. natans var. wingei (for S. natans VIII). This revision provides necessary clarity on the species involved in inundations of the tropical Atlantic. Full article
(This article belongs to the Collection Sargassum Golden Tides, a Global Problem)
Show Figures

Figure 1

8 pages, 1274 KiB  
Communication
Evaluation of the Plant Growth Regulator SPGP4 in Agricultural Crops: A Case Study in Oaxaca, México
by Guiee N. López-Castillo, Arnoldo Wong-Villareal, Judith Castellanos-Moguel, Gilberto Vela Correa, Sandra L. Cabrera-Hilerio, Mariana Miranda-Arámbula, Alan Carrasco-Carballo and Jesús Sandoval-Ramírez
Crops 2024, 4(2), 172-179; https://doi.org/10.3390/crops4020013 (registering DOI) - 07 May 2024
Abstract
The search for new plant growth regulators is a cornerstone of agricultural research; however, laboratory studies rarely go on to be evaluated in the field. This is because greater production is required, as well as longer studies. Particularly, brassinosteroids present these difficulties, and [...] Read more.
The search for new plant growth regulators is a cornerstone of agricultural research; however, laboratory studies rarely go on to be evaluated in the field. This is because greater production is required, as well as longer studies. Particularly, brassinosteroids present these difficulties, and although they have been evaluated in crops with good results, their high production cost gives rise to the search for new alternatives. 22-Oxocholestanes such as SPGP4, previously used in silico and in vitro studies, have shown great potential, so their evaluation in crops grown from native seeds from the study region becomes of interest. Based on these data, SPGP4 was evaluated under crop conditions in three agricultural plots located on the Isthmus of Tehuantepec region, Oaxaca, México. The seeds were treated with a 0.5 mg/L aqueous solution of the 22-Oxocholestane compound SPGP4 by imbibition one night before sown. Later, 45 days after sowing, a solution of 0.5 mg/L at a rate of 200 L per hectare was applied. At the production level, the bean harvest showed an increase in the range of 21.0–38.1%, and the corn harvest increased between 22 and 32%. In addition, the latter also demonstrated an increase in biomass production, given the increase in diameter and height observed in the corn plant. This indicates that SPGP4 functions as a regulator of plant growth at the crop level to increase both seed and biomass production. Full article
16 pages, 436 KiB  
Review
Effect of Boxing Exercises on the Functional Ability and Quality of Life of Individuals with Parkinson’s Disease: A Systematic Review
by Nikolaos Chrysagis, Georgia Trompouki, Dimitris Petropaulis, George A. Koumantakis, Georgios Krekoukias, Georgios Theotokatos, Emmanouil Skordilis and Vasiliki Sakellari
Eur. J. Investig. Health Psychol. Educ. 2024, 14(5), 1295-1310; https://doi.org/10.3390/ejihpe14050085 (registering DOI) - 07 May 2024
Abstract
Parkinson’s disease (PD) is a neurological disorder caused by the loss of dopamine-producing cells in the substantia nigra and characterized by motor and non-motor symptoms. Boxing is a type of complementary therapy to improve symptoms in PD. The purpose of the present study [...] Read more.
Parkinson’s disease (PD) is a neurological disorder caused by the loss of dopamine-producing cells in the substantia nigra and characterized by motor and non-motor symptoms. Boxing is a type of complementary therapy to improve symptoms in PD. The purpose of the present study was to examine the effect of boxing training on the functionality and quality of life of patients with PD. The literature search was performed on PubMed, Scopus, PEDro, Cochrane Library, and Google Scholar search engines. The PEDro scale was used to assess the methodological quality of the studies. This systematic review included three studies that examined disease severity, mobility, physical activity, balance, and quality of life. According to the PEDro scale criteria, the three articles included were of high methodological quality. Statistically significant improvements after the implementation of boxing training was shown for balance and quality of life in contrast to the other variables. Boxing training intervention programs had a positive effect on balance and quality of life in patients with PD; however, the results are conflicting regarding certain functionality variables. Therefore, it is necessary to conduct further research to examine the effectiveness of boxing training on the functionality and quality of life of patients with Parkinson’s disease. Full article
19 pages, 545 KiB  
Review
An Overview of Approaches and Methods for the Cognitive Workload Estimation in Human–Machine Interaction Scenarios through Wearables Sensors
by Sabrina Iarlori, David Perpetuini, Michele Tritto, Daniela Cardone, Alessandro Tiberio, Manish Chinthakindi, Chiara Filippini, Luca Cavanini, Alessandro Freddi, Francesco Ferracuti, Arcangelo Merla and Andrea Monteriù
BioMedInformatics 2024, 4(2), 1155-1173; https://doi.org/10.3390/biomedinformatics4020064 (registering DOI) - 07 May 2024
Abstract
Background: Human-Machine Interaction (HMI) has been an important field of research in recent years, since machines will continue to be embedded in many human actvities in several contexts, such as industry and healthcare. Monitoring in an ecological mannerthe cognitive workload (CW) of users, [...] Read more.
Background: Human-Machine Interaction (HMI) has been an important field of research in recent years, since machines will continue to be embedded in many human actvities in several contexts, such as industry and healthcare. Monitoring in an ecological mannerthe cognitive workload (CW) of users, who interact with machines, is crucial to assess their level of engagement in activities and the required effort, with the goal of preventing stressful circumstances. This study provides a comprehensive analysis of the assessment of CW using wearable sensors in HMI. Methods: this narrative review explores several techniques and procedures for collecting physiological data through wearable sensors with the possibility to integrate these multiple physiological signals, providing a multimodal monitoring of the individuals’CW. Finally, it focuses on the impact of artificial intelligence methods in the physiological signals data analysis to provide models of the CW to be exploited in HMI. Results: the review provided a comprehensive evaluation of the wearables, physiological signals, and methods of data analysis for CW evaluation in HMI. Conclusion: the literature highlighted the feasibility of employing wearable sensors to collect physiological signals for an ecological CW monitoring in HMI scenarios. However, challenges remain in standardizing these measures across different populations and contexts. Full article
(This article belongs to the Special Issue Feature Papers in Applied Biomedical Data Science)
52 pages, 4744 KiB  
Article
Force Metrology with Plane Parallel Plates: Final Design Review and Outlook
by Hamid Haghmoradi, Hauke Fischer, Alessandro Bertolini, Ivica Galić, Francesco Intravaia, Mario Pitschmann, Raphael A. Schimpl and René I. P. Sedmik
Physics 2024, 6(2), 690-741; https://doi.org/10.3390/physics6020045 (registering DOI) - 07 May 2024
Abstract
During the past few decades, abundant evidence for physics beyond the two standard models of particle physics and cosmology was found. Yet, we are tapping in the dark regarding our understanding of the dark sector. For more than a century, open problems related [...] Read more.
During the past few decades, abundant evidence for physics beyond the two standard models of particle physics and cosmology was found. Yet, we are tapping in the dark regarding our understanding of the dark sector. For more than a century, open problems related to the nature of the vacuum remained unresolved. As well as the traditional high-energy frontier and cosmology, technological advancement provides complementary access to new physics via high-precision experiments. Among the latter, the Casimir And Non-Newtonian force EXperiment (Cannex) has successfully completed its proof-of-principle phase and is going to commence operation soon. Benefiting from its plane parallel plate geometry, both interfacial and gravity-like forces are maximized, leading to increased sensitivity. A wide range of dark sector forces, Casimir forces in and out of thermal equilibrium, and gravity can be tested. This paper describes the final experimental design, its sensitivity, and expected results. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
14 pages, 646 KiB  
Article
Introduction of the Experimental Setup for the Investigation of the Novel Selective Melt Dispersion (SMD): A Directed Energy Deposition (DED) Process
by Sebastian F. Noller, Anja Pfennig and Matthias Dahlmeyer
Clean Technol. 2024, 6(2), 572-585; https://doi.org/10.3390/cleantechnol6020030 (registering DOI) - 07 May 2024
Abstract
This study focuses on developing an experimental setup to investigate the Selective Melt Dispersion (SMD), a Directed Energy Deposition (DED) process. SMD as a means of in-process joining (IPJ) aims to integrate components and assemblies during additive manufacturing, combining the advantages of various [...] Read more.
This study focuses on developing an experimental setup to investigate the Selective Melt Dispersion (SMD), a Directed Energy Deposition (DED) process. SMD as a means of in-process joining (IPJ) aims to integrate components and assemblies during additive manufacturing, combining the advantages of various processes for eco-friendly and economical resource utilization. The research initially analyzed DED systems and defined requirements for subsystems and the overall system. Critical subsystems, including the energy source, material feed, and others, were sequentially developed, and a proof of concept involved building 20 stacked welded tracks, validated through micrograph analysis. The study concludes by evaluating and discussing the fulfillment of the defined requirements. The system comprises a centrally arranged vibration-assisted powder feed; a laterally arranged laser incidence at a 45° angle; a kinematic structure where all axes are arranged on the workpiece, so the powder supply does not require movement; and a shield gas supply. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment)
21 pages, 1610 KiB  
Article
Environmental Impacts Associated with the Production and Packing of Persian Lemon in Mexico through Life-Cycle Assessment
by Eduardo Castillo-González, Lorena De Medina-Salas, Mario Rafael Giraldi-Díaz, Raúl Velásquez-De La Cruz and José Rafael Jiménez-Ochoa
Clean Technol. 2024, 6(2), 551-571; https://doi.org/10.3390/cleantechnol6020029 (registering DOI) - 07 May 2024
Abstract
In this study, the environmental impacts associated with the intensive production of Persian lemons are assessed, including the agricultural and packing phases of the fresh fruit. A life-cycle assessment (LCA) tool was used in accordance with the ISO 14040 and 14044 standards and [...] Read more.
In this study, the environmental impacts associated with the intensive production of Persian lemons are assessed, including the agricultural and packing phases of the fresh fruit. A life-cycle assessment (LCA) tool was used in accordance with the ISO 14040 and 14044 standards and implemented in SimaPro PhD (9.2) software. The life-cycle inventory database was primarily composed of data collected during field visits to local lemon orchards and the main packing company in the region. The functional unit was defined as 1 kg of packed fresh Persian lemons. The selected impact categories were the carbon footprint, water footprint, and energy footprint, and the results obtained for the defined functional unit were 405.8 g CO2 eq, 40.3 L of water, and 5.9 MJ, respectively. The industrial packing phase of the fruits had a greater impact on the carbon and energy footprints, mostly due to the manufacturing of packaging materials and cardboard boxes, followed by the transportation of supplies. Regarding the water footprint, the agricultural phase was identified as the most significant contributor to water consumption, primarily attributed to maintenance operations and the application of agrochemicals. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop