The 2023 MDPI Annual Report has
been released!
 
11 pages, 450 KiB  
Article
Insights from Chilean NCDs Hospitalization Data during COVID-19
by Jaime Andrés Vásquez-Gómez and Chiara Saracini
Medicina 2024, 60(5), 770; https://doi.org/10.3390/medicina60050770 (registering DOI) - 07 May 2024
Abstract
The COVID-19 pandemic has affected the lifestyles of people of all ages, conditions and occupations. Social distance, remote working, changes in diet and a lack of physical activity have directly and indirectly affected many aspects of mental and physical health, particularly in patients [...] Read more.
The COVID-19 pandemic has affected the lifestyles of people of all ages, conditions and occupations. Social distance, remote working, changes in diet and a lack of physical activity have directly and indirectly affected many aspects of mental and physical health, particularly in patients with many comorbidities and non-communicable diseases (NCDs). In our paper, we analyzed COVID-19 hospitalized and non-hospitalized cases according to comorbidities to assess the average monthly percentage change (AMPC) and monthly percentage change (MPC) using open access data from the Chilean Ministry of Science, Technology, Knowledge and Innovation. As expected, the infection mainly affected patients with comorbidities, including cardiovascular risk factors. The hospitalized cases with obesity and chronic lung disease increased throughout the period of June 2020–August 2021 (AMPC = ↑20.8 and ↑19.4%, respectively, p < 0.05), as did all the non-hospitalized cases with comorbidities throughout the period (AMPC = ↑15.6 to ↑30.3 [p < 0.05]). The increases in hospitalizations and non-hospitalizations with comorbidities may be associated with physical inactivity. A healthy lifestyle with regular physical activity may have had a protective effect on the COVID-19 severity and related events in the post-pandemic period, especially for the NCD population. Full article
(This article belongs to the Special Issue Impact on Human Health, Lifestyle and Quality of Care after COVID-19)
Show Figures

Figure 1

11 pages, 2645 KiB  
Article
α-Amido Trifluoromethyl Xanthates: A New Class of RAFT/MADIX Agents
by Mathias Destarac, Juliette Ruchmann-Sternchuss, Eric Van Gramberen, Xavier Vila and Samir Z. Zard
Molecules 2024, 29(10), 2174; https://doi.org/10.3390/molecules29102174 (registering DOI) - 07 May 2024
Abstract
Xanthates have long been described as poor RAFT/MADIX agents for styrene polymerization. Through the determination of chain transfer constants to xanthates, this work demonstrated beneficial capto-dative substituent effects for the leaving group of a new series of α-amido trifluoromethyl xanthates, with the best [...] Read more.
Xanthates have long been described as poor RAFT/MADIX agents for styrene polymerization. Through the determination of chain transfer constants to xanthates, this work demonstrated beneficial capto-dative substituent effects for the leaving group of a new series of α-amido trifluoromethyl xanthates, with the best effect observed with trifluoroacetyl group. The previously observed Z-group activation with a O-trifluoroethyl group compared to the O-ethyl counterpart was quantitatively established with Cex = 2.7 (3–4 fold increase) using the SEC peak resolution method. This study further confirmed the advantageous incorporation of trifluoromethyl substituents to activate xanthates in radical chain transfer processes and contributed to identify the most reactive xanthate reported to date for RAFT/MADIX polymerization of styrene. Full article
(This article belongs to the Special Issue Themed Issue Dedicated to Prof. Bernard Boutevin)
Show Figures

Figure 1

24 pages, 353 KiB  
Article
On Conditional Axioms and Associated Inference Rules
by Joaquín Borrego-Díaz, Andrés Cordón-Franco and Francisco Félix Lara-Martín
Axioms 2024, 13(5), 306; https://doi.org/10.3390/axioms13050306 (registering DOI) - 07 May 2024
Abstract
In the present paper, we address the following general question in the framework of classical first-order logic. Assume that a certain mathematical principle can be formalized in a first-order language by a set E of conditional formulas of the form [...] Read more.
In the present paper, we address the following general question in the framework of classical first-order logic. Assume that a certain mathematical principle can be formalized in a first-order language by a set E of conditional formulas of the form α(v)β(v). Given a base theory T, we can use the set of conditional formulas E to extend the base theory in two natural ways. Either we add to T each formula in E as a new axiom (thus obtaining a theory denoted by T+E) or we extend T by using the formulas in E as instances of an inference rule (thus obtaining a theory denoted by T+ERule). The theory T+E will be stronger than T+ERule, but how much stronger can T+E be? More specifically, is T+E conservative over T+ERule for theorems of some fixed syntactical complexity Γ? Under very general assumptions on the set of conditional formulas E, we obtain two main conservation results in this regard. Firstly, if the formulas in E have low syntactical complexity with respect to some prescribed class of formulas Π and in the applications of ERule side formulas from the class Π and can be eliminated (in a certain precise sense), then T+E is B(Π)-conservative over T+ERule. Secondly, if, in addition, E is a finite set with m conditional sentences, then nested applications of ERule of a depth at most of m suffice to obtain B(Π) conservativity. These conservation results between axioms and inference rules extend well-known conservation theorems for fragments of first-order arithmetics to a general, purely logical framework. Full article
(This article belongs to the Topic Mathematical Modeling)
23 pages, 45052 KiB  
Article
Ice-Jam Investigations along the Oder River Based on Satellite and UAV Data
by Fabian Möldner, Bernd Hentschel and Dirk Carstensen
Water 2024, 16(10), 1323; https://doi.org/10.3390/w16101323 (registering DOI) - 07 May 2024
Abstract
The Oder River, situated along the border between Poland and Germany, is regularly affected by ice-jam events and their associated hazards, such as a sudden rise in water level and the endangerment to flood-protection infrastructure. The existing databases on past ice-jam events lack [...] Read more.
The Oder River, situated along the border between Poland and Germany, is regularly affected by ice-jam events and their associated hazards, such as a sudden rise in water level and the endangerment to flood-protection infrastructure. The existing databases on past ice-jam events lack substantial information considering ice formation, blockage origins or the spatiotemporal evolution of the ice cover needed for a comprehensive understanding of relevant ice processes. Within this study, the evaluation of satellite and Uncrewed Aerial Vehicle (UAV) data was carried out in order to analyze the capabilities of enhancing river ice information in the study area. Satellite imagery was proven to be a valuable source of investigating ice-jam phenomena on all scales, leading to the identification of initial ice-jam locations, surveying spatiotemporal ice cover evolution or monitoring the maximum ice-cover extent. A simplified approach for river ice classification of satellite radar data using the K-Means Cluster Analysis is introduced, enabling the differentiation between river ice formations. Based on UAV data taken in this study, workflows were presented, allowing for measurements of ice floe velocities and the localization of flooded and ice-covered flow control structures. Full article
Show Figures

Figure 1

20 pages, 13537 KiB  
Article
Influence of Selected Parameters of Zinc Electroplating on Surface Quality and Layer Thickness
by Jozef Mascenik, Tomas Coranic, Jiri Kuchar and Zdenek Hazdra
Coatings 2024, 14(5), 579; https://doi.org/10.3390/coatings14050579 (registering DOI) - 07 May 2024
Abstract
Surface treatment technologies are pivotal across diverse industrial sectors such as mechanical engineering, electrical engineering, and the automotive industry. Continuous advancements in manufacturing processes are geared towards bolstering efficiency and attaining superior product quality. This study aimed to empirically compare practical outcomes with [...] Read more.
Surface treatment technologies are pivotal across diverse industrial sectors such as mechanical engineering, electrical engineering, and the automotive industry. Continuous advancements in manufacturing processes are geared towards bolstering efficiency and attaining superior product quality. This study aimed to empirically compare practical outcomes with theoretical insights. Employing galvanic zinc plating under constant voltage with varying plating durations unveiled a correlation between coating thickness and electrolyte composition alongside plating duration. The graphical representation delineated the optimal electrolyte composition conducive to maximal coating thickness. Notably, an evident decrease in leveling ability was noted with prolonged plating durations. The experiment corroborated the notion that theoretical formulas for coating thickness estimation possess limited accuracy, often resulting in measured values surpassing theoretical predictions. These findings underscore the imperative for refined theoretical models to comprehensively grasp galvanic surface treatment processes. Full article
Show Figures

Figure 1

14 pages, 2343 KiB  
Article
Identification of a Fully Human Antibody VH Domain Targeting Anaplastic Lymphoma Kinase (ALK) with Applications in ALK-Positive Solid Tumor Immunotherapy
by Chuan Chen, Zehua Sun, Zening Wang, Seungmin Shin, Abigail Berrios, John W. Mellors, Dimiter S. Dimitrov and Wei Li
Antibodies 2024, 13(2), 39; https://doi.org/10.3390/antib13020039 (registering DOI) - 07 May 2024
Abstract
The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length [...] Read more.
The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length antibody including deeper tumor penetration, cost-effective production and fast washout from normal tissues. In this study, we identified a human immunoglobulin heavy chain variable domain (VH domain) (VH20) from an in-house phage library. VH20 exhibits good developability and high specificity with no off-target binding to ~6000 human membrane proteins. VH20 efficiently bound to the glycine-rich region of ALK with an EC50 of 0.4 nM and a KD of 6.54 nM. Both VH20-based bispecific T cell engager (TCE) and chimeric antigen receptor T cells (CAR Ts) exhibited potent cytolytic activity to ALK-expressing tumor cells in an ALK-dependent manner. VH20 CAR Ts specifically secreted proinflammatory cytokines including IL-2, TNFα and IFNγ after incubation with ALK-positive cells. To our knowledge, this is the first reported human single-domain antibody against ALK. Our in vitro characterization data indicate that VH20 could be a promising ALK-targeting sdAb with potential applications in ALK-expressing tumors, including neuroblastoma (NBL) and non-small cell lung cancer. Full article
15 pages, 846 KiB  
Article
Quality-of-Life Assessment in Children with Mild to Moderate Bronchial Asthma
by Agnė Čibirkaitė, Vilija Bubnaitienė, Edita Hansted, Vaidotas Gurskis and Laimutė Vaidelienė
Medicina 2024, 60(5), 771; https://doi.org/10.3390/medicina60050771 (registering DOI) - 07 May 2024
Abstract
Background and Objectives: Assess the quality of life of children aged 2–10 with mild to moderate bronchial asthma. To evaluate the general health condition of children with mild and moderate severity bronchial asthma. To determine health changes in children with mild- and moderate-severity [...] Read more.
Background and Objectives: Assess the quality of life of children aged 2–10 with mild to moderate bronchial asthma. To evaluate the general health condition of children with mild and moderate severity bronchial asthma. To determine health changes in children with mild- and moderate-severity bronchial asthma as they grow older. To evaluate the impact of mild- and moderate-severity bronchial asthma on children’s daily and social activities, physical health, emotional state, and general well-being. Materials and Methods: A comparative cross-sectional study was conducted in March–June 2020. Parents or guardians of 2–10-year-old children without bronchial asthma and children with mild to moderate bronchial asthma were interviewed after receiving their written informed consent. The questionnaire was based on the standardized quality-of-life quiz SF-36. A total of 248 questionnaires were collected—106 from the parents or guardians of children with bronchial asthma and 142 from parents/guardians of children without bronchial asthma. For further analysis, 106 children without bronchial asthma and with no chronic conditions were selected. Quantitative variables were compared using the Mann–Whitney U test and qualitative data using the chi-square (χ2) criteria. Quantitative data were described by giving means, medians, and standard deviations (SD); qualitative features by giving relative frequencies. Statistical data were analyzed using SPSS and Excel 2020. Results: Children with mild and moderate asthma exhibit poorer health compared to their healthy counterparts. Only 20.7% of respondents with asthma reported excellent or very good health, contrasting with 64.1% of healthy children (p < 0.001). As children with asthma age, their general condition improves, with 46.2% showing improvement in the past year, while 42.5% of healthy children had a stable condition (p < 0.05). In various activities, children with asthma face more constraints than healthy children (p < 0.05), including energetic activities (sick—59.5%; healthy—10.3%), moderate activities (sick—24.5%; healthy—4.7%), climbing stairs (sick—22.7%; healthy—3.8%), and walking over 100 m (sick—9.4%; healthy—0%). Children with asthma are more likely to experience exhaustion, anxiety, tiredness, lack of energy, and restraint in public activities (p < 0.05). Conclusions: Parents/caregivers of children with mild to moderate bronchial asthma rate their health worse than those of healthy children do. As children with mild to moderate bronchial asthma grow, the disease impact on their overall well-being decreases. Children with mild to moderate bronchial asthma, compared to healthy children, experience more limitations in vigorous or moderate activities; face more difficulties climbing stairs or walking more than 100 m; frequently feel exhaustion, anxiety, fatigue, or lack of energy; and encounter restrictions in social activities. Full article
(This article belongs to the Section Pulmonary)
12 pages, 5325 KiB  
Article
The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study
by Mattia Lopresti, Luca Palin, Giovanni Calegari and Marco Milanesio
Molecules 2024, 29(10), 2173; https://doi.org/10.3390/molecules29102173 (registering DOI) - 07 May 2024
Abstract
The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure [...] Read more.
The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure of 4MEC is obtained by combining X-ray powder diffraction and first principle calculations to carefully locate hydrogen atoms. Two molecules are present in the asymmetric unit. Hirshfeld analysis confirmed the reliability of the solved structure, since the two molecules show rather different environments and H-bond interactions of different directionality and strength. The packing is characterised by a peculiar hydrogen bond network with hydroxyl nests formed by two adjacent octagonal frameworks. It is noteworthy that the observed short contacts suggest strong inter-molecular interactions, further confirmed by strong inter-crystalline aggregation observed by microscopic images, indicating the growth, in many crystallization attempts, of single aggregates taller than half a centimetre and, often, with spherical shapes. These peculiarities are induced by the presence of methyl group in 4MEC, since the parent compound catechol, despite its chemical similarity, shows a standard layered packing alternating hydrophobic and polar layers. Finally, the complexity and peculiarity of the packing and crystal growth features explain why a single crystal could not be obtained for a standard structural analysis. Full article
Show Figures

Figure 1

19 pages, 462 KiB  
Article
The Impact of Deficit Irrigation on the Agronomic Performance and Chemical Composition of Scolymus hispanicus L.
by Nikolaos Polyzos, Beatriz H. Paschoalinotto, Tânia C. S. P. Pires, Mikel Añibarro-Ortega, Ricardo Calhelha, Isabel C. F. R. Ferreira, Maria Inês Dias, Lillian Barros and Spyridon A. Petropoulos
Horticulturae 2024, 10(5), 479; https://doi.org/10.3390/horticulturae10050479 (registering DOI) - 07 May 2024
Abstract
In the current study, the effects of drought stress on the growth and phytochemical profile of Scolymus hispanicus L. (a.k.a. golden thistle) were evaluated. Plants were treated with three irrigation regimes, e.g., plants that received only rainwater (Control; C), deficit irrigation (I1; 50% [...] Read more.
In the current study, the effects of drought stress on the growth and phytochemical profile of Scolymus hispanicus L. (a.k.a. golden thistle) were evaluated. Plants were treated with three irrigation regimes, e.g., plants that received only rainwater (Control; C), deficit irrigation (I1; 50% of field capacity (FC)), and full irrigation (Ι2; 100% of FC). The fresh weight of the rosette of leaves was not negatively impacted by deficit irrigation, whereas root development was severely restrained compared to control and I2 treatments. Drought stress conditions had a positive effect on the nutritional properties of the golden thistle since the treatments of control and deficit irrigation showed the highest content of macronutrients and energy. Oxalic acid was the richest organic acid, especially under the I1 regime. Similarly, α-tocopherol was the only identified vitamin E isoform, whose content was also doubled in I1 treatment. Raffinose, glucose, and sucrose were the most abundant free sugars in amounts that varied among the irrigation treatments, while the total and distinct free sugar content was the highest for the I1 treatment. The most abundant detected fatty acid compounds were α-linolenic acid, followed by palmitic and linoleic acid, with the highest amount being detected in C, I1, and I2 treatments, respectively. Flavonoids were the only class of polyphenols detected in golden thistle leaves, including mostly kaempferol and quercetin derivatives. The greatest antioxidant potency was shown for the control and I1 treatments (for OxHLIA and TBARS methods, respectively). The evaluated leaf samples recorded a varied antimicrobial effect for the different bacterial strains and fungi, whereas no cytotoxic, hepatotoxic, and anti-inflammatory effects against the tested cell lines were recorded. Finally, the mineral content of leaves was significantly affected by the irrigation regime, with Ca, Mg, Cu, and Zn being the highest for the I1 treatment, while the I2 treatment had the highest content of K, Fe, and Mn and the lowest Na content. In conclusion, deficit irrigation showed promising results since it improved the phytochemical content without compromising the fresh weight of leaves, and thus it could be suggested as a sustainable agronomic practice for producing high-added value products without significant constraints in growth development and yield parameters of golden thistle. Full article
(This article belongs to the Special Issue Horticultural Production under Drought Stress)
18 pages, 865 KiB  
Article
Unveiling the Novel Benefits of Co-Administering Butyrate and Active Vitamin D3 in Mice Subjected to Chemotherapy-Induced Gut-Derived Pseudomonas aeruginosa Sepsis
by Fu-Chen Huang and Shun-Chen Huang
Biomedicines 2024, 12(5), 1026; https://doi.org/10.3390/biomedicines12051026 (registering DOI) - 07 May 2024
Abstract
Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to [...] Read more.
Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis. Full article
(This article belongs to the Special Issue Aryl Hydrocarbon Receptor in Human Diseases)
14 pages, 691 KiB  
Review
Lemna minor: Unlocking the Value of This Duckweed for the Food and Feed Industry
by Diana Sosa, Felipe M. Alves, Miguel A. Prieto, Mariana C. Pedrosa, Sandrina A. Heleno, Lillian Barros, Manuel Feliciano and Márcio Carocho
Foods 2024, 13(10), 1435; https://doi.org/10.3390/foods13101435 (registering DOI) - 07 May 2024
Abstract
Duckweed (Lemna minor L.) is a small floating aquatic plant that has an important economic impact in several industrial areas. With its high biomass production, reasonable protein content, and resilience to several climates, it has been attracting increasing interest for potential use [...] Read more.
Duckweed (Lemna minor L.) is a small floating aquatic plant that has an important economic impact in several industrial areas. With its high biomass production, reasonable protein content, and resilience to several climates, it has been attracting increasing interest for potential use in animal and human food systems. Historically consumed in southwest Asia, this duckweed is now gaining attention as a potential novel food in Europe. This manuscript explores the contributions of duckweed to various food and feed industries, including aquaculture and livestock, while also pointing out the incipient research carried out for human consumption. Most importantly, it highlights the potential of Lemna minor as a vegetable for future human consumption whether eaten whole or through extraction of its nutrients. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 1827 KiB  
Article
Physiological Changes in QRS Fragmentation in Athletes and Nonathletes without Cardiac Disease
by Georgios A. Christou, Maria A. Christou, Konstantinos A. Christou, Dimitrios K. Christodoulou and Dimitrios N. Kiortsis
J. Clin. Med. 2024, 13(10), 2741; https://doi.org/10.3390/jcm13102741 (registering DOI) - 07 May 2024
Abstract
QRS fragmentation has not been linked with increased mortality in individuals without known cardiac disease. We aimed to investigate the physiological determinants of QRS fragmentation in individuals without cardiac disease. Methods: Study participants were 163 (54 athletes, 109 nonathletes) asymptomatic individuals with QRS [...] Read more.
QRS fragmentation has not been linked with increased mortality in individuals without known cardiac disease. We aimed to investigate the physiological determinants of QRS fragmentation in individuals without cardiac disease. Methods: Study participants were 163 (54 athletes, 109 nonathletes) asymptomatic individuals with QRS fragmentation but without cardiac disease. QRS fragmentation was assessed in the supine position after deep inspiration or standing up and during exercise. The changes in QRS fragmentation were evaluated over a median follow-up period of 2.3 (0.8–4.9) years. Results: The most common lead with QRS fragmentation was III (63.0% in athletes, 61.5% in nonathletes), immediately followed by V1 (50.0%) and aVF (42.6%) in athletes and aVF (55.0%) in nonathletes. QRS fragmentation in V1 was more frequent in athletes compared to nonathletes (p < 0.001). Among athletes, the presence of QRS fragmentation in V1 could be independently predicted by increased RVOTproxi (right ventricular outflow tract proximal diameter indexed to body surface area) (p < 0.001). Among individuals with QRS fragmentation in V1, deep inspiration resulted in disappearance of QRS fragmentation more frequently in nonathletes compared to athletes (100% vs. 20%, p = 0.003). Deep inspiration resulted in disappearance of QRS fragmentation in aVF (p < 0.001). The presence of QRS fragmentation in II or aVF was associated with increased body mass index (BMI) (p = 0.003). Among athletes without QRS fragmentation in V1 at baseline, the appearance of QRS fragmentation in V1 at the end of follow-up was associated with greater training age (p = 0.034). Among individuals with QRS fragmentation in aVF at baseline, the disappearance of QRS fragmentation in aVF at the end of follow-up was associated with greater reduction in BMI (p = 0.008). Conclusions: The characteristic feature of QRS fragmentation in athletes was the presence of QRS fragmentation in V1, which was associated with RVOTproxi. The persistence of QRS fragmentation in V1 after deep inspiration could serve as a specific marker of exercise-training-related cardiac adaptation. The presence of QRS fragmentation in the leads of the frontal plane was influenced by BMI and respiration phase. Full article
(This article belongs to the Section Cardiology)
18 pages, 830 KiB  
Article
Exploiting the Potential of Powdered Blends of Recovered Sunflower Seed Cake Phenolics and Whey—Development of Sustainable Food Additives
by Anna Michalska-Ciechanowska, Jessica Brzezowska, Krzysztof Lech, Klaudia Masztalerz, Malgorzata Korzeniowska, Aleksandra Zambrowicz and Marek Szoltysik
Foods 2024, 13(10), 1433; https://doi.org/10.3390/foods13101433 (registering DOI) - 07 May 2024
Abstract
The management of side streams from the food industry, especially oil and dairy by-products, has become an important issue linked to the European Commission’s recommendations for a circular economy. This study aimed to obtain sustainable food additives in the form of soluble-type powders [...] Read more.
The management of side streams from the food industry, especially oil and dairy by-products, has become an important issue linked to the European Commission’s recommendations for a circular economy. This study aimed to obtain sustainable food additives in the form of soluble-type powders composed of whey and recovered phenolics originating from sunflower seed cake. In order to valorise these di-blend products, the powders were characterised in terms of their physical, chemical, and sensory attributes. Based on the study findings, the addition of sunflower seed cake washouts (SSCWs) to whey (Wh) decreased the dry matter in the feed that affected the viscosity and drying yield. The addition of SSCWs did not have a significant effect on the physical properties of powders, except for colour. By-product management proposed in the study resulted in the production of nutritious and ready-to-use products in powder form with improved functional properties in terms of phenolic compounds and antioxidant capacity. The powders were sensorially appealing with a tangy sourness entwined with a delicate interplay of sweet and salty flavours, which can be easily incorporated into different types of foodstuffs. Full article
12 pages, 573 KiB  
Article
A Lightweight Convolutional Neural Network Method for Two-Dimensional PhotoPlethysmoGraphy Signals
by Feng Zhao, Xudong Zhang and Zhenyu He
Appl. Sci. 2024, 14(10), 3963; https://doi.org/10.3390/app14103963 (registering DOI) - 07 May 2024
Abstract
Data information security on wearable devices has emerged as a significant concern among users, so it becomes urgent to explore authentication methods based on wearable devices. Using PhotoPlethysmoGraphy (PPG) signals for identity authentication has been proven effective in biometric authentication. This paper proposes [...] Read more.
Data information security on wearable devices has emerged as a significant concern among users, so it becomes urgent to explore authentication methods based on wearable devices. Using PhotoPlethysmoGraphy (PPG) signals for identity authentication has been proven effective in biometric authentication. This paper proposes a convolutional neural network authentication method based on 2D PPG signals applied to wearable devices. This method uses Markov Transition Field technology to convert one-dimensional PPG signal data into two-dimensional image data, which not only retains the characteristics of the signal but also enriches the spatial information. Afterward, considering that wearable devices usually have limited resources, a lightweight convolutional neural network model is also designed in this method, which reduces resource consumption and computational complexity while ensuring high performance. It is proved experimentally that this method achieves 98.62% and 96.17% accuracy on the training set and test set, respectively, an undeniable advantage compared to the traditional one-dimensional deep learning method and the classical two-dimensional deep learning method. Full article
(This article belongs to the Special Issue Machine Learning Based Biomedical Signal Processing)
19 pages, 3487 KiB  
Article
Temperature-Wise Calibration Increases the Accuracy of DNA Methylation Levels Determined by High-Resolution Melting (HRM)
by Katja Zappe and Margit Cichna-Markl
Int. J. Mol. Sci. 2024, 25(10), 5082; https://doi.org/10.3390/ijms25105082 (registering DOI) - 07 May 2024
Abstract
High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be [...] Read more.
High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT. Full article
(This article belongs to the Special Issue Biomarkers in Cancers: New Advances)
12 pages, 665 KiB  
Article
Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis
by Rosario Foti, Marco Zeppieri, Roberta Foti, Elisa Visalli, Giorgio Amato, Roberta Amato, Edoardo Dammino, Fabiana D’Esposito and Caterina Gagliano
J. Clin. Med. 2024, 13(10), 2738; https://doi.org/10.3390/jcm13102738 (registering DOI) - 07 May 2024
Abstract
Background: Systemic sclerosis is a complex autoimmune disease characterized by vasculopathy, fibrosis, and immune dysregulation. Ocular manifestations in these patients are increasingly recognized, suggesting potential correlations between systemic vascular abnormalities and ocular microvascular changes. Advancements in molecular immunology and imaging technology using [...] Read more.
Background: Systemic sclerosis is a complex autoimmune disease characterized by vasculopathy, fibrosis, and immune dysregulation. Ocular manifestations in these patients are increasingly recognized, suggesting potential correlations between systemic vascular abnormalities and ocular microvascular changes. Advancements in molecular immunology and imaging technology using ocular coherence tomography (OCT) have unveiled intricate pathways underlying possible disease pathogenesis. Understanding the interplay between retinal vascular abnormalities and molecular immunology parameters could provide insights into disease mechanisms and potential biomarkers. Purpose: The aim of this study was to investigate vascular abnormalities, detected with optical coherence tomography angiography (OCT-A), in systemic sclerosis patients and to find correlations between the severity of the disease detected with molecular immunology findings and OCT-A parameters. Methods: A group of 32 systemic sclerosis patients were compared with 9 healthy controls. Ganglion cell complex thickness (GCC), retina thickness of the fovea and parafovea, nerve fiber layer thickness (RNFL) and cup/disc area ratio were investigated using OCT. Vessel density (VD) of the superficial (SCP) and deep capillary plexus (DCP) of the whole macular area and ETDRS grid, size of the foveal avascular zone (FAZ) and vessel density of the radial peripapillary capillary plexus (RPCP) were evaluated using OCT-A. Modified Rodnan skin score (mRSS), capillaroscopy and disease duration were used to stage disease severity. Results: There was a statistically significant reduction in retina thickness of the fovea and parafovea, VD of the whole DCP, VD of the SCP and DCP in ETDRS grid in the patient group compared to controls (p < 0.001). The patients presented a significant enlargement of the FAZ (p 0.005). No significant correlation between OCT and OCT-A parameters and disease severity scores was found. Conclusions: OCT-A could represent a non-invasive tool to detect retinal microvascular damage in systemic sclerosis. Full article
(This article belongs to the Special Issue New Clinical Treatment for Ocular Vascular Disease and Fundus Disease)
Show Figures

Figure 1

16 pages, 1262 KiB  
Article
Cosmological Inference from within the Peculiar Local Universe
by Roya Mohayaee, Mohamed Rameez and Subir Sarkar
Universe 2024, 10(5), 209; https://doi.org/10.3390/universe10050209 (registering DOI) - 07 May 2024
Abstract
The existence of ‘peculiar’ velocities due to the formation of cosmic structure marks a point of discord between the real universe and the usually assumed Friedmann–Lemaítre–Robertson–Walker metric, which accomodates only the smooth Hubble expansion on large scales. In the standard ΛCDM model [...] Read more.
The existence of ‘peculiar’ velocities due to the formation of cosmic structure marks a point of discord between the real universe and the usually assumed Friedmann–Lemaítre–Robertson–Walker metric, which accomodates only the smooth Hubble expansion on large scales. In the standard ΛCDM model framework, Type Ia supernovae data are routinely “corrected” for the peculiar velocities of both the observer and the supernova host galaxies relative to the cosmic rest frame, in order to infer evidence for acceleration of the expansion rate from their Hubble diagram. However, observations indicate a strong, coherent local bulk flow that continues outward without decaying out to a redshift z0.1, contrary to the ΛCDM expectation. By querying the halo catalogue of the Dark Sky Hubble-volume N-body simulation, we find that an observer placed in an unusual environment like our local universe should see correlations between supernovae in the JLA catalogue that are 2–8 times stronger than seen by a typical or Copernican observer. This accounts for our finding that peculiar velocity corrections have a large impact on the value of the cosmological constant inferred from supernova data. We also demonstrate that local universe-like observers will infer a downward biased value of the clustering parameter S8 from comparing the density and velocity fields. More realistic modelling of the peculiar local universe is thus essential for correctly interpreting cosmological data. Full article
(This article belongs to the Special Issue The Large-Scale Structure of the Universe: Theory and Observation)
Show Figures

Figure 1

16 pages, 4028 KiB  
Article
Zagros Grass Index—A New Vegetation Index to Enhance Fire Fuel Mapping: A Case Study in the Zagros Mountains
by Iraj Rahimi, Lia Duarte and Ana Cláudia Teodoro
Sustainability 2024, 16(10), 3900; https://doi.org/10.3390/su16103900 (registering DOI) - 07 May 2024
Abstract
Annually, the oak forests of the Zagros Mountains chains in western Iran and northeastern Iraq face recurring challenges posed by forest fires, particularly in the Kurdo–Zagrosian forests in western Iran and northeastern Iraq. Assessing fire susceptibility relies significantly on vegetation conditions. Integrating in [...] Read more.
Annually, the oak forests of the Zagros Mountains chains in western Iran and northeastern Iraq face recurring challenges posed by forest fires, particularly in the Kurdo–Zagrosian forests in western Iran and northeastern Iraq. Assessing fire susceptibility relies significantly on vegetation conditions. Integrating in situ data, Remote Sensing (RS) data, and Geographical Information Systems (GIS) integration presents a cost-effective and precise approach to capturing environmental conditions before, during, and after fire events, minimizing the need for extensive fieldwork. This study refines and applies the Zagros Grass Index (ZGI), a local vegetation index tailored to discern between grass-covered surfaces and tree canopies in Zagros forests, identifying the grass masses as the most flammable fuel type. Utilizing the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) product as input from 2013 to 2022, the ZGI aims to mitigate the influence of tree canopies by isolating NDVI values solely attributable to grass cover. By incorporating phenological characteristics of forest trees and grass species, the ZGI outperforms NDVI in mapping grass-covered areas crucial for the study region’s fire susceptibility assessment. Results demonstrate a substantial overlap between ZGI-based maps and recorded fire occurrences, validating the efficacy of the index in fire susceptibility estimation. Full article
18 pages, 1298 KiB  
Article
Position Correction Control of Permanent-Magnet Brushless Motor Based on Commutation-Interval Current Symmetry
by Yongwu Guo, Yun Zhang and Xiaowei Li
World Electr. Veh. J. 2024, 15(5), 203; https://doi.org/10.3390/wevj15050203 (registering DOI) - 07 May 2024
Abstract
With the needs of environmental protection and the adjustment of energy structure, new energy vehicles are playing an increasingly important role in the field of transportation today. The permanent-magnet brushless direct-current motor has the characteristics of high efficiency, and can be used in [...] Read more.
With the needs of environmental protection and the adjustment of energy structure, new energy vehicles are playing an increasingly important role in the field of transportation today. The permanent-magnet brushless direct-current motor has the characteristics of high efficiency, and can be used in the drive system of new energy vehicles or other auxiliary equipment. In the control process of the permanent-magnet brushless direct-current motor, based on a three-Hall position sensor, due to various factors, there are some errors in the Hall position signal, which must be corrected by appropriate measures. In this paper, the relationship between the position deviation in the commutation interval and the non-commutation-phase current is analyzed, and the current expressions in three different states are given. A new closed-loop compensation strategy for correcting the inaccurate commutation caused by the Hall signal error is proposed. Taking the position of a 30° electrical angle before and after the phase-change point as the H point, realizing the current symmetry within the 30° interval around the H point as the target and the sum of the slopes of the tangent lines at the two points symmetrical within the β (0 < β < 30) electrical angle around the H point as the deviation, a proportional-integral regulator is designed to correct the phase error of the phase-change signal. Finally, it is verified by experiments that the closed-loop compensation strategy proposed in this paper can effectively compensate the phase deviation of the commutation signal at a speed of about 2000 r/min, which improves the working efficiency of the motor to a certain extent. Full article
22 pages, 1984 KiB  
Article
Zero-Shot Sketch-Based Remote-Sensing Image Retrieval Based on Multi-Level and Attention-Guided Tokenization
by Bo Yang, Chen Wang, Xiaoshuang Ma, Beiping Song, Zhuang Liu and Fangde Sun
Remote Sens. 2024, 16(10), 1653; https://doi.org/10.3390/rs16101653 (registering DOI) - 07 May 2024
Abstract
Effectively and efficiently retrieving images from remote-sensing databases is a critical challenge in the realm of remote-sensing big data. Utilizing hand-drawn sketches as retrieval inputs offers intuitive and user-friendly advantages, yet the potential of multi-level feature integration from sketches remains underexplored, leading to [...] Read more.
Effectively and efficiently retrieving images from remote-sensing databases is a critical challenge in the realm of remote-sensing big data. Utilizing hand-drawn sketches as retrieval inputs offers intuitive and user-friendly advantages, yet the potential of multi-level feature integration from sketches remains underexplored, leading to suboptimal retrieval performance. To address this gap, our study introduces a novel zero-shot, sketch-based retrieval method for remote-sensing images, leveraging multi-level feature extraction, self-attention-guided tokenization and filtering, and cross-modality attention update. This approach employs only vision information and does not require semantic knowledge concerning the sketch and image. It starts by employing multi-level self-attention guided feature extraction to tokenize the query sketches, as well as self-attention feature extraction to tokenize the candidate images. It then employs cross-attention mechanisms to establish token correspondence between these two modalities, facilitating the computation of sketch-to-image similarity. Our method significantly outperforms existing sketch-based remote-sensing image retrieval techniques, as evidenced by tests on multiple datasets. Notably, it also exhibits robust zero-shot learning capabilities in handling unseen categories and strong domain adaptation capabilities in handling unseen novel remote-sensing data. The method’s scalability can be further enhanced by the pre-calculation of retrieval tokens for all candidate images in a database. This research underscores the significant potential of multi-level, attention-guided tokenization in cross-modal remote-sensing image retrieval. For broader accessibility and research facilitation, we have made the code and dataset used in this study publicly available online. Full article
16 pages, 1387 KiB  
Article
Fracture Resistance of a Bone-Level Two-Piece Zirconia Oral Implant System—The Influence of Artificial Loading and Hydrothermal Aging
by Ralf J. Kohal, Ellen Riesterer, Kirstin Vach, Sebastian B. M. Patzelt, Aljaž Iveković, Lara Einfalt, Andraž Kocjan and Anna-Lena Hillebrecht
J. Funct. Biomater. 2024, 15(5), 122; https://doi.org/10.3390/jfb15050122 (registering DOI) - 07 May 2024
Abstract
Preclinical and clinical research on two-piece zirconia implants are warranted. Therefore, we evaluated the in vitro fracture resistance of such a zirconia oral implant system. The present study comprised 32 two-piece zirconia implants and abutments attached to the implants using a titanium ( [...] Read more.
Preclinical and clinical research on two-piece zirconia implants are warranted. Therefore, we evaluated the in vitro fracture resistance of such a zirconia oral implant system. The present study comprised 32 two-piece zirconia implants and abutments attached to the implants using a titanium (n = 16) or a zirconia abutment screw (n = 16). Both groups were subdivided (n = 8): group T-0 comprised implants with a titanium abutment screw and no artificial loading; group T-HL was the titanium screw group exposed to hydro-thermomechanical loading in a chewing simulator; group Z-0 was the zirconia abutment screw group with no artificial loading; and group Z-HL comprised the zirconia screw group with hydro-thermomechanical loading. Groups T-HL and Z-HL were loaded with 98 N and aged in 85 °C hot water for 107 chewing cycles. All samples were loaded to fracture. Kruskal–Wallis tests were executed to assess the loading/bending moment group differences. The significance level was established at a probability of 0.05. During the artificial loading, there was a single occurrence of an implant fracture. The mean fracture resistances measured in a universal testing machine were 749 N for group T-0, 828 N for group Z-0, 652 N for group T-HL, and 826 N for group Z-HL. The corresponding bending moments were as follows: group T-0, 411 Ncm; group Z-0, 452 Ncm; group T-HL, 356 Ncm; and group Z-HL, 456 Ncm. There were no statistically significant differences found between the experimental groups. Therefore, the conclusion was that loading and aging did not diminish the fracture resistance of the evaluated implant system. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Oral Implantology—Volume II)
23 pages, 3455 KiB  
Article
Research on the Performance of Lightweight Prefabricated Concrete Stairs with a Special-Shaped Hollow Landing Slab
by Yilin Wang, Dapeng Sheng and Yu Wang
Buildings 2024, 14(5), 1314; https://doi.org/10.3390/buildings14051314 (registering DOI) - 07 May 2024
Abstract
In order to further improve the technical advantages of lightweight prefabricated concrete stairs, a kind of prefabricated stair system using a special-shaped hollow landing slab was proposed. Based on the detailed structural composition display, the design method for the main components (prefabricated flight [...] Read more.
In order to further improve the technical advantages of lightweight prefabricated concrete stairs, a kind of prefabricated stair system using a special-shaped hollow landing slab was proposed. Based on the detailed structural composition display, the design method for the main components (prefabricated flight and special-shaped prefabricated hollow landing slab) was proposed and a design application example was provided. Furthermore, specialized experimental and numerical simulation studies were conducted on the key component—the special-shaped prefabricated hollow landing slab. The research results indicated that this new kind of lightweight prefabricated concrete stairs using a special-shaped prefabricated hollow landing slab has reasonable construction, an effective design method, a clear force transmission mechanism, moderate component weight, and high transportation and installation convenience. Full article
(This article belongs to the Section Building Structures)
57 pages, 5226 KiB  
Review
Design, Manufacturing, and Analysis of Periodic Three-Dimensional Cellular Materials for Energy Absorption Applications: A Critical Review
by Autumn R. Bernard and Mostafa S. A. ElSayed
Materials 2024, 17(10), 2181; https://doi.org/10.3390/ma17102181 (registering DOI) - 07 May 2024
Abstract
Cellular materials offer industries the ability to close gaps in the material selection design space with properties not otherwise achievable by bulk, monolithic counterparts. Their superior specific strength, stiffness, and energy absorption, as well as their multi-functionality, makes them desirable for a wide [...] Read more.
Cellular materials offer industries the ability to close gaps in the material selection design space with properties not otherwise achievable by bulk, monolithic counterparts. Their superior specific strength, stiffness, and energy absorption, as well as their multi-functionality, makes them desirable for a wide range of applications. The objective of this paper is to compile and present a review of the open literature focusing on the energy absorption of periodic three-dimensional cellular materials. The review begins with the methodical cataloging of qualitative and quantitative elements from 100 papers in the available literature and then provides readers with a thorough overview of the state of this research field, discussing areas such as parent material(s), manufacturing methods, cell topologies, cross-section shapes for truss topologies, analysis methods, loading types, and test strain rates. Based on these collected data, areas of great and limited research are identified and future avenues of interest are suggested for the continued maturation and growth of this field, such as the development of a consistent naming and classification system for topologies; the creation of test standards considering additive manufacturing processes; further investigation of non-uniform and non-cylindrical struts on the performance of truss lattices; and further investigation into the performance of lattice materials under the impact of non-flat surfaces and projectiles. Finally, the numerical energy absorption (by mass and by volume) data of 76 papers are presented across multiple property selection charts, highlighting various materials, manufacturing methods, and topology groups. While there are noticeable differences at certain densities, the graphs show that the categorical differences within those groups have large overlap in terms of energy absorption performance and can be referenced to identify areas for further investigation and to help in the preliminary design process by researchers and industry professionals alike. Full article
(This article belongs to the Special Issue Mechanical Behavior and Numerical Simulation of Sandwich Composites)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop