The 2023 MDPI Annual Report has
been released!
 
17 pages, 1103 KiB  
Article
Developing a Tool for Assessing the Process of Seeking Health Information: Online Think-Aloud Method
by Asim Alhejaili, Heather Wharrad and Richard Windle
Healthcare 2024, 12(10), 1039; https://doi.org/10.3390/healthcare12101039 (registering DOI) - 17 May 2024
Abstract
Nursing students can access massive amounts of online health data to drive cutting-edge evidence-based practice in clinical placement, to bridge the theory–practice gap. This activity requires investigation to identify the strategies nursing students apply to evaluate online health information. Online Think-Aloud sessions enabled [...] Read more.
Nursing students can access massive amounts of online health data to drive cutting-edge evidence-based practice in clinical placement, to bridge the theory–practice gap. This activity requires investigation to identify the strategies nursing students apply to evaluate online health information. Online Think-Aloud sessions enabled 14 participants to express their cognitive processes in navigating various educational resources, including online journals and databases, and determining the reliability of sources, indicating their strategies for information-seeking, which helped to create this scoring system. Easy access and user convenience were clearly the instrumental factors in this behavior, which has troubling implications for the lack of use of higher-quality resources (e.g., from peer-reviewed academic journals). The identified challenges encountered during resource access included limited skills in the critical evaluation of information credibility and reliability, signaling a requirement for improved information literacy skills. Participants acknowledged the importance of evidence-based, high-quality information, but faced numerous barriers, such as restricted access to professional and specialty databases, and a lack of academic skills training. This paper develops and critiques a Performative Tool for assessing the process of seeking health information using an online Think-Aloud method, and explores factors and strategies contributing to evidence-based health information access and utilization in clinical practice, aiming to provide insight into individuals’ information-seeking behaviors in online health contexts. Full article
Show Figures

Figure 1

29 pages, 5510 KiB  
Article
Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau
by Shizhen Zhu, Ling Qian, Xueqian Ma, Yujun Qiu, Jing Yang, Xin He, Junjun Li, Lei Zhu, Jing Gong and Chunsong Lu
Remote Sens. 2024, 16(10), 1781; https://doi.org/10.3390/rs16101781 (registering DOI) - 17 May 2024
Abstract
Using CloudSat/CALIPSO satellite data and ERA5 reanalysis data from 2006 to 2010, the effects of aerosols on ice- and mixed-phase, single-layer, non-precipitating clouds over the Tibetan Plateau during nighttime in the MAM (March to May), JJA (June to August), SON (September to November), [...] Read more.
Using CloudSat/CALIPSO satellite data and ERA5 reanalysis data from 2006 to 2010, the effects of aerosols on ice- and mixed-phase, single-layer, non-precipitating clouds over the Tibetan Plateau during nighttime in the MAM (March to May), JJA (June to August), SON (September to November), and DJF (December to February) seasons were examined. The results indicated the following: (1) The macrophysical and microphysical characteristics of ice- and mixed-phase clouds exhibit a nonlinear trend with increasing aerosol optical depth (AOD). When the logarithm of AOD (lnAOD) was ≤−4.0, with increasing AOD during MAM and JJA nights, the cloud thickness and ice particle effective radius of ice-phase clouds and mixed-phase clouds, the ice water path and ice particle number concentration of ice-phase clouds, and the liquid water path and cloud fraction of mixed-phase clouds all decreased; during SON and DJF nights, the cloud thickness of ice-phase clouds, cloud top height, liquid droplet number concentration, and liquid water path of mixed-phase clouds all decreased. When the lnAOD was > −4.0, with increasing AOD during MAM and JJA nights, the cloud top height, cloud base height, cloud fraction, and ice particle number concentration of ice-phase clouds, and the ice water path of mixed-phase clouds all increased; during SON and DJF nights, the cloud fraction of mixed-phase clouds and the ice water path of ice-phase clouds all increased. (2) Under the condition of excluding meteorological factors, including the U-component of wind, V-component of wind, pressure vertical velocity, temperature, and relative humidity at the atmospheric pressure heights near the average cloud top height, within the cloud, and the average cloud base height, as well as precipitable water vapor, convective available potential energy, and surface pressure. During MAM and JJA nights. When the lnAOD was ≤ −4.0, an increase in aerosols may have led to a decrease in the thickness of ice and mixed-phase cloud layers, as well as a reduction in cloud water path values. In contrast, when the lnAOD was > −4.0, an increase in aerosols may contribute to elevated cloud base and cloud top heights for ice-phase clouds. During SON and DJF nights, changes in various cloud characteristics may be influenced by both aerosols and meteorological factors. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosols, Planetary Boundary Layer, and Clouds)
Show Figures

Graphical abstract

17 pages, 2021 KiB  
Article
Design and Characterisation of a Read-Out System for Wireless Monitoring of a Novel Implantable Sensor for Abdominal Aortic Aneurysm Monitoring
by Nuno P. Silva, Adnan Elahi, Eoghan Dunne, Martin O’Halloran and Bilal Amin
Sensors 2024, 24(10), 3195; https://doi.org/10.3390/s24103195 (registering DOI) - 17 May 2024
Abstract
Abdominal aortic aneurysm (AAA) is a dilation of the aorta artery larger than its normal diameter (>3 cm). Endovascular aneurysm repair (EVAR) is a minimally invasive treatment option that involves the placement of a graft in the aneurysmal portion of the aorta artery. [...] Read more.
Abdominal aortic aneurysm (AAA) is a dilation of the aorta artery larger than its normal diameter (>3 cm). Endovascular aneurysm repair (EVAR) is a minimally invasive treatment option that involves the placement of a graft in the aneurysmal portion of the aorta artery. This treatment requires multiple follow-ups with medical imaging, which is expensive, time-consuming, and resource-demanding for healthcare systems. An alternative solution is the use of wireless implantable sensors (WIMSs) to monitor the growth of the aneurysm. A WIMS capable of monitoring aneurysm size longitudinally could serve as an alternative monitoring approach for post-EVAR patients. This study has developed and characterised a three-coil inductive read-out system to detect variations in the resonance frequency of the novel Z-shaped WIMS implanted within the AAA sac. Specifically, the spacing between the transmitter and the repeater inductors was optimised to maximise the detection of the sensor by the transmitter inductor. Moreover, an experimental evaluation was also performed for different orientations of the transmitter coil with reference to the WIMS. Finally, the FDA-approved material nitinol was used to develop the WIMS, the transmitter, and repeater inductors as a proof of concept for further studies. The findings of the characterisation from the air medium suggest that the read-out system can detect the WIMS up to 5 cm, regardless of the orientation of the Z-shape WIMS, with the detection range increasing as the orientation approaches 0°. This study provides sufficient evidence that the proposed WIMS and the read-out system can be used for AAA expansion over time. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

13 pages, 1255 KiB  
Article
Snapshot of Anti-SARS-CoV-2 IgG Antibodies in COVID-19 Recovered Patients in Guinea
by Solène Grayo, Houlou Sagno, Oumar Diassy, Jean-Baptiste Zogbelemou, Sia Jeanne Kondabo, Marilyn Houndekon, Koussay Dellagi, Inès Vigan-Womas, Samia Rourou, Wafa Ben Hamouda, Chaouki Benabdessalem, Melika Ben Ahmed and Noël Tordo
J. Clin. Med. 2024, 13(10), 2965; https://doi.org/10.3390/jcm13102965 (registering DOI) - 17 May 2024
Abstract
Background: Because the regular vaccine campaign started in Guinea one year after the COVID-19 index case, the profile of naturally acquired immunity following primary SARS-CoV-2 infection needs to be deepened. Methods: Blood samples were collected once from 200 patients (90% of African [...] Read more.
Background: Because the regular vaccine campaign started in Guinea one year after the COVID-19 index case, the profile of naturally acquired immunity following primary SARS-CoV-2 infection needs to be deepened. Methods: Blood samples were collected once from 200 patients (90% of African extraction) who were recovered from COVID-19 for at least ~2.4 months (72 days), and their sera were tested for IgG antibodies to SARS-CoV-2 using an in-house ELISA assay against the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike1 protein (RBD/S1-IH kit). Results: Results revealed that 73% of sera (146/200) were positive for IgG to SARS-CoV-2 with an Optical Density (OD) ranging from 0.13 to 1.19 and a median value of 0.56 (IC95: 0.51–0.61). The median OD value at 3 months (1.040) suddenly decreased thereafter and remained stable around OD 0.5 until 15 months post-infection. The OD median value was slightly higher in males compared to females (0.62 vs. 0.49), but the difference was not statistically significant (p-value: 0.073). In contrast, the OD median value was significantly higher among the 60–100 age group (0.87) compared to other groups, with a noteworthy odds ratio compared to the 0–20 age group (OR: 9.69, p-value: 0.044*). Results from the RBD/S1-IH ELISA kit demonstrated superior concordance with the whole spike1 protein ELISA commercial kit compared to a nucleoprotein ELISA commercial kit. Furthermore, anti-spike1 protein ELISAs (whole spike1 and RBD/S1) revealed higher seropositivity rates. Conclusions: These findings underscore the necessity for additional insights into naturally acquired immunity against COVID-19 and emphasize the relevance of specific ELISA kits for accurate seropositivity rates. Full article
Show Figures

Figure 1

26 pages, 1211 KiB  
Article
A Multiphysics Thermoelastoviscoplastic Damage Internal State Variable Constitutive Model including Magnetism
by M. Malki, M. F. Horstemeyer, H. E. Cho, L. A. Peterson, D. Dickel, L. Capolungo and M. I. Baskes
Materials 2024, 17(10), 2412; https://doi.org/10.3390/ma17102412 (registering DOI) - 17 May 2024
Abstract
We present a macroscale constitutive model that couples magnetism with thermal, elastic, plastic, and damage effects in an Internal State Variable (ISV) theory. Previous constitutive models did not include an interdependence between the internal magnetic (magnetostriction and magnetic flux) and mechanical fields. Although [...] Read more.
We present a macroscale constitutive model that couples magnetism with thermal, elastic, plastic, and damage effects in an Internal State Variable (ISV) theory. Previous constitutive models did not include an interdependence between the internal magnetic (magnetostriction and magnetic flux) and mechanical fields. Although constitutive models explaining the mechanisms behind mechanical deformations caused by magnetization changes have been presented in the literature, they mainly focus on nanoscale structure–property relations. A fully coupled multiphysics macroscale ISV model presented herein admits lower length scale information from the nanoscale and microscale descriptions of the multiphysics behavior, thus capturing the effects of magnetic field forces with isotropic and anisotropic magnetization terms and moments under thermomechanical deformations. For the first time, this ISV modeling framework internally coheres to the kinematic, thermodynamic, and kinetic relationships of deformation using the evolving ISV histories. For the kinematics, a multiplicative decomposition of deformation gradient is employed including a magnetization term; hence, the Jacobian represents the conservation of mass and conservation of momentum including magnetism. The first and second laws of thermodynamics are used to constrain the appropriate constitutive relations through the Clausius–Duhem inequality. The kinetic framework employs a stress–strain relationship with a flow rule that couples the thermal, mechanical, and magnetic terms. Experimental data from the literature for three different materials (iron, nickel, and cobalt) are used to compare with the model’s results showing good correlations. Full article
26 pages, 2111 KiB  
Review
Exploring the Synergy of Artificial Intelligence in Energy Storage Systems for Electric Vehicles
by Seyed Mahdi Miraftabzadeh, Michela Longo, Andrea Di Martino, Alessandro Saldarini and Roberto Sebastiano Faranda
Electronics 2024, 13(10), 1973; https://doi.org/10.3390/electronics13101973 (registering DOI) - 17 May 2024
Abstract
The integration of Artificial Intelligence (AI) in Energy Storage Systems (ESS) for Electric Vehicles (EVs) has emerged as a pivotal solution to address the challenges of energy efficiency, battery degradation, and optimal power management. The capability of such systems to differ from theoretical [...] Read more.
The integration of Artificial Intelligence (AI) in Energy Storage Systems (ESS) for Electric Vehicles (EVs) has emerged as a pivotal solution to address the challenges of energy efficiency, battery degradation, and optimal power management. The capability of such systems to differ from theoretical modeling enhances their applicability across various domains. The vast amount of data available today has enabled AI to be trained and to predict the behavior of complex systems with a high degree of accuracy. As we move towards a more sustainable future, the electrification of vehicles and integrating electric systems for energy storage are becoming increasingly important and need to be addressed. The synergy of AI and ESS enhances the overall efficiency of electric vehicles and plays a crucial role in shaping a sustainable and intelligent energy ecosystem. To the best of the authors’ knowledge, AI applications in energy storage systems for the integration of electric vehicles have not been explicitly reviewed. The research investigates the importance of AI advancements in energy storage systems for electric vehicles, specifically focusing on Battery Management Systems (BMS), Power Quality (PQ) issues, predicting battery State-of-Charge (SOC) and State-of-Health (SOH), and exploring the potential for integrating Renewable Energy Sources with EV charging needs and optimizing charging cycles. This study examined all topics to identify the most commonly used methods, which were analyzed based on their characteristics and potential. Future trends were identified by exploring emerging techniques introduced in recent literature contributions published since 2017. Full article
(This article belongs to the Special Issue Advanced Energy Supply and Storage Systems for Electric Vehicles)
10 pages, 2733 KiB  
Article
Use of the Adaptive Cross Approximation for the Efficient Computation of the Reduced Matrix with the Characteristic Basis Function Method
by Eliseo García, Carlos Delgado and Felipe Cátedra
Mathematics 2024, 12(10), 1565; https://doi.org/10.3390/math12101565 (registering DOI) - 17 May 2024
Abstract
A technique for the reduction in the CPU-time in the analysis of electromagnetic problems using the Characteristic Basis Function Method (CBFM) is presented here, allowing for analysis of electrically large cases where an iterative solution process cannot be avoided. This technique is based [...] Read more.
A technique for the reduction in the CPU-time in the analysis of electromagnetic problems using the Characteristic Basis Function Method (CBFM) is presented here, allowing for analysis of electrically large cases where an iterative solution process cannot be avoided. This technique is based on the use of the Adaptive Cross Approximation (ACA) for the fast computation of the coupling matrix between CBFs belonging to adjacent blocks, as well as the Multilevel Fast Multipole Method (MLFMM) for the computation of matrix−vector products in the solution of the full system. This combination allows for a noticeable reduction in the computational resources during the analysis of electrically large and complex scenarios while maintaining a very good degree of accuracy. A number of test cases serve to validate the presented approach in terms of accuracy, memory and CPU-time compared with conventional techniques. Full article
(This article belongs to the Special Issue Mathematical Applications in Electrical Engineering)
Show Figures

Figure 1

17 pages, 6833 KiB  
Data Descriptor
Continuous Wave Measurements Collected in Intermediate Depth throughout the North Sea Storm Season during the RealDune/REFLEX Experiments
by Jantien Rutten, Marion Tissier, Paul van Wiechen, Xinyi Zhang, Sierd de Vries, Ad Reniers and Jan-Willem Mol
Data 2024, 9(5), 70; https://doi.org/10.3390/data9050070 (registering DOI) - 17 May 2024
Abstract
High-resolution wave measurements at intermediate water depth are required to improve coastal impact modeling. Specifically, such data sets are desired to calibrate and validate models, and broaden the insight on the boundary conditions that force models. Here, we present a wave data set [...] Read more.
High-resolution wave measurements at intermediate water depth are required to improve coastal impact modeling. Specifically, such data sets are desired to calibrate and validate models, and broaden the insight on the boundary conditions that force models. Here, we present a wave data set collected in the North Sea at three stations in intermediate water depth (6–14 m) during the 2021/2022 storm season as part of the RealDune/REFLEX experiments. Continuous measurements of synchronized surface elevation, velocity and pressure were recorded at 2–4 Hz by Acoustic Doppler Profilers and an Acoustic Doppler Velocimeter for a 5-month duration. Time series were quality-controlled, directional-frequency energy spectra were calculated and common bulk parameters were derived. Measured wave conditions vary from calm to energetic with 0.1–5.0 m sea-swell wave height, 5–16 s mean wave period and W-NNW direction. Nine storms, i.e., wave height beyond 2.5 m for at least six hours, were recorded including the triple storms Dudley, Eunice and Franklin. This unique data set can be used to investigate wave transformation, wave nonlinearity and wave directionality for higher and lower frequencies (e.g., sea-swell and infragravity waves) to compare with theoretical and empirical descriptions. Furthermore, the data can serve to force, calibrate and validate models during storm conditions. Full article
Show Figures

Figure 1

22 pages, 33285 KiB  
Article
Rising Damp Treatment in Historical Buildings by Electro-Osmosis: A Case Study
by Aliihsan Koca, Mehmet Nurettin Uğural and Ergün Yaman
Buildings 2024, 14(5), 1460; https://doi.org/10.3390/buildings14051460 (registering DOI) - 17 May 2024
Abstract
Throughout the past century, numerous technologies have been suggested to deal with the capillary rise of water through the soil in historic masonry buildings. The aim of this study was to examine the effectiveness of capillary moisture repulsion apparatus that uses the electro-osmosis [...] Read more.
Throughout the past century, numerous technologies have been suggested to deal with the capillary rise of water through the soil in historic masonry buildings. The aim of this study was to examine the effectiveness of capillary moisture repulsion apparatus that uses the electro-osmosis approach over a prolonged period of time. The Gül mosque was selected as a sample historical building affected by structural problems caused by the absorption of water through small channels on its walls due to capillary action. The moisture repulsion mechanism efficiently decreased the moisture level in the walls from a ‘wet’ state to a ‘dry’ state in roughly 9 months. After the installation of the equipment, the water mass ratio of the building decreased from 14.48% to 2.90%. It was determined that the majority of the water in the building was relocated during the initial measurement period. Furthermore, it inhibited the absorption of water by capillary action by protecting the construction elements that were in contact with the wet ground. Lastly, capillary water repulsion coefficients (C) for various measurement durations and time factors were proposed. The average value of C was calculated to be 0.152 kg/m2 s0.5 by measuring the point at which the water repulsion remained nearly constant. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 13210 KiB  
Article
Design of Digital Twin Cutting Experiment System for Shearer
by Bing Miao, Yunwang Li and Yinan Guo
Sensors 2024, 24(10), 3194; https://doi.org/10.3390/s24103194 (registering DOI) - 17 May 2024
Abstract
This study presents an advanced simulated shearer machine cutting experiment system enhanced with digital twin technology. Central to this system is a simulated shearer drum, designed based on similarity theory to accurately mirror the operational dynamics of actual mining cutters. The setup incorporates [...] Read more.
This study presents an advanced simulated shearer machine cutting experiment system enhanced with digital twin technology. Central to this system is a simulated shearer drum, designed based on similarity theory to accurately mirror the operational dynamics of actual mining cutters. The setup incorporates a modified machining center equipped with sophisticated sensors that monitor various parameters such as cutting states, forces, torque, vibration, temperature, and sound. These sensors are crucial for precisely simulating the shearer cutting actions. The integration of digital twin technology is pivotal, featuring a real-time data management layer, a dynamic simulation mechanism model layer, and an application service layer that facilitates virtual experiments and algorithm refinement. This multifaceted approach allows for in-depth analysis of simulated coal cutting, utilizing sensor data to comprehensively evaluate the shearer’s performance. The study also includes tests on simulated coal samples. The system effectively conducts experiments and captures cutting condition signals via the sensors. Through time domain analysis of these signals, gathered while cutting materials of varying strengths, it is determined that the cutting force signal characteristics are particularly distinct. By isolating the cutting force signal as a key feature, the system can effectively distinguish between different cutting modes. This capability provides a robust experimental basis for coal rock identification research, offering significant insights into the nuances of shearer operation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 1287 KiB  
Article
The Model of Sustainability Balanced Scorecard and Supply Chain in Port Management for Tourism
by Krongthong Heebkhoksung
Economies 2024, 12(5), 123; https://doi.org/10.3390/economies12050123 (registering DOI) - 17 May 2024
Abstract
The development of ports for the sake of tourism is one of the key strategies in developing and strengthening a solid foundation in the tourism industry. The integration of a supply chain into port management for the purposes of tourism that is sustainable [...] Read more.
The development of ports for the sake of tourism is one of the key strategies in developing and strengthening a solid foundation in the tourism industry. The integration of a supply chain into port management for the purposes of tourism that is sustainable balanced can be used as a model for planning sustainable port development for tourism purposes. However, there are scarcely any studies on this topic, while plenty focus on the general concepts involved. To fill this gap, this article presents a model of a Sustainability Balanced Scorecard for ports. The author proposes a new approach to planning port development and supply chain management for tourism, particularity to provide recommendations and further our understandings of the relationships involved in the Sustainable Balanced Scorecard from the stakeholder perspective, the learning and growth perspective, the internal process perspective, the financial perspective and the environmental perspective. Using these five perspectives, the literature review identifies 56 indicators of 15 factors that can be used in the model. Therefore, this research helps to enhance and develop sustainable and efficient conditions in tourism while reducing future risks. Moreover, the research enables stakeholders to gain an understanding of and knowledge about the sustainable development and management of ports and for tourism. The insights can be applied in policy and strategy development according to the sustainable development goals (SDGs) to accommodate social movement, environmental risk and economic inequality. Full article
Show Figures

Figure 1

19 pages, 4074 KiB  
Article
MEF2C Directly Interacts with Pre-miRNAs and Distinct RNPs to Post-Transcriptionally Regulate miR-23a-miR-27a-miR-24-2 microRNA Cluster Member Expression
by Estefanía Lozano-Velasco, Carlos Garcia-Padilla, Miguel Carmona-Garcia, Alba Gonzalez-Diaz, Angela Arequipa-Rendon, Amelia E. Aranega and Diego Franco
Non-Coding RNA 2024, 10(3), 32; https://doi.org/10.3390/ncrna10030032 (registering DOI) - 17 May 2024
Abstract
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer [...] Read more.
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer of complexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting both transcriptional and post-transcriptional regulation. microRNAs represent the most studied and abundantly expressed subtype of small non-coding RNAs, and their functional roles have been widely documented. On the other hand, our knowledge of the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA expression is still incipient. We recently demonstrated that MEF2C is able to transactivate the long, but not short, regulatory element upstream of the miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression and silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster members without affecting pri-miRNA expression levels, thus supporting additional MEF2C-driven regulatory mechanisms. Within this study, we demonstrated a complex post-transcriptional regulatory mechanism directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members, distinctly involving different domains of the MEF2C transcription factor and the physical interaction with pre-miRNAs and Ksrp, HnRNPa3 and Ddx17 transcripts. Full article
Show Figures

Figure 1

18 pages, 1628 KiB  
Article
Comparative Study of the Stilbenes and Other Phenolic Compounds in Cabernet Sauvignon Wines Obtained from Two Different Vinifications: Traditional and Co-Inoculation
by Aleksandar Petrović, Nikolina Živković, Ljilja Torović, Ana Bukarica, Vladan Nikolić, Jelena Cvejić and Ljiljana Gojković-Bukarica
Processes 2024, 12(5), 1020; https://doi.org/10.3390/pr12051020 (registering DOI) - 17 May 2024
Abstract
From grape cultivation to ripening and harvest timing to processing, each step of the winemaking process can be a critical point when it comes to wine quality and phenolic composition. In this study, the influence of winemaking technology on resveratrol and quercetin content, [...] Read more.
From grape cultivation to ripening and harvest timing to processing, each step of the winemaking process can be a critical point when it comes to wine quality and phenolic composition. In this study, the influence of winemaking technology on resveratrol and quercetin content, as well as other polyphenolic compounds, was investigated. Resveratrol is a non-flavonoid polyphenolic stilbene synthesized by grape skin when damaged by infectious diseases or ionizing radiation. Quercetin is a phenol found in grape skins and stems and is produced to protect grapes from UV light damage. Trans-resveratrol and quercetin are known to act as antioxidants, reduce the risk of atherosclerosis and type 2 diabetes, inhibit the growth of cancer cells, and prevent the release of allergic and inflammatory molecules. However, the question was whether red wine could be enriched with these phenols using a co-inoculation winemaking technology. The main new idea was to completely replace the cold maceration process with maceration with the addition of wild yeast (Torulaspora delbrueckii, Td). Maceration with the addition of wild yeast (Td) offers the following advantages over traditional cold maceration: (1) higher concentrations of trans-resveratrol (>35–40%) and quercetin (>35–40%) in the final wine, (2) the new wine has a higher potential for human health, (3) the wine has better aroma and stability due to the higher mannoprotein content, and (4) better energy efficiency in the production process. The study of stability during storage and aging also included derivatives of benzoic acid and hydroxycinnamic acid, piceid, catechin, naringenin, rutin, kaempherol, hesperetin, and anthocyanins. This study found that younger wines had higher phenolic content, while storage of the wine resulted in a decrease in total phenolic content, especially monomeric stilbenes and quercetin. This study represents a small part of the investigation of the influence of non-Saccharomyces yeasts on the phenolic profile of wine, which still requires extensive research with practical application. In addition, non-Saccharomyces yeasts such as Kluyveromyces thermotolerans, Candida stellata, and Metschnikowia pulcherrima could also be used in future studies. Full article
(This article belongs to the Special Issue Research and Optimization of Food Processing Technology)
Show Figures

Figure 1

14 pages, 1626 KiB  
Article
Drivers for Clustering and Inter-Project Collaboration—A Case of Horizon Europe Projects
by Takwa Benissa and Anish Patil
Adm. Sci. 2024, 14(5), 104; https://doi.org/10.3390/admsci14050104 (registering DOI) - 17 May 2024
Abstract
This paper investigates the drivers and dynamics of clustering and inter-project collaboration within the framework of the Horizon Europe and Horizon 2020 projects. Leveraging a survey-based approach, we examine key themes surrounding the perception of clustering, the willingness to share information under legal [...] Read more.
This paper investigates the drivers and dynamics of clustering and inter-project collaboration within the framework of the Horizon Europe and Horizon 2020 projects. Leveraging a survey-based approach, we examine key themes surrounding the perception of clustering, the willingness to share information under legal confidentiality, and motivations for engaging with partners from different projects. The survey instrument, implemented via Microsoft Forms, was distributed among the consortia of eight EU projects participating in the SOLID4B cluster. Notably, the questionnaire was meticulously crafted based on an in-depth analysis of the SOLID4B case and comprehensive discussions with project coordinators and communication and dissemination managers from all participating projects. These discussions aimed to establish a clear roadmap for the cluster, ensuring the questionnaire’s relevance and usefulness for all participants. Data analysis was conducted within the same platform, facilitating efficient data processing and visualization. Our findings reveal that a significant majority of respondents (48 out of 55) perceive clustering as a valuable asset, indicative of a positive shift in perspectives. Challenges related to confidentiality were addressed through nuanced insights, with respondents demonstrating a willingness to share routine best practices, significant breakthroughs, and deliverables within a legally protected framework. Furthermore, a robust majority (40 out of 55) expressed a keen interest in collaborative endeavors, underscoring a collective drive to extend activities beyond individual project boundaries. The study highlights the importance of clustering with other projects in maximizing the impact of the Horizon program, extending stakeholder networks, and sharing knowledge and achievements in research and innovation. These insights contribute to a deeper understanding of the motivations and challenges surrounding clustering and collaboration within the Horizon Europe and Horizon 2020 projects. Ultimately, the findings pave the way for informed strategies aimed at fostering a dynamic and interconnected research community. Full article
(This article belongs to the Special Issue Collaboration Networks, Organizations, and Innovation)
Show Figures

Figure 1

18 pages, 7906 KiB  
Article
Brucine Sulfate, a Novel Bacteriostatic Agent in 3D Printed Bone Scaffold Systems
by Jinying Li, Shi Hu, Pei Feng, Yang Xia, Zihan Pei, Jiaxuan Tian, Kun Jiang, Liang Liu, Xiong Cai and Ping Wu
Polymers 2024, 16(10), 1428; https://doi.org/10.3390/polym16101428 (registering DOI) - 17 May 2024
Abstract
Bacterial infection is a common complication in bone defect surgery, in which infection by clinically resistant bacteria has been a challenge for the medical community. Given this emerging problem, the discovery of novel natural-type inhibitors of drug-resistant bacteria has become imperative. Brucine, present [...] Read more.
Bacterial infection is a common complication in bone defect surgery, in which infection by clinically resistant bacteria has been a challenge for the medical community. Given this emerging problem, the discovery of novel natural-type inhibitors of drug-resistant bacteria has become imperative. Brucine, present in the traditional Chinese herb Strychnine semen, is reported to exert analgesic and anti-inflammatory effects. Brucine’s clinical application was limited because of its water solubility. We extracted high-purity BS by employing reflux extraction and crystallization, greatly improved its solubility, and evaluated its antimicrobial activity against E. coli and S. aureus. Importantly, we found that BS inhibited the drug-resistant strains significantly better than standard strains and achieved sterilization by disrupting the bacterial cell wall. Considering the safety concerns associated with the narrow therapeutic window of BS, a 3D BS-PLLA/PGA bone scaffold system was constructed with SLS technology and tested for its performance, bacteriostatic behaviors, and biocompatibility. The results have shown that the drug-loaded bone scaffolds had not only long-term, slow-controlled release with good cytocompatibility but also demonstrated significant antimicrobial activity in antimicrobial testing. The above results indicated that BS may be a potential drug candidate for the treatment of antibiotic-resistant bacterial infections and that scaffolds with enhanced antibacterial activity and mechanical properties may have potential applications in bone tissue engineering. Full article
(This article belongs to the Collection Antibacterial Activity of Polymeric Materials)
Show Figures

Figure 1

25 pages, 817 KiB  
Review
Molecular Chaperonin HSP60: Current Understanding and Future Prospects
by Manish Kumar Singh, Yoonhwa Shin, Sunhee Han, Joohun Ha, Pramod K. Tiwari, Sung Soo Kim and Insug Kang
Int. J. Mol. Sci. 2024, 25(10), 5483; https://doi.org/10.3390/ijms25105483 (registering DOI) - 17 May 2024
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle’s proteome integrity and [...] Read more.
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle’s proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration. Full article
(This article belongs to the Special Issue Advances in Heat-Shock Response and Heat-Shock Proteins)
23 pages, 1350 KiB  
Article
RPC-EAU: Radar Plot Classification Algorithm Based on Evidence Adaptive Updating
by Rui Yang and Yingbo Zhao
Appl. Sci. 2024, 14(10), 4260; https://doi.org/10.3390/app14104260 (registering DOI) - 17 May 2024
Abstract
Accurately classifying targets and clutter plots is crucial in radar data processing. It is beneficial for filtering out a large amount of clutters and improving the track initiation speed and tracking accuracy of real targets. However, in practical applications, this problem becomes difficult [...] Read more.
Accurately classifying targets and clutter plots is crucial in radar data processing. It is beneficial for filtering out a large amount of clutters and improving the track initiation speed and tracking accuracy of real targets. However, in practical applications, this problem becomes difficult due to complex electromagnetic environments such as cloud and rain clutter, sea clutter, and strong ground clutter. This has led to poor performance of some commonly used radar plot classification algorithms. In order to solve this problem and further improve classification accuracy, the radar plot classification algorithm based on evidence adaptive updating (RPC-EAU) is proposed in this paper. Firstly, the multi-dimensional recognition features of radar plots used for classification are established. Secondly, the construction and combination of mass functions based on feature sample distribution are designed. Then, a confidence network classifier containing an uncertain class was designed, and an iterative update strategy for it was provided. Finally, several experiments based on synthetic and real radar plots were presented. The results show that RPC-EAU can effectively improve the radar plot classification performance, achieving a classification accuracy of about 0.96 and a clutter removal rate of 0.95. Compared with some traditional radar pattern recognition algorithms, it can improve by 1 to 10 percentage points. The target loss rate of RPC-EAU is also the lowest, only about 0.02, which is about one third to one half of the comparison algorithms. In addition, RPC-EAU avoids clustering all radar points in each update, greatly saving the computational time. The proposed algorithm has the characteristics of high classification accuracy, low target loss rate, and less computational time. Therefore, it is suitable for radar data processing with high timeliness requirements and multiple radar plots. Full article
Show Figures

Figure 1

12 pages, 443 KiB  
Article
Relationship between Maternal Socioeconomic Factors and Preterm Birth in Latvia
by Katrīne Kūkoja, Anita Villeruša and Irisa Zīle-Velika
Medicina 2024, 60(5), 826; https://doi.org/10.3390/medicina60050826 (registering DOI) - 17 May 2024
Abstract
Background and Objectives: Worldwide, preterm birth (PTB) stands as the primary cause of mortality among children under 5 years old. Socioeconomic factors significantly impact pregnancy outcomes, influencing both maternal well-being and newborn health. Understanding and addressing these socioeconomic factors is essential for developing [...] Read more.
Background and Objectives: Worldwide, preterm birth (PTB) stands as the primary cause of mortality among children under 5 years old. Socioeconomic factors significantly impact pregnancy outcomes, influencing both maternal well-being and newborn health. Understanding and addressing these socioeconomic factors is essential for developing effective public health interventions and policies aimed at improving pregnancy outcomes. This study aims to analyse the relationship between socioeconomic factors (education level, marital status, place of residence and nationality) and PTB in Latvia, considering mother’s health habits, health status, and pregnancy process. Materials and Methods: A cross-sectional study was conducted using data from the Medical Birth Register (MBR) of Latvia about women with singleton pregnancies in 2022 (n = 15,431). Data analysis, involving crosstabs, chi-square tests, and multivariable binary logistic regression, was performed. Adjusted Odds ratios (aOR) with 95% confidence intervals (CI) were estimated. Results: Lower maternal education was statistically significantly associated with increased odds of PTB. Mothers with education levels below secondary education had over two times higher odds of PTB (aOR = 2.07, p < 0.001, CI 1.58–2.70) and those with secondary or vocational secondary education had one and a half times higher odds (aOR = 1.58, p < 0.001, CI 1.33–1.87) after adjusting for other risk factors. Study results also showed the cumulative effect of socioeconomic risk factors on PTB. Additionally, mothers facing two or three socioeconomic risk factors in Latvia exhibited one and a half times higher odds of PTB (aOR = 1.59, p = 0.021). Conclusions: The study highlights the cumulative impact of socioeconomic risk factors on PTB, with higher maternal education demonstrating the highest protective effect against it. This underscores the importance of education in promoting optimal foetal development. Since the influence of socioeconomic factors on PTB is not a widely studied issue in Latvia, further research is needed to improve understanding of this complex topic. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

22 pages, 2243 KiB  
Review
Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme
by Corina Tamas, Flaviu Tamas, Attila Kovecsi, Alina Cehan and Adrian Balasa
Int. J. Mol. Sci. 2024, 25(10), 5482; https://doi.org/10.3390/ijms25105482 (registering DOI) - 17 May 2024
Abstract
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) [...] Read more.
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM. Full article
(This article belongs to the Special Issue The Occurrence, Evolution and Treatment of Glioblastoma 2.0)
Show Figures

Figure 1

19 pages, 3812 KiB  
Article
Evaluation of Tactile and Thermophysiological Comfort in Reusable Surgical Gowns Compared to Disposable Gowns
by Magdalena Georgievska, Abreha Bayrau Nigusse, Benny Malengier, Hasan Riaz Tahir, Charlotte Harding, Sufiyan Derbew Tiku and Lieva Van Langenhove
Textiles 2024, 4(2), 237-255; https://doi.org/10.3390/textiles4020014 (registering DOI) - 17 May 2024
Abstract
Though the transition from disposable to reusable surgical gowns holds substantial promise, successful implementation faces challenges. This study investigated tactile and thermophysiological comfort in surgical reusable gowns, comparing them with their disposable counterparts. Parameters such as surface roughness, compression, heat flux, and material [...] Read more.
Though the transition from disposable to reusable surgical gowns holds substantial promise, successful implementation faces challenges. This study investigated tactile and thermophysiological comfort in surgical reusable gowns, comparing them with their disposable counterparts. Parameters such as surface roughness, compression, heat flux, and material rigidity were tested using a Fabric Touch Tester. Additionally, the water vapour permeability and static charge of the gowns were assessed. Thermophysiological comfort of the gowns was evaluated by measuring the temperature and relative humidity (RH) on test subjects during wear trials where they were engaged in an activity that mimics a surgeon’s performance. Skin temperature was monitored using iButton sensors and a thermal camera, and the impact on heart rate during the task was analysed. Following each test, participants provided subjective feedback through a questionnaire. The results indicated that reusable gowns boasted a smoother texture, translating to reduced friction on the skin and better heat transfer compared to the disposable fabrics, as indicated using FTT. They also exhibited higher water vapour permeability compared to their disposable counterparts. The wear trials revealed minimal differences in comfort between disposable and reusable gowns. While performing the activity, an increase in body temperature led to decreased RH, yet this rise did not adversely affect subject comfort, as validated using heart rate and questionnaire survey data. From a comfort point of view, switching from disposable to reusable gowns would not have drawbacks, meaning hospitals should be able to switch provided logistics and costs can be managed. Full article
Show Figures

Figure 1

20 pages, 4695 KiB  
Article
The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2
by Ning Zhou, Yongqing Cao, Youwen Luo, Lihua Wang, Ruiqing Li, Heshuang Di, Tiantian Gu, Yun Cao, Tao Zeng, Jianping Zhu, Li Chen, Dong An, Yue Ma, Wenwu Xu, Yong Tian and Lizhi Lu
Antioxidants 2024, 13(5), 611; https://doi.org/10.3390/antiox13050611 (registering DOI) - 17 May 2024
Abstract
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of [...] Read more.
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks. Full article
(This article belongs to the Special Issue Oxidative Stress in Poultry Reproduction and Nutrition)
Show Figures

Figure 1

20 pages, 977 KiB  
Article
Green Bonds Drive Environmental Performance: Evidences from China
by Xiaona Luo and Lyu Chan
Sustainability 2024, 16(10), 4223; https://doi.org/10.3390/su16104223 (registering DOI) - 17 May 2024
Abstract
Faced with the urgent challenge of global warming, green bonds play an important role in promoting economic transformation and improving environmental quality by financing environmentally friendly projects. However, the actual effects of green bonds, especially their impact on corporate environmental performance, and the [...] Read more.
Faced with the urgent challenge of global warming, green bonds play an important role in promoting economic transformation and improving environmental quality by financing environmentally friendly projects. However, the actual effects of green bonds, especially their impact on corporate environmental performance, and the mechanisms behind it, still need to be studied and validated. Based on the time-varying difference-in-differences (DID) model, this study uses 85 Chinese A-share listed companies that have issued green bonds from 2013 to 2022, to study the impact of green bond issuance on corporate environmental performance and the potential mechanisms. The results show that green bonds issuance effectively promotes the improvement of corporate environmental performance; this promotion is more significant for labor-intensive enterprises, larger enterprises, and enterprises with more government subsidies. In terms of the influencing mechanism, R&D investment and green innovation play partial mediating roles, media attention and analyst attention play positive moderating roles. This study further validates and complements the signal theory of green bonds and makes relevant suggestions for the development of green bonds in China. Full article
(This article belongs to the Special Issue Green Finance, Economics and SDGs)
Show Figures

Figure 1

13 pages, 6163 KiB  
Article
Qualitative and Quantitative Detection of Typical Reproductive Hormones in Dairy Cows Based on Terahertz Spectroscopy and Metamaterial Technology
by Shuang Liang, Jingbo Zhao, Wenwen Zhao, Nan Jia, Zhiyong Zhang and Bin Li
Molecules 2024, 29(10), 2366; https://doi.org/10.3390/molecules29102366 (registering DOI) - 17 May 2024
Abstract
Progesterone (PROG) and estrone (E1) are typical reproductive hormones in dairy cows. Assessing the levels of these hormones in vivo can aid in estrus identification. In the present work, the feasibility of the qualitative and quantitative detection of PROG and E [...] Read more.
Progesterone (PROG) and estrone (E1) are typical reproductive hormones in dairy cows. Assessing the levels of these hormones in vivo can aid in estrus identification. In the present work, the feasibility of the qualitative and quantitative detection of PROG and E1 using terahertz time-domain spectroscopy (THz-TDS) and metamaterial technology was preliminarily investigated. First, the time domain spectra, frequency domain spectra, and absorption coefficients of PROG and E1 samples were collected and analyzed. A vibration analysis was conducted using density functional theory (DFT). Subsequently, a double-ring (DR) metamaterial structure was designed and simulated using the frequency domain solution algorithm in CST Studio Suite (CST) software. This aimed to ensure that the double resonance peaks of DR were similar to the absorption peaks of PROG and E1. Finally, the response of DR to different concentrations of PROG/E1 was analyzed and quantitatively modeled. The results show that a qualitative analysis can be conducted by comparing the corresponding DR resonance peak changes in PROG and E1 samples at various concentrations. The best R2 for the PROG quantitative model was 0.9872, while for E1, it was 0.9828. This indicates that terahertz spectral–metamaterial technology for the qualitative and quantitative detection of the typical reproductive hormones PROG and E1 in dairy cows is feasible and worthy of in-depth exploration. This study provides a reference for the identification of dairy cow estrus. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop