The 2023 MDPI Annual Report has
been released!
 
16 pages, 5475 KiB  
Article
Research on One-Time Pouring Construction Technology of Side-Span Cast-In-Situ Section and Closed Section
by Changzhu Wang, Guijia Yang, Jinhan Zhang, Jiahao Wang and Yuanxun Zheng
Appl. Sci. 2024, 14(11), 4356; https://doi.org/10.3390/app14114356 (registering DOI) - 21 May 2024
Abstract
In recent years, in the construction process of closed-bridge side spans, construction has often been carried out in accordance with the construction sequence of, first, pouring the cast-in-place section, then preburying strong bone and pouring the closed section, and finally tensioning the closure [...] Read more.
In recent years, in the construction process of closed-bridge side spans, construction has often been carried out in accordance with the construction sequence of, first, pouring the cast-in-place section, then preburying strong bone and pouring the closed section, and finally tensioning the closure steel bundle. However, the temperature change during the construction process of the conventional hinges leads to a large deformation of the hinges’ strong bone, which disturbs the concrete of the hinged section, and, at the same time, its high stiffness means that the concrete of the hinged section will not be sufficiently precompressed, thus resulting in the loss of prestressing force. Therefore, it is necessary to study the one-time casting construction technology of the side-span’s cast-in-place and closed sections. In this study, on the basis of introducing the conventional side-span joint-construction technology, the one-time pouring joint-construction technology was adjusted. In order to eliminate the sunlight temperature factor, which has a great influence on the process of joining, finite element analysis was used to further compare and analyze the changes in the internal force and the linearity of the structure under different joining methods. The results of this study show that, by adjusting the counterweight, the adverse effect of the disturbance of the main girder on the concrete at the joint end under the effect of sunshine temperature can be effectively controlled. Also, one-time joint construction is more reasonable for the internal force and deflection deformation of the structure compared with the conventional side-span joining method of a continuous rigid bridge, which is more favorable to the structure. The research methods and conclusions of this paper can provide a reference for the improvement of closed side-span one-time casting construction technology. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 2191 KiB  
Article
Evaluation of Physicochemical Properties and Prebiotics Function of a Bioactive Pleurotus eryngii Aqueous Extract Powder Obtained by Spray Drying
by Jianqiu Chen, Mengling Zhou, Liding Chen, Chengfeng Yang, Yating Deng, Jiahuan Li and Shujing Sun
Nutrients 2024, 16(11), 1555; https://doi.org/10.3390/nu16111555 (registering DOI) - 21 May 2024
Abstract
A bioactive Pleurotus eryngii aqueous extract powder (SPAE) was obtained by spray drying and its performance in terms of physicochemical properties, in vitro digestion, inflammatory factors, and modulation of the intestinal microbiota was explored. The results indicated that the SPAE exhibited a more [...] Read more.
A bioactive Pleurotus eryngii aqueous extract powder (SPAE) was obtained by spray drying and its performance in terms of physicochemical properties, in vitro digestion, inflammatory factors, and modulation of the intestinal microbiota was explored. The results indicated that the SPAE exhibited a more uniform particle size distribution than P. eryngii polysaccharide (PEP). Meanwhile, a typical absorption peak observed at 843 cm−1 in the SPAE FTIR spectra indicated the existence of α-glycosidic bonds. SPAE exhibited higher antioxidant abilities and superior resistance to digestion in vitro. In addition, SPAE supplementation to mice significantly reduced the release of factors that promote inflammation, enhanced the secretion of anti-inflammatory factors, and sustained maximum production of short-chain fatty acids (SCFAs). Additionally, it significantly enhanced the relative abundance of SCFAs-producing Akkermansia and reduced the abundance of Ruminococcus and Clostridiides in intestines of mice. These results show the potential of SPAE as a novel material with prebiotic effects for the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Functional Evaluation of Edible Mushrooms and Their Active Materials)
10 pages, 620 KiB  
Review
Meropenem/Vaborbactam—A Mechanistic Review for Insight into Future Development of Combinational Therapies
by Trae Hillyer and Woo Shik Shin
Antibiotics 2024, 13(6), 472; https://doi.org/10.3390/antibiotics13060472 (registering DOI) - 21 May 2024
Abstract
Beta-lactam antibiotics have been a major climacteric in medicine for being the first bactericidal compound available for clinical use. They have continually been prescribed since their development in the 1940s, and their application has saved an immeasurable number of lives. With such immense [...] Read more.
Beta-lactam antibiotics have been a major climacteric in medicine for being the first bactericidal compound available for clinical use. They have continually been prescribed since their development in the 1940s, and their application has saved an immeasurable number of lives. With such immense use, the rise in antibiotic resistance has truncated the clinical efficacy of these compounds. Nevertheless, the synergism of combinational antibiotic therapy has allowed these drugs to burgeon once again. Here, the development of meropenem with vaborbactam—a recently FDA-approved beta-lactam combinational therapy—is reviewed in terms of structure rationale, activity gamut, pharmacodynamic/pharmacokinetic properties, and toxicity to provide insight into the future development of analogous therapies. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Drug Discovery, 2nd Volume)
19 pages, 391 KiB  
Article
Effects of Brown Seaweed (Ascophyllum nodosum) Supplementation on Enteric Methane Emissions, Metabolic Status and Milk Composition in Peak-Lactating Holstein Cows
by Dušan Bošnjaković, Sreten Nedić, Sveta Arsić, Radiša Prodanović, Ivan Vujanac, Ljubomir Jovanović, Milica Stojković, Ivan B. Jovanović, Ivana Djuricic and Danijela Kirovski
Animals 2024, 14(11), 1520; https://doi.org/10.3390/ani14111520 (registering DOI) - 21 May 2024
Abstract
The dairy industry contributes significantly to anthropogenic methane emissions, which have an impact on global warming. This study aimed to investigate the effects of a dietary inclusion of brown seaweed Ascophyllum nodosum on enteric methane emissions (EMEs), hematological and blood biochemical profiles, and [...] Read more.
The dairy industry contributes significantly to anthropogenic methane emissions, which have an impact on global warming. This study aimed to investigate the effects of a dietary inclusion of brown seaweed Ascophyllum nodosum on enteric methane emissions (EMEs), hematological and blood biochemical profiles, and milk composition in dairy cows. Eighteen Holstein cows were divided into three groups: CON (non-supplemented cows), BS50 (50 mL of 10% A. nodosum), and BS100 (100 mL of 10% A. nodosum). In each cow, measurements of EME, dry matter intake (DMI), and milk yield (MY), as well as blood and milk sampling with respective analyzes, were performed before supplementation (P1), after 15 (P2) days, and after 30 (P3) days of supplementation. A. nodosum reduced (p < 0.05) methane production, methane yield, and methane intensity in both BS50 and BS100, and raised DMI (p < 0.05) only in BS50. Total bilirubin (p < 0.05) was higher in BS50 compared to CON cows in P2, and triacylglycerols were lower (p < 0.05) in BS50 than in CON cows in P3. Higher milk fat content was found in BS50 than in CON cows in P3. C16:0 proportions were higher (p < 0.05) in BS50 and BS100 than in CON cows, while C18:3n-3 was higher (p < 0.05) in BS100 than in BS50 and CON cows in P3. Dietary treatment with A. nodosum reduced EMEs and showed the potential to increase DMI and to improve energy status as well as milk composition in peak-lactating dairy cows. Full article
18 pages, 624 KiB  
Article
A Progressive Outlook on Possibility Multi-Fuzzy Soft Ordered Semigroups: Theory and Analysis
by Sana Habib, Faiz Muhammad Khan and Violeta Leoreanu-Fotea
Axioms 2024, 13(6), 340; https://doi.org/10.3390/axioms13060340 (registering DOI) - 21 May 2024
Abstract
The concept of possibility fuzzy soft sets is a step in a new direction towards a soft set approach that can be used to solve decision-making issues. In this piece of research, an innovative and comprehensive conceptual framework for possibility multi-fuzzy soft ordered [...] Read more.
The concept of possibility fuzzy soft sets is a step in a new direction towards a soft set approach that can be used to solve decision-making issues. In this piece of research, an innovative and comprehensive conceptual framework for possibility multi-fuzzy soft ordered semigroups by making use of the notions that are associated with possibility multi-fuzzy soft sets as well as ordered semigroups is introduced. Possibility multi-fuzzy soft ordered semigroups mark a newly developed theoretical avenue, and the central aim of this paper is to investigate it. The focus lies on investigating this newly developed theoretical direction, with practical examples drawn from decision-making and diagnosis practices to enhance understanding and appeal to researchers’ interests. We strictly build the notions of possibility multi-fuzzy soft left (right) ideals, as well as l-idealistic and r-idealistic possibility multi-fuzzy soft ordered semigroups. Furthermore, various algebraic operations, such as union, intersection, as well as AND and OR operations are derived, while also providing a comprehensive discussion of their properties. To clarify these innovative ideas, the theoretical constructs are further reinforced with a set of demonstrative examples in order to guarantee deep and improved comprehension of the proposed framework. Full article
(This article belongs to the Special Issue Advances in Classical and Applied Mathematics)
15 pages, 579 KiB  
Article
eDNA Metabarcoding Reveals the Species–Area Relationship of Amphibians on the Zhoushan Archipelago
by Wenhao Li, Xianglei Hou, Yunlong Zhu, Jiacong Du, Chunxia Xu, Jingyuan Yang and Yiming Li
Animals 2024, 14(11), 1519; https://doi.org/10.3390/ani14111519 (registering DOI) - 21 May 2024
Abstract
The species–area relationship is important for understanding species diversity patterns at spatial scales, but few studies have examined the relationship using environmental DNA (eDNA) techniques. We investigated amphibian diversity on 21 islands of the Zhoushan Archipelago and nearby mainland areas in China using [...] Read more.
The species–area relationship is important for understanding species diversity patterns at spatial scales, but few studies have examined the relationship using environmental DNA (eDNA) techniques. We investigated amphibian diversity on 21 islands of the Zhoushan Archipelago and nearby mainland areas in China using the combination of eDNA metabarcoding and the traditional line transect method (TLTM) and identified the species–area relationship for amphibians on the islands. The mean detection probability of eDNA is 0.54, while the mean detection probability of TLTM is 0.24. The eDNA metabarcoding detected eight amphibian species on the islands and nine species in the mainland areas, compared with seven species on the islands and nine species in the mainland areas that were identified by TLTM. Amphibian richness on the islands increased with island area and habitat diversity. The species–area relationship for amphibians in the archipelago was formulated as the power function (S = 0.47A0.21) or exponential function (S = 2.59 + 2.41 (logA)). Our results suggested that eDNA metabarcoding is more sensitive for the detection of amphibian species. The combined use of eDNA metabarcoding and the traditional line transect method may optimize the survey results for amphibians. Full article
(This article belongs to the Special Issue Evolution, Diversity, and Conservation of Herpetofauna)
21 pages, 20138 KiB  
Article
Research on the Characteristic State of Rockfill Materials and the Evolution Mechanism at the Microscopic Scale
by Yunchao Cui, Lingkai Zhang, Chong Shi and Runhan Zhang
Appl. Sci. 2024, 14(11), 4353; https://doi.org/10.3390/app14114353 (registering DOI) - 21 May 2024
Abstract
In this study, the real particle morphology of rockfill materials is obtained through three-dimensional scanning technology, and flexible boundary conditions are established by coupling the discrete element method and the finite element method. Then, a large-scale three-axis numerical simulation test is carried out [...] Read more.
In this study, the real particle morphology of rockfill materials is obtained through three-dimensional scanning technology, and flexible boundary conditions are established by coupling the discrete element method and the finite element method. Then, a large-scale three-axis numerical simulation test is carried out on the rockfill materials to study the macroscopic mechanical properties and the change rule of the microscopic view of the rockfill materials in different characteristic states. The macroscopic results show that the stress–strain curves of the rockfill materials can be divided into softening and hardening curves. The phase transition, peak, and critical states of the softening-type curves show different mechanical properties, but no clear distinction between the characteristic state changes can be seen in the hardening-type curves. The microscopic results show that the displacement of the upper and lower parts of the flexible boundary of the softening curve increases with loading, and there is no obvious displacement in the middle part, but the middle particles undergo rotational deformation. An “X” shear band appears, and the strength of the force chain and the coordination number tend to increase first and then decrease. The flexible boundary displacements of the hardening-type curves are similar to those of the softening-type curves, but the central particles show a large number of cleavages instead of shear zones, and the force chain strength and coordination number levels show a continuous upward trend. Full article
Show Figures

Figure 1

16 pages, 921 KiB  
Review
Therapeutic Effects of Plant Anthocyanin against Alzheimer’s Disease and Modulate Gut Health, Short-Chain Fatty Acids
by Al Borhan Bayazid and Beong Ou Lim
Nutrients 2024, 16(11), 1554; https://doi.org/10.3390/nu16111554 (registering DOI) - 21 May 2024
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and neurogenerative disease (NDD), and it is also one of the leading causes of death worldwide. The number of AD patients is over 55 million according to 2020 Alzheimer’s Disease International (ADI), and [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia and neurogenerative disease (NDD), and it is also one of the leading causes of death worldwide. The number of AD patients is over 55 million according to 2020 Alzheimer’s Disease International (ADI), and the number is increasing drastically without any effective cure. In this review, we discuss and analyze the potential role of anthocyanins (ACNs) against AD while understanding the molecular mechanisms. ACNs have been reported as having neuroprotective effects by mitigating cognitive impairments, apoptotic markers, neuroinflammation, aberrant amyloidogenesis, and tauopathy. Taken together, ACNs could be an important therapeutic agent for combating or delaying the onset of AD. Full article
8 pages, 653 KiB  
Article
Role of CT in the Staging of Colorectal Tumors: A Preliminary Study on 10 Dogs
by Simone Perfetti, Martina Mugnai, Simonetta Citi, Laura Marconato, Armando Foglia, Silvia Sabattini, Nikolina Linta and Alessia Diana
Animals 2024, 14(11), 1521; https://doi.org/10.3390/ani14111521 (registering DOI) - 21 May 2024
Abstract
This study aimed to define the CT features of colorectal tumors in dogs and assess CT’s role in tumor staging. It was a retrospective, multicenter, descriptive study involving dogs with a cyto-histopathological diagnosis of colorectal tumors and high-quality pre- and post-contrast CT scans [...] Read more.
This study aimed to define the CT features of colorectal tumors in dogs and assess CT’s role in tumor staging. It was a retrospective, multicenter, descriptive study involving dogs with a cyto-histopathological diagnosis of colorectal tumors and high-quality pre- and post-contrast CT scans of the abdomen. CT successfully identified colorectal lesions in all cases, showing variations such as wall thickening, presence of masses, and luminal stenosis. It also detected lymph node involvement. Overall, this study helps us to understand the CT features of both epithelial and mesenchymal colorectal tumors, emphasizing CT’s importance in staging and surgical planning for affected dogs. Larger studies are needed to identify specific CT findings for different colorectal neoplasms. Full article
(This article belongs to the Section Veterinary Clinical Studies)
11 pages, 1161 KiB  
Article
Purpureocillium jiangxiense sp. nov.: Entomopathogenic Effects on Ostrinia furnacalis and Galleria mellonella
by Wei Chen, Yanhong Tang, Tongyi Liu, Hongwang Hu, Cuiyi Ou, Qiongbo Hu and Qunfang Weng
Microorganisms 2024, 12(6), 1041; https://doi.org/10.3390/microorganisms12061041 (registering DOI) - 21 May 2024
Abstract
The genus Purpureocillium is renowned for its role in biocontrol and biotechnological applications. The identification of new species within this genus is crucial for broadening our understanding of its ecological roles and potential utility in sustainable agriculture. This study aimed to characterize a [...] Read more.
The genus Purpureocillium is renowned for its role in biocontrol and biotechnological applications. The identification of new species within this genus is crucial for broadening our understanding of its ecological roles and potential utility in sustainable agriculture. This study aimed to characterize a new species of Purpureocillium, isolated from soil in eastern China, and to evaluate its bioactivity against Ostrinia furnacalis (corn moth) and Galleria mellonella (greater wax moth). We utilized morphological characterization; molecular phylogenetic analysis employing ITS, nrLSU, and tef1 genes; and bioactivity assays to identify and characterize the new species. The newly identified species, Purpureocillium jiangxiense sp. nov., displays unique morphological and genetic profiles compared to known species. Bioactivity tests showed that this species exhibits inhibitory effects against O. furnacalis and G. mellonella, highlighting its potential in biocontrol applications. By the ninth day at a spore concentration of 1 × 108 spores/mL, the mortality rate of the corn moth and greater wax moth reached 30% to 50% respectively. The discovery of P. jiangxiense sp. nov. adds to the genetic diversity known within this genus and offers a promising candidate for the development of natural biocontrol agents. It underscores the importance of continued biodiversity exploration and the potential for natural solutions in pest and disease management. Full article
(This article belongs to the Section Systems Microbiology)
16 pages, 4155 KiB  
Article
New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell Fe3O4-SA Nanoparticle Synthesis
by Adelina-Gabriela Niculescu, Oana Maria Munteanu (Mihaiescu), Alexandra Cătălina Bîrcă, Alina Moroșan, Bogdan Purcăreanu, Bogdan Ștefan Vasile, Daniela Istrati, Dan Eduard Mihaiescu, Tony Hadibarata and Alexandru Mihai Grumezescu
Nanomaterials 2024, 14(11), 902; https://doi.org/10.3390/nano14110902 (registering DOI) - 21 May 2024
Abstract
This study’s main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored [...] Read more.
This study’s main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of Fe3O4 cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate. Synthesis optimization was also performed, employing the variation in the reagents ratio to highlight the concentration domains in which magnetite is mainly produced, the formation of nanoparticles with different diameters and low polydispersity, and the stability of colloidal dispersions in water. The obtained materials were further characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM), with the experimental results confirming the production of salicylic acid-functionalized iron oxide (Fe3O4-SA) nanoparticles adapted for different further applications. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Nano-Biomaterials)
Show Figures

Figure 1

20 pages, 4462 KiB  
Review
Synthesis of Mesoporous Silica Using the Sol–Gel Approach: Adjusting Architecture and Composition for Novel Applications
by Yandong Han, Lin Zhang and Wensheng Yang
Nanomaterials 2024, 14(11), 903; https://doi.org/10.3390/nano14110903 (registering DOI) - 21 May 2024
Abstract
The sol–gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation [...] Read more.
The sol–gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol–gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol–gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol–gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture. Full article
Show Figures

Figure 1

25 pages, 1138 KiB  
Review
Complexation of REE in Hydrothermal Fluids and Its Significance on REE Mineralization
by Jian Di and Xing Ding
Minerals 2024, 14(6), 531; https://doi.org/10.3390/min14060531 (registering DOI) - 21 May 2024
Abstract
Rare earth elements (REEs) have recently been classified as critical and strategic metals due to their importance in modern society. Research on the geochemical behaviors and mineralization of REEs not only provides essential guidance for mineral exploration but also holds great significance in [...] Read more.
Rare earth elements (REEs) have recently been classified as critical and strategic metals due to their importance in modern society. Research on the geochemical behaviors and mineralization of REEs not only provides essential guidance for mineral exploration but also holds great significance in enhancing our understanding of Earth’s origin and evolution. This paper reviews recent research on the occurrence characteristics, deposit types, and hydrothermal behaviors of REEs, with a particular focus on comparing the complexation and transport of REEs by F, Cl, S, C, P, OH, and organic ligands in fluids. Due to the very weak hydrolysis of REE ions, they predominantly exist as either hydrated ions or free ions in low-temperature and acidic to weakly basic fluids. As the ligand activity increases, the general order of transporting REEs is Cl ≈ > F ≈ > > OH under acidic conditions or OH > ≈ Cl > F under alkaline conditions. In acidic to neutral hydrothermal systems, the transport of REEs is primarily dominated by and Cl ions while the deposition of REEs could be influenced by F, , and ions. In neutral to alkaline hydrothermal systems, REEs mainly exist in fluids as hydroxyl complexes or other ligand-bearing hydroxyl complexes. Additionally suggested are further comprehensive investigations that will fill significant gaps in our understanding of mechanisms governing the transport and enrichment of REEs in hydrothermal fluids. Full article
Show Figures

Graphical abstract

19 pages, 786 KiB  
Review
Role of Mesenchymal Stem/Stromal Cells (MSCs) and MSC-Derived Extracellular Vesicles (EVs) in Prevention of Telomere Length Shortening, Cellular Senescence, and Accelerated Biological Aging
by Myrna Y. Gonzalez Arellano, Matthew VanHeest, Sravya Emmadi, Amal Abdul-Hafez, Sherif Abdelfattah Ibrahim, Ranga P. Thiruvenkataramani, Rasha S. Teleb, Hady Omar, Tulasi Kesaraju, Tarek Mohamed, Burra V. Madhukar and Said A. Omar
Bioengineering 2024, 11(6), 524; https://doi.org/10.3390/bioengineering11060524 (registering DOI) - 21 May 2024
Abstract
Biological aging is defined as a progressive decline in tissue function that eventually results in cell death. Accelerated biologic aging results when the telomere length is shortened prematurely secondary to damage from biological or environmental stressors, leading to a defective reparative mechanism. Stem [...] Read more.
Biological aging is defined as a progressive decline in tissue function that eventually results in cell death. Accelerated biologic aging results when the telomere length is shortened prematurely secondary to damage from biological or environmental stressors, leading to a defective reparative mechanism. Stem cells therapy may have a potential role in influencing (counteract/ameliorate) biological aging and maintaining the function of the organism. Mesenchymal stem cells, also called mesenchymal stromal cells (MSCs) are multipotent stem cells of mesodermal origin that can differentiate into other types of cells, such as adipocytes, chondrocytes, and osteocytes. MSCs influence resident cells through the secretion of paracrine bioactive components such as cytokines and extracellular vesicles (EVs). This review examines the changes in telomere length, cellular senescence, and normal biological age, as well as the factors contributing to telomere shortening and accelerated biological aging. The role of MSCs—especially those derived from gestational tissues—in prevention of telomere shortening (TS) and accelerated biological aging is explored. In addition, the strategies to prevent MSC senescence and improve the antiaging therapeutic application of MSCs and MSC-derived EVs in influencing telomere length and cellular senescence are reviewed. Full article
Show Figures

Graphical abstract

22 pages, 1037 KiB  
Article
The Nexus between Green Transformational Leadership, Employee Behavior, and Organizational Support in the Hospitality Industry
by Ibrahim A. Elshaer, Alaa M. S. Azazz, Yahdih Semlali, Mahmoud A. Mansour, Mohammed N. Elziny and Sameh Fayyad
Adm. Sci. 2024, 14(6), 107; https://doi.org/10.3390/admsci14060107 (registering DOI) - 21 May 2024
Abstract
This research paper explores the relationship between green transformational leadership (GTL), employee green behavior (EGB), and the mediating role of green organizational support (GOS) in fostering environmentally friendly practices within organizations. Drawing upon Resource-Based View Theory (RBV) and social exchange theory, the study [...] Read more.
This research paper explores the relationship between green transformational leadership (GTL), employee green behavior (EGB), and the mediating role of green organizational support (GOS) in fostering environmentally friendly practices within organizations. Drawing upon Resource-Based View Theory (RBV) and social exchange theory, the study investigates how leaders’ behaviors and organizational support influence employees’ engagement in pro-environmental initiatives. Using a quantitative research approach, data were collected from a sample of 350 hotel employees through self-administered surveys. CB-SEM was employed to analyze the hypothesized relationships among the variables. The findings indicate a significant positive relationship between GTL and EGB, suggesting that leaders who demonstrate environmentally conscious behaviors and inspire their followers to embrace sustainability principles are more likely to foster green practices among employees. Furthermore, the study reveals that GOS mediates the relationship between GTL and EGB, highlighting the importance of organizational policies, resources, and initiatives in facilitating environmentally responsible actions. These results contribute to the existing literature by shedding light on the mechanisms through which leadership and organizational support can promote sustainability initiatives in the hotel industry. Practical implications for hotels include the importance of fostering a culture of environmental consciousness, providing training and resources to support green initiatives, and empowering leaders to exemplify and promote green behaviors among employees. Full article
(This article belongs to the Special Issue Leadership and Sustainability: Building a Better Future)
Show Figures

Figure 1

16 pages, 3791 KiB  
Article
The Intramolecular Charge Transfer Mechanism by Which Chiral Self-Assembled H8-BINOL Vesicles Enantioselectively Recognize Amino Alcohols
by Rong Wang, Kaiyue Song, Zhaoqin Wei, Yue Sun, Xiaoxia Sun and Yu Hu
Int. J. Mol. Sci. 2024, 25(11), 5606; https://doi.org/10.3390/ijms25115606 (registering DOI) - 21 May 2024
Abstract
The chiral H8-BINOL derivatives R-1 and R-2 were efficiently synthesized via a Suzuki coupling reaction, and they can be used as novel dialdehyde fluorescent probes for the enantioselective recognition of R/S-2-amino-1-phenylethanol. In addition, R-1 is much more effective than R-2. Scanning [...] Read more.
The chiral H8-BINOL derivatives R-1 and R-2 were efficiently synthesized via a Suzuki coupling reaction, and they can be used as novel dialdehyde fluorescent probes for the enantioselective recognition of R/S-2-amino-1-phenylethanol. In addition, R-1 is much more effective than R-2. Scanning electron microscope images and X-ray analyses show that R-1 can form supramolecular vesicles through the self-assembly effect of the π-π force and strong hydrogen bonding. As determined via analysis, the fluorescence of the probe was significantly enhanced by mixing a small amount of S-2-amino-1-phenylethanol into R-1, with a redshift of 38 nm, whereas no significant fluorescence response was observed in R-2-amino-1-phenylethanol. The enantioselective identification of S-2-amino-1-phenylethanol by the probe R-1 was further investigated through nuclear magnetic titration and fluorescence kinetic experiments and DFT calculations. The results showed that this mechanism was not only a simple reactive probe but also realized object recognition through an ICT mechanism. As the intramolecular hydrogen bond activated the carbonyl group on the probe R-1, the carbonyl carbon atom became positively charged. As a strong nucleophile, the amino group of S-2-amino-1-phenylethanol first transferred the amino electrons to a carbonyl carbocation, resulting in a significantly enhanced fluorescence of the probe R-1 and a 38 nm redshift. Similarly, S-2-amino-1-phenylethanol alone caused severe damage to the self-assembled vesicle structure of the probe molecule itself due to its spatial structure, which made R-1 highly enantioselective towards it. Full article
(This article belongs to the Special Issue Recent Advances in Luminescence: From Mechanisms to Applications)
20 pages, 1640 KiB  
Article
Biocompatibility and Corrosion Resistance of Si/ZrO2 Bioceramic Coating on AZ91D Using Electron Beam Physical Vapor Deposition (EB-PVD) for Advanced Biomedical Applications
by Arunkumar Thirugnanasambandam, Manoj Gupta and Rama Murugapandian
Metals 2024, 14(6), 607; https://doi.org/10.3390/met14060607 (registering DOI) - 21 May 2024
Abstract
Herein, ZrO2 and Si + ZrO2 composite coatings on AZ91D alloys are deposited at a constant voltage of 8 kV and 1 Å/s deposition rate using the electron beam physical vapor deposition (EBPVD) method. Further, the samples are examined for surface [...] Read more.
Herein, ZrO2 and Si + ZrO2 composite coatings on AZ91D alloys are deposited at a constant voltage of 8 kV and 1 Å/s deposition rate using the electron beam physical vapor deposition (EBPVD) method. Further, the samples are examined for surface morphology, phase analysis, adhesion, corrosion, and antibacterial properties, as per ASTM standards. The adhesion strength of the composite (Si + ZrO2) coating nominally dropped (9%) compared to the ZrO2 coating even when the coating thickness increased by 18%. However, the composite (Si + ZrO2) coating improved wettability because silanol promotes hydrogen bonding with water molecules, which elevates the surface energy of the silica and increases its hydrophilic nature. Further, increased wettability and surface roughness have the potential to improve cell adhesion and proliferation. The corrosion potential (Ecorr) values of the coated samples exhibited a positive shift in the potentiodynamic polarization curve, indicating a substantial increase in their corrosion resistance in the artificial blood plasma (ABP) electrolyte. Similarly, SEM images of both coated corroded samples are less affected in the ABP solution, indicating that the coating mitigated heavy cracks and micropores, protecting them from corrosion. The Si + ZrO2 coatings exhibited exceptional performance in preventing bacterial infiltration by Staphylococcus aureus, thus inhibiting the subsequent formation of biofilms. In addition, these coatings demonstrate improved vitality among fibroblast cells, enabling better cellular spreading and proliferation. Full article
16 pages, 559 KiB  
Article
Sustainable Financing for Renewable Energy: Examining the Impact of Sectoral Economy on Renewable Energy Consumption
by Edosa Getachew, Zoltan Lakner, Goshu Desalegn, Anita Tangl and Anita Boros
Economies 2024, 12(6), 127; https://doi.org/10.3390/economies12060127 (registering DOI) - 21 May 2024
Abstract
This study examines the effect of international financial flows, including investments and development assistance, on the expansion of renewable energy technologies. It also seeks to investigate the impact of the sectoral economy on the proportion of renewable energy consumption in Ethiopia. This study [...] Read more.
This study examines the effect of international financial flows, including investments and development assistance, on the expansion of renewable energy technologies. It also seeks to investigate the impact of the sectoral economy on the proportion of renewable energy consumption in Ethiopia. This study used an explanatory research design and a quantitative research approach. An autoregressive distributed lag model was applied to explore the long and short-term relationship among variables. A time series of data aggregated and disaggregated ranging from 2000 to 2022 was used. According to this study, sustainable finance programs are essential for advancing and aiding renewable energy projects in the long and short term. Ethiopia’s use of renewable energy will increase as sustainable finance rises. The main economic sectors determining Ethiopia’s consumption of renewable energy in the long and short term include the manufacturing, mining and service industries. This study’s findings imply that policies focusing on providing continuous financial support and fostering international cooperation to promote the development of the manufacturing sector are needed. This could include incentives for adopting renewable energy technologies and investing in renewable energy infrastructure. On the other hand, since the service and mining industries negatively impact renewable energy use, there is a need to diversify renewable energy sources beyond these sectors. This could involve promoting renewable energy projects in other sectors, such as manufacturing, agriculture, construction and trade. Based on the findings of this study, it is suggested that policymakers carefully consider the consequences within each economic sector when formulating decisions related to renewable energy. This study is novel in presenting empirical evidence linking renewable energy use to long- and short-term economic growth. Full article
18 pages, 7913 KiB  
Article
Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates
by Thenmozhi Rajarathinam, Sivaguru Jayaraman, Jaeheon Seol, Jaewon Lee and Seung-Cheol Chang
Biosensors 2024, 14(6), 262; https://doi.org/10.3390/bios14060262 (registering DOI) - 21 May 2024
Abstract
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), [...] Read more.
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), a prevalent catecholamine neurotransmitter in the human brain, is associated with central nervous system activities and directly promotes neuronal communication. For the sensitive and selective estimation of DA, an enzyme-free amperometric sensor based on polyaniline-doped multi-walled carbon nanotubes (PANI-MWCNTs) drop-coated disposable screen-printed carbon electrodes (SPCEs) was fabricated. This PANI-MWCNTs-2/SPCE sensor boasts exceptional accuracy and sensitivity when working directly with ex vivo mouse brain homogenates. The sensor exhibited a detection limit of 0.05 μM (S/N = 3), and a wide linear range from 1.0 to 200 μM. The sensor’s high selectivity to DA amidst other endogenous interferents was recognized. Since the constructed sensor is enzyme-free yet biocompatible, it exhibited high stability in DA detection using ex vivo mouse brain homogenates extracted from both Parkinson’s disease and control mice models. This research thus presents new insights into understanding DA release dynamics at the tissue level in both of these models. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

10 pages, 369 KiB  
Review
Biomarkers and Signaling Pathways Implicated in the Pathogenesis of Idiopathic Multicentric Castleman Disease/Thrombocytopenia, Anasarca, Fever, Reticulin Fibrosis, Renal Insufficiency, and Organomegaly (TAFRO) Syndrome
by Remi Sumiyoshi, Tomohiro Koga and Atsushi Kawakami
Biomedicines 2024, 12(6), 1141; https://doi.org/10.3390/biomedicines12061141 (registering DOI) - 21 May 2024
Abstract
Idiopathic multicentric Castleman disease (iMCD) and TAFRO syndrome present a variety of symptoms thought to be caused by excessive inflammatory cytokines and chemokines, but the underlying mechanisms are unknown. iMCD is broadly classified into two types: iMCD-NOS and iMCD-TAFRO, which have distinct laboratory [...] Read more.
Idiopathic multicentric Castleman disease (iMCD) and TAFRO syndrome present a variety of symptoms thought to be caused by excessive inflammatory cytokines and chemokines, but the underlying mechanisms are unknown. iMCD is broadly classified into two types: iMCD-NOS and iMCD-TAFRO, which have distinct laboratory findings, pathological features, and responses to treatments. It is thought that iMCD-NOS, particularly the IPL type, responds favorably to IL-6 inhibitors due to its IL-6-centric profile. iMCD-TAFRO frequently progresses acutely and seriously, similar to TAFRO syndrome. Elevated levels of cytokines, including IL-1β, TNF-α, IL-10, and IL-23, as well as chemokines like CXCL13 and CXCL-10 (especially in iMCD-TAFRO), SAA, and VEGF, have been linked to the disease’s pathology. Recent research has identified key signaling pathways including PI3K/Akt/mTOR and JAK-STAT3, as well as those regulated by type I IFN, as crucial in iMCD-TAFRO. These results suggest that dominant pathways may vary between subtypes. Further research into the peripheral blood and lymph nodes is required to determine the disease spectrum of iMCD-NOS/iMCD-TAFRO/TAFRO syndrome. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

10 pages, 420 KiB  
Article
The Freehand Technique: The Ability of the Human Eye to Identify Implant Sites on the Patient
by Enzo Cumbo, Giuseppe Gallina, Pietro Messina, Luigi Caradonna and Giuseppe Alessandro Scardina
Prosthesis 2024, 6(3), 551-560; https://doi.org/10.3390/prosthesis6030039 (registering DOI) - 21 May 2024
Abstract
In implantology, among the key choices, to obtain predictable results, it is essential to establish, using cone beam computed tomography (CBCT), the bone site and where to insert the implants; during the surgical phase, these sites must be identified on the oral mucosa. [...] Read more.
In implantology, among the key choices, to obtain predictable results, it is essential to establish, using cone beam computed tomography (CBCT), the bone site and where to insert the implants; during the surgical phase, these sites must be identified on the oral mucosa. Surgical templates are a valid aid, especially in complex cases which require the insertion of more than three or four implants. In cases of a single implant, on the other hand, surgical guides are rarely used, and the implant is often inserted freehand; therefore, the identification of the implant site on the oral mucosa (after choosing the location on the CBCT) is more difficult. For this reason, the clinician uses the teeth in the arch as a reference. This study evaluates the ability of the human eye to identify, on the oral mucosa, where the implant collars will be positioned, the position of which has previously been chosen on the CBCT, in cases where the hands-free surgical technique (without surgical guides) is used. The verification of this precision is carried out using particular thermo-printed templates which contain radiopaque metal spheres. The results show that, in the freehand technique, it is difficult to precisely identify the implant sites (chosen via X-ray) on the mucosa, especially when they are far from natural teeth adjacent to the edentulous area. In case of monoedentulism, the freehand implant technique seems to be applicable by expert implantologists with a reduced risk of error; in fact, clinical experience helps to find the correct correspondence between the implant site chosen on the CBCT and its identification on the mucosa. The level of experience is fundamental in the clinician’s decision about whether or not to use surgical guides; in fact, doctors with little experience should use surgical guides even in the simplest cases to reduce the risk of error. Full article
11 pages, 1229 KiB  
Systematic Review
The Risk of Aircraft-Acquired SARS-CoV-2 Transmission during Commercial Flights: A Systematic Review
by Diana Zhao, Stephanie Cheng, Fuchiang R. Tsui, Maya B. Mathur and Chih-Hung Jason Wang
Int. J. Environ. Res. Public Health 2024, 21(6), 654; https://doi.org/10.3390/ijerph21060654 (registering DOI) - 21 May 2024
Abstract
The aircraft-acquired transmission of SARS-CoV-2 poses a public health risk. Following PRISMA guidelines, we conducted a systematic review and analysis of articles, published prior to vaccines being available, from 24 January 2020 to 20 April 2021 to identify factors important for transmission. Articles [...] Read more.
The aircraft-acquired transmission of SARS-CoV-2 poses a public health risk. Following PRISMA guidelines, we conducted a systematic review and analysis of articles, published prior to vaccines being available, from 24 January 2020 to 20 April 2021 to identify factors important for transmission. Articles were included if they mentioned index cases and identifiable flight duration, and excluded if they discussed non-commercial aircraft, airflow or transmission models, cases without flight data, or that were unable to determine in-flight transmission. From the 15 articles selected for in-depth review, 50 total flights were analyzed by flight duration both as a categorical variable—short (<3 h), medium (3–6 h), or long flights (>6 h)—and as a continuous variable with case counts modeled by negative binomial regression. Compared to short flights without masking, medium and long flights without masking were associated with 4.66-fold increase (95% CI: [1.01, 21.52]; p < 0.0001) and 25.93-fold increase in incidence rates (95% CI: [4.1, 164]; p < 0.0001), respectively; long flights with enforced masking had no transmission reported. A 1 h increase in flight duration was associated with 1.53-fold (95% CI: [1.19, 1.66]; p < 0.001) increase in the incidence rate ratio (IRR) of cases. Masking should be considered for long flights. Full article
Show Figures

Figure 1

23 pages, 3700 KiB  
Review
Exploring Port–City Relationships: A Bibliometric and Content Analysis
by Melika Zarei, Mojtaba Arasteh and Sina Shahab
Sustainability 2024, 16(11), 4341; https://doi.org/10.3390/su16114341 (registering DOI) - 21 May 2024
Abstract
Planning for port development presents a complex challenge. Along with fostering cooperation and economic synergies, port development also necessitates careful balancing with existing city functions. Previous research on port–city relationships (PCRs) has yielded valuable insights, but a comprehensive systematic and bibliometric review to [...] Read more.
Planning for port development presents a complex challenge. Along with fostering cooperation and economic synergies, port development also necessitates careful balancing with existing city functions. Previous research on port–city relationships (PCRs) has yielded valuable insights, but a comprehensive systematic and bibliometric review to identify future research directions is lacking. Moreover, existing research in this field has not addressed the need for a comprehensive classification of content, methods, and driving forces. This study addresses these gaps by analyzing 113 academic articles published on PCRs between 2000 and 2023. Using a bibliometric approach, this study leverages the JavaScript programming language, VOSviewer 1.6.20 software, and the Scopus database. This paper aims to identify key research areas and influential studies within the field of PCRs. This analysis reveals emerging research topics and themes within PCRs. Additionally, it depicts which research countries, journals, and keywords are the most prominent with regard to this field, outlining the relationships between them. This study’s findings provide valuable insights into the current state of PCR research, including geographical distribution, publication trends, methodological approaches, and key research variables. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop