The 2023 MDPI Annual Report has
been released!
 
19 pages, 12306 KiB  
Article
Towards Complex Tissues Replication: Multilayer Scaffold Integrating Biomimetic Nanohydroxyapatite/Chitosan Composites
by Barbara Palazzo, Stefania Scialla, Amilcare Barca, Laura Sercia, Daniela Izzo, Francesca Gervaso and Francesca Scalera
Bioengineering 2024, 11(5), 471; https://doi.org/10.3390/bioengineering11050471 (registering DOI) - 9 May 2024
Abstract
This study explores an approach to design and prepare a multilayer scaffold mimicking interstratified natural tissue. This multilayer construct, composed of chitosan matrices with graded nanohydroxyapatite concentrations, was achieved through an in situ biomineralization process applied to individual layers. Three distinct precursor concentrations [...] Read more.
This study explores an approach to design and prepare a multilayer scaffold mimicking interstratified natural tissue. This multilayer construct, composed of chitosan matrices with graded nanohydroxyapatite concentrations, was achieved through an in situ biomineralization process applied to individual layers. Three distinct precursor concentrations were considered, resulting in 10, 20, and 30 wt% nanohydroxyapatite content in each layer. The resulting chitosan/nanohydroxyapatite (Cs/n-HAp) scaffolds, created via freeze-drying, exhibited nanohydroxyapatite nucleation, homogeneous distribution, improved mechanical properties, and good cytocompatibility. The cytocompatibility analysis revealed that the Cs/n-HAp layers presented cell proliferation similar to the control in pure Cs for the samples with 10% n-HAp, indicating good cytocompatibility at this concentration, while no induction of apoptotic death pathways was demonstrated up to a 20 wt% n-Hap concentration. Successful multilayer assembly of Cs and Cs/n-HAp layers highlighted that the proposed approach represents a promising strategy for mimicking multifaceted tissues, such as osteochondral ones. Full article
(This article belongs to the Special Issue Biomaterials for Cartilage and Bone Tissue Engineering)
Show Figures

Figure 1

11 pages, 2226 KiB  
Article
Performance of Aubergine Rootstocks against Verticillium dahliae Isolates in Southeastern Spain
by Carmen María Lacasa, Manuel Cantó-Tejero, Victoriano Martínez, Alfredo Lacasa and Pedro Guirao
Agronomy 2024, 14(5), 998; https://doi.org/10.3390/agronomy14050998 (registering DOI) - 9 May 2024
Abstract
Aubergine (Solanum melongena L.) (Solanaceae) is a widespread crop in the Mediterranean basin. Verticillium dahliae is one of the main soil-borne pathogens affecting the aubergine crop. Its control has traditionally been achieved by soil fumigation with chemical disinfectants. Restrictions on the use [...] Read more.
Aubergine (Solanum melongena L.) (Solanaceae) is a widespread crop in the Mediterranean basin. Verticillium dahliae is one of the main soil-borne pathogens affecting the aubergine crop. Its control has traditionally been achieved by soil fumigation with chemical disinfectants. Restrictions on the use of chemical fumigants have led to the search for solutions in genetic resistance using rootstocks. In southeastern Spain, aubergines are grafted for the control of V. dahliae. Two Solanum torvum rootstocks (Hugo F1 and Torpedo) and a Solanum melongena hybrid (Javah F1) were tested against five isolates of V. dahliae obtained from grafted (A1 and A2) and ungrafted (Vd8, Vd17 and Vd66) aubergines compared with the susceptible cultivar Larne F1 under controlled conditions. Isolates from grafted plants infected all three rootstocks, with differences observed in the percentage of plants with symptoms and in the disease symptom severity. Three strains isolated from the ungrafted aubergines (Vd8, Vd17 and Vd66) infected Javah F1 rootstock. The Hugo F1 and Torpedo rootstocks showed a high level of resistance to V. dahliae, while Javah F1 was susceptible to the pathogen. The Hugo F1 and Torpedo rootstocks are suitable for mitigating the effects of Verticillium wilt in Mediterranean aubergine crops. Understanding the nature of the resistance from S. torvum could enhance the benefits of grafting or facilitate the introduction of resistance into commercial cultivars. Full article
Show Figures

Figure 1

18 pages, 5673 KiB  
Article
Molecular Regulation of Fetal Brain Development in Inbred and Congenic Mouse Strains Differing in Longevity
by Maliha Islam and Susanta K. Behura
Genes 2024, 15(5), 604; https://doi.org/10.3390/genes15050604 (registering DOI) - 9 May 2024
Abstract
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J [...] Read more.
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 324 KiB  
Article
Analysis and Prevention of AI-Based Phishing Email Attacks
by Chibuike Samuel Eze and Lior Shamir
Electronics 2024, 13(10), 1839; https://doi.org/10.3390/electronics13101839 (registering DOI) - 9 May 2024
Abstract
Phishing email attacks are among the most common and most harmful cybersecurity attacks. With the emergence of generative AI, phishing attacks can be based on emails generated automatically, making it more difficult to detect them. That is, instead of a single email format [...] Read more.
Phishing email attacks are among the most common and most harmful cybersecurity attacks. With the emergence of generative AI, phishing attacks can be based on emails generated automatically, making it more difficult to detect them. That is, instead of a single email format sent to a large number of recipients, generative AI can be used to send each potential victim a different email, making it more difficult for cybersecurity systems to identify the scam email before it reaches the recipient. Here, we describe a corpus of AI-generated phishing emails. We also use different machine learning tools to test the ability of automatic text analysis to identify AI-generated phishing emails. The results are encouraging, and show that machine learning tools can identify an AI-generated phishing email with high accuracy compared to regular emails or human-generated scam emails. By applying descriptive analytics, the specific differences between AI-generated emails and manually crafted scam emails are profiled and show that AI-generated emails are different in their style from human-generated phishing email scams. Therefore, automatic identification tools can be used as a warning for the user. The paper also describes the corpus of AI-generated phishing emails that are made open to the public and can be used for consequent studies. While the ability of machine learning to detect AI-generated phishing emails is encouraging, AI-generated phishing emails are different from regular phishing emails, and therefore, it is important to train machine learning systems also with AI-generated emails in order to repel future phishing attacks that are powered by generative AI. Full article
Show Figures

Figure 1

21 pages, 2929 KiB  
Article
Pinus thunbergii Parl. Somatic Plants’ Resistance to Bursaphelenchus xylophilus Depends on Pathogen-Induced Differential Transcriptomic Responses
by Tingyu Sun, Yahui Wang, Xiaoqin Wu, Yang Wang, Aixia Yang and Jianren Ye
Int. J. Mol. Sci. 2024, 25(10), 5156; https://doi.org/10.3390/ijms25105156 (registering DOI) - 9 May 2024
Abstract
Pinus thunbergii Parl. is an economically and medicinally important plant, as well as a world-renowned horticultural species of the Pinus genus. Pine wilt disease is a dangerous condition that affects P. thunbergii. However, understanding of the genetics underlying resistance to this disease [...] Read more.
Pinus thunbergii Parl. is an economically and medicinally important plant, as well as a world-renowned horticultural species of the Pinus genus. Pine wilt disease is a dangerous condition that affects P. thunbergii. However, understanding of the genetics underlying resistance to this disease is poor. Our findings reveal that P. thunbergii’s resistance mechanism is based on differential transcriptome responses generated by the early presence of the pathogen Bursaphelenchus xylophilus, also known as the pine wood nematode. A transcriptome analysis (RNA-seq) was performed to examine gene expression in shoot tissues from resistant and susceptible P. thunbergii trees. RNA samples were collected from the shoots of inoculated pines throughout the infection phases by the virulent Bursaphelenchus xylophilus AMA3 strain. The photosynthesis and plant–pathogen interaction pathways were significantly enriched in the first and third days after infection. Flavonoid biosynthesis was induced in response to late infestation (7 and 14 days post-infestation). Calmodulin, RBOH, HLC protein, RPS, PR1, and genes implicated in phytohormone crosstalk (e.g., SGT1, MYC2, PP2C, and ERF1) showed significant alterations between resistant and susceptible trees. Furthermore, salicylic acid was found to aid pine wood nematodes tolerate adverse conditions and boost reproduction, which may be significant for pine wood nematode colonization within pines. These findings provide new insights into how host defenses overcame pine wood nematode infection in the early stage, which could potentially contribute to the development of novel strategies for the control of pine wilt disease. Full article
(This article belongs to the Special Issue Advances in Forest Tree Physiology, Breeding and Genetic Research)
Show Figures

Figure 1

17 pages, 3653 KiB  
Article
Genome-Wide Identification and Functional Analysis of Salvia miltiorrhiza MicroRNAs Reveal the Negative Regulatory Role of Smi-miR159a in Phenolic Acid Biosynthesis
by Hong Zhou, Maochang Jiang, Jiang Li, Yayun Xu, Caili Li and Shanfa Lu
Int. J. Mol. Sci. 2024, 25(10), 5148; https://doi.org/10.3390/ijms25105148 (registering DOI) - 9 May 2024
Abstract
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order [...] Read more.
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5′ RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza. Full article
Show Figures

Figure 1

10 pages, 812 KiB  
Article
Eosinophilic Dermatoses: Cause of Non-Infectious Erythema after Volume Replacement with Diced Acellular Dermal Matrix in Breast Cancer?
by Jean Schneider, Seung Taek Lim, Yeong Yi An and Young Jin Suh
Life 2024, 14(5), 608; https://doi.org/10.3390/life14050608 (registering DOI) - 9 May 2024
Abstract
Introduction: Non-infectious erythema, or Red Breast Syndrome (RBS), has been observed on the skin where acellular dermal matrix was implanted, although the exact cause is yet to be determined. Patients and Methods: A total of 214 female patients underwent breast-conserving surgery (BCS) and [...] Read more.
Introduction: Non-infectious erythema, or Red Breast Syndrome (RBS), has been observed on the skin where acellular dermal matrix was implanted, although the exact cause is yet to be determined. Patients and Methods: A total of 214 female patients underwent breast-conserving surgery (BCS) and volume replacement using diced acellular dermal matrix (dADM) for breast cancer between December 2017 and December 2018. After collecting and evaluating relevant clinical data, inflammation markers, along with NK cell status presented by IFN-γ secretion assay, were measured using ELISA. Results: Nineteen patients (8.88%) presented with RBS after BCS and dADM use. A significant increase of platelet-to-lymphocyte ratio was noted in the non-RBS group (p = 0.02). Compared to the RBS group (p = 0.042), the WBC level of the non-RBS group showed significant decrease over time. Eosinophil counts increased significantly at follow-up but went up higher in the RBS group. Multivariate analysis showed preoperative chemotherapy significantly increased the hazard of RBS (OR 3.274, p = 0.047 and OR 17.098, p < 0.001, respectively). Discussion: Though no causal relationship between RBS and immune status was proven, the results suggest an association between preoperative chemotherapy and RBS in addition to the possible role of eosinophilia in leading to eosinophilic dermatoses, which warrants further exploration and elucidation. Full article
(This article belongs to the Special Issue Advances in Breast Cancer Research and Treatment)
Show Figures

Figure 1

14 pages, 2588 KiB  
Article
Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials
by Giulia Lo Dico, Lorenzo Lisuzzo, Verónica Carcelén, Giuseppe Cavallaro and Maciej Haranczyka
Materials 2024, 17(10), 2231; https://doi.org/10.3390/ma17102231 (registering DOI) - 9 May 2024
Abstract
Clays are a class of porous materials; their surfaces are naturally covered by moisture. Weak thermal treatment may be considered practical to remove the water molecules, changing the surface properties and making the micro- and/or mesoporosities accessible to interact with other molecules. Herein, [...] Read more.
Clays are a class of porous materials; their surfaces are naturally covered by moisture. Weak thermal treatment may be considered practical to remove the water molecules, changing the surface properties and making the micro- and/or mesoporosities accessible to interact with other molecules. Herein, a modulated thermogravimetric analysis (MTGA) study of the moisture behavior on the structures of five, both fibrous and laminar, clay minerals is reported. The effect of the thermal treatment at 150 °C, which provokes the release of weakly adsorbed water molecules, was also investigated. The activation energies for the removal of the adsorbed water (Ea) were calculated, and they were found to be higher, namely, from 160 to 190 kJ mol−1, for fibrous clay minerals compared to lamellar structures, ranging in this latter case from 80 to 100 kJ mol−1. The thermal treatment enhances the rehydration in Na-montmorillonite, stevensite, and sepiolite structures with a decrease in the energy required to remove it, while Ea increases significantly in palygorskite (from 164 to 273 kJ mol−1). As a proof of concept, the MTGA results are statistically correlated, together with a full characterization of the physico-chemical properties of the five clay minerals, with the adsorption of two molecules, i.e., aflatoxin B1 (AFB1) and β-carotene. Herein, the amount of adsorbed molecules ranges from 12 to 97% for the former and from 22 to 35% for the latter, depending on the particular clay. The Ea was correlated with AFB1 adsorption with a Spearman score of −0.9. When the adsorbed water is forcibly removed, e.g., under vacuum conditions and high temperatures, the structure becomes the most important, decreasing the Spearman score between β-carotene and Ea to −0.6. Full article
(This article belongs to the Special Issue Porous Ceramics, Glasses and Composites, Volume II)
Show Figures

Figure 1

16 pages, 1847 KiB  
Article
In Vitro Cytotoxic and Inflammatory Response of Gingival Fibroblasts and Oral Mucosal Keratinocytes to 3D Printed Oral Devices
by Maximilian Kollmuss, Daniel Edelhoff, Falk Schwendicke and Sabina Noreen Wuersching
Polymers 2024, 16(10), 1336; https://doi.org/10.3390/polym16101336 (registering DOI) - 9 May 2024
Abstract
The purpose of this study was to examine the biocompatibility of 3D printed materials used for additive manufacturing of rigid and flexible oral devices. Oral splints were produced and finished from six printable resins (pairs of rigid/flexible materials: KeySplint Hard [KR], KeySplint Soft [...] Read more.
The purpose of this study was to examine the biocompatibility of 3D printed materials used for additive manufacturing of rigid and flexible oral devices. Oral splints were produced and finished from six printable resins (pairs of rigid/flexible materials: KeySplint Hard [KR], KeySplint Soft [KF], V-Print Splint [VR], V-Print Splint Comfort [VF], NextDent Ortho Rigid [NR], NextDent Ortho Flex [NF]), and two types of PMMA blocks for subtractive manufacturing (Tizian Blank PMMA [TR], Tizian Flex Splint Comfort [TF]) as controls. The specimens were eluted in a cell culture medium for 7d. Human gingival fibroblasts (hGF-1) and human oral mucosal keratinocytes (hOK) were exposed to the eluates for 24 h. Cell viability, glutathione levels, apoptosis, necrosis, the cellular inflammatory response (IL-6 and PGE2 secretion), and cell morphology were assessed. All eluates led to a slight reduction of hGF-1 viability and intracellular glutathione levels. The strongest cytotoxic response of hGF-1 was observed with KF, NF, and NR eluates (p < 0.05 compared to unexposed cells). Viability, caspase-3/7 activity, necrosis levels, and IL-6/PGE2 secretion of hOK were barely affected by the materials. All materials showed an overall acceptable biocompatibility. hOK appeared to be more resilient to noxious agents than hGF-1 in vitro. There is insufficient evidence to generalize that flexible materials are more cytotoxic than rigid materials. From a biological point of view, 3D printing seems to be a viable alternative to milling for producing oral devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 6669 KiB  
Article
Understanding the Effect of Dispersant Rheology and Binder Decomposition on 3D Printing of a Solid Oxide Fuel Cell
by Man Yang, Santosh Kumar Parupelli, Zhigang Xu and Salil Desai
Micromachines 2024, 15(5), 636; https://doi.org/10.3390/mi15050636 (registering DOI) - 9 May 2024
Abstract
Solid oxide fuel cells (SOFCs) are a green energy technology that offers a cleaner and more efficient alternative to fossil fuels. The efficiency and utility of SOFCs can be enhanced by fabricating miniaturized component structures within the fuel cell footprint. In this research [...] Read more.
Solid oxide fuel cells (SOFCs) are a green energy technology that offers a cleaner and more efficient alternative to fossil fuels. The efficiency and utility of SOFCs can be enhanced by fabricating miniaturized component structures within the fuel cell footprint. In this research work, the parallel-connected inter-digitized design of micro-single-chamber SOFCs (µ-SC-SOFCs) was fabricated by a direct-write microfabrication technique. To understand and optimize the direct-write process, the cathode electrode slurry was investigated. Initially, the effects of dispersant Triton X-100 on LSCF (La0.6Sr0.2Fe0.8Co0.2O3-δ) slurry rheology was investigated. The effect of binder decomposition on the cathode electrode lines was evaluated, and further, the optimum sintering profile was determined. Results illustrate that the optimum concentration of Triton X-100 for different slurries was around 0.2–0.4% of the LSCF solid loading. A total of 60% of solid loading slurries had high viscosities and attained stability after 300 s. In addition, 40–50% solid loading slurries had relatively lower viscosity and attainted stability after 200 s. Solid loading and binder affected not only the slurry’s viscosity but also its rheology behavior. Based on the findings of this research, a slurry with 50% solid loading, 12% binder, and 0.2% dispersant was determined to be the optimal value for the fabricating of SOFCs using the direct-write method. This research work establishes guidelines for fabricating the micro-single-chamber solid oxide fuel cells by optimizing the direct-write slurry deposition process with high accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

15 pages, 733 KiB  
Article
Labdanum Resin from Cistus ladanifer L. as a Source of Compounds with Anti-Diabetic, Neuroprotective and Anti-Proliferative Activity
by David F. Frazão, Carlos Martins-Gomes, Teresa Sosa Díaz, Fernanda Delgado, José C. Gonçalves and Amélia M. Silva
Molecules 2024, 29(10), 2222; https://doi.org/10.3390/molecules29102222 (registering DOI) - 9 May 2024
Abstract
Labdanum resin or “gum” can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing [...] Read more.
Labdanum resin or “gum” can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45–70 µg/mL, for Caco-2; IC50 = 60–80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally. Full article
Show Figures

Figure 1

18 pages, 5790 KiB  
Article
Characterization of Betalain Content and Antioxidant Activity Variation Dynamics in Table Beets (Beta vulgaris L.) with Differently Colored Roots
by Diana V. Sokolova, Natalia A. Shvachko, Aleksandra S. Mikhailova, Vitaliy S. Popov, Alla E. Solovyeva and Elena K. Khlestkina
Agronomy 2024, 14(5), 999; https://doi.org/10.3390/agronomy14050999 (registering DOI) - 9 May 2024
Abstract
Antioxidant properties, betalain profiles and biochemical composition were studied in table beets with maroon and yellow root colors. Features of dynamic changes during the growing season were described. Significant differences in antioxidant activity were found in table beet accessions with differently colored roots. [...] Read more.
Antioxidant properties, betalain profiles and biochemical composition were studied in table beets with maroon and yellow root colors. Features of dynamic changes during the growing season were described. Significant differences in antioxidant activity were found in table beet accessions with differently colored roots. Negative dynamics of antioxidant activity were observed in all accessions. Statistically significant differences were registered among the accessions in the total amounts of phenolic compounds, chlorophylls, and betalains. The group of maroon accessions demonstrated strong positive correlations between their antioxidant activity and total phenolics (r = 0.91), antioxidant activity and betacyanins (r = 0.80), and between betacyanins and phenolics (r = 0.90). The antioxidant activity in the accessions with yellow roots was associated with chlorophyll b (r = 0.85), ascorbic acid (r = 0.83), and total phenolics (r = 0.83). The data are presented on the structure of betalains in two table beet groups contrasting in their root color. The results of the study made it possible to identify key components in the biochemical profile of differently colored beetroots, associated with their high antioxidant activity. Dynamic changes were shown for the antioxidant activity and fractional composition of betalains in table beet during its growing season, and a conclusion was made concerning the higher nutritional value of maroon cultivars. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 9191 KiB  
Article
Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects
by Serafeim Theocharis, Theodoros Gkrimpizis, Christina Karadimou, Anastasios Alatzas, Stefanos Koundouras and Dimitrios Taskos
Horticulturae 2024, 10(5), 490; https://doi.org/10.3390/horticulturae10050490 (registering DOI) - 9 May 2024
Abstract
Rootstocks serve as a strategic tool for grapevine adaptation to specific biotic and abiotic conditions and for managing vine growth, grape yield, and berry composition in commercial vineyards. This study investigates the influences of four different rootstock varieties (101-14 MGt, 3309 C, 110 [...] Read more.
Rootstocks serve as a strategic tool for grapevine adaptation to specific biotic and abiotic conditions and for managing vine growth, grape yield, and berry composition in commercial vineyards. This study investigates the influences of four different rootstock varieties (101-14 MGt, 3309 C, 110 R, and 140 Ru) on the viticultural performance of ‘Xinomavro’ vines, a prominent Greek red winegrape varietal. By conducting a two-year field experiment using various rootstocks, we assessed parameters related to water status, vegetative growth, yield, and berry composition. Our results revealed that rootstock selection has a significant impact on vine development, especially in terms of berry size and the concentrations of secondary metabolites. Principal component analysis confirmed the complex interaction between rootstock vigor and vine productivity. This study underscores the importance of rootstock variety in manipulating grapevine characteristics, particularly for the ‘Xinomavro’ variety, in response to regional climatic conditions. Full article
Show Figures

Figure 1

16 pages, 4429 KiB  
Article
Influence of Genotype × Environment Interaction on Yield Stability of Maize Hybrids with AMMI Model and GGE Biplot
by Chenyu Ma, Chaorui Liu and Zhilan Ye
Agronomy 2024, 14(5), 1000; https://doi.org/10.3390/agronomy14051000 (registering DOI) - 9 May 2024
Abstract
Maize yields perform differently in different environments, so the selection of suitable genotypes in diverse environments is essential for variety selection to enable better site-specific planting. Hence, the objective of the study was to estimate the productivity of 11 maize hybrids (G) in [...] Read more.
Maize yields perform differently in different environments, so the selection of suitable genotypes in diverse environments is essential for variety selection to enable better site-specific planting. Hence, the objective of the study was to estimate the productivity of 11 maize hybrids (G) in 10 different environments (E) and select high-yield and stable varieties for adaptive cultivation in 2022 and 2023. The combined analysis of variance showed that G (4%), E (50%), and their interaction (31%) had a significant effect (p < 0.01) on maize yield, with E factors contributing the most. In addition, the average yield ranged from 9398 kg/ha to 10,574 kg/ha, and ZF-2208 and DY-519 performed relatively well in both years. The AMMI model showed that the varieties DY-213, DY-605, and DY-519 had high and stable production in 2022, whereas it was ZF-2209 and LX-24 in 2023. The “W-W-W” biplot showed that DY-519 and JG-18 were the optimal varieties in 2022, and ZF-2208 and ZF-2210 were optimal in 2023. The “mean vs. stability” biplot indicated that JG-18, DY-605, and DY-213 (in 2022) and ZF-2208, LX-24, and ZF-2209 (in 2023) were the optimal varieties. Additionally, both the discrimination and representative biplot and the ranking biplot reflected that BinChuan and ShiDian (in 2022) and GengMa and YongSheng (in 2023) were the ideal test environments. In conclusion, DY-519, DY-605, ZF-2208, and LX-24 hybrids could be used for variety promotion. Moreover, BinChuan, ShiDian, GengMa, and YongSheng were the ideal test environments for selecting varieties. Therefore, the AMMI model and GGE biplot can be used to complement each other for a comprehensive evaluation of maize yield. In this way, excellent maize hybrids with high yield and stability can be selected, which could promote the selection and popularization of varieties and shorten the breeding process. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

9 pages, 344 KiB  
Article
Increased Risk for Pulmonary Embolism among Patients with Ankylosing Spondylitis—Results from a Large Database Analysis
by Omer Gendelman, Neta Simon, Niv Ben-Shabat, Yonatan Shneor Patt, Dennis McGonagle, Arnon Dov Cohen, Howard Amital and Abdulla Watad
J. Clin. Med. 2024, 13(10), 2790; https://doi.org/10.3390/jcm13102790 (registering DOI) - 9 May 2024
Abstract
Background: Axial spondyloarthropathy(AS) is a chronic inflammatory disease primarily affecting the axial skeleton, often characterized by sacroiliitis. While pulmonary embolism (PE), a potentially lethal condition, has been linked to several autoimmune diseases, limited data exist regarding PE risk among patients with AS. Methods: [...] Read more.
Background: Axial spondyloarthropathy(AS) is a chronic inflammatory disease primarily affecting the axial skeleton, often characterized by sacroiliitis. While pulmonary embolism (PE), a potentially lethal condition, has been linked to several autoimmune diseases, limited data exist regarding PE risk among patients with AS. Methods: This retrospective cohort study utilized the Clalit Healthcare Services (CHS) database, including 5825 patients with AS and 28,356 matched controls. Follow-up began at the date of first AS diagnosis for patients and at the matched patient’s diagnosis date for controls and continued until PE diagnosis, death, or study end date. Results: Prevalence of PE before AS diagnosis in patients compared to controls was 0.4% vs. 0.2% (p < 0.01). The incidence rate of PE was 11.6 per 10,000 person-years for patients with AS and 6.8 per 10,000 person-years for controls. The adjusted hazard ratio (HR) for PE in patients with AS was 1.70 (p < 0.001). Subgroup analysis demonstrated excess risk for PE in patients with AS regardless of gender and age, with variations among AS treatment categories. Discussion: Our findings highlight a significant association between AS and PE, indicating an increased risk in patients with AS independent of age and sex and suggests a subclinical level of inflammation. Preliminary results suggest a protective role of immunosuppressing drugs. Further research into the impact of treatment strategies should be conducted and could inform clinical management and reduce the life-threatening risk of PE in Patients with AS. Full article
Show Figures

Figure 1

18 pages, 19464 KiB  
Article
Radar-Based Precipitation Nowcasting Based on Improved U-Net Model
by Youwei Tan, Ting Zhang, Leijing Li and Jianzhu Li
Remote Sens. 2024, 16(10), 1681; https://doi.org/10.3390/rs16101681 (registering DOI) - 9 May 2024
Abstract
Rainfall nowcasting is the basis of extreme rainfall monitoring, flood prevention, and water resource scheduling. Based on the structural features of the U-Net model, we proposed the Double Recurrent Residual Attention Gates U-Net (DR2A-UNet) deep-learning model to carry out radar echo extrapolation. The [...] Read more.
Rainfall nowcasting is the basis of extreme rainfall monitoring, flood prevention, and water resource scheduling. Based on the structural features of the U-Net model, we proposed the Double Recurrent Residual Attention Gates U-Net (DR2A-UNet) deep-learning model to carry out radar echo extrapolation. The model was trained with mean square error (MSE) and balanced mean square error (BMSE) as loss functions, respectively. The dynamic Z-R relationship was applied for quantitative rainfall estimation. The reference U-Net model, U-Net++, and the ConvLSTM were used as control experiments to carry out radar echo extrapolation. The results showed that the model trained by BMSE had better extrapolation. For 1 h lead time, the rainfall nowcasted by each model could reflect the actual rainfall process. DR2A-UNet performed significantly better than other models for intense rainfall, with a higher extrapolation accuracy for echo intensity and variability processes. At the 2 h lead time, the nowcast accuracy of each model was significantly reduced, but the echo extrapolation and rainfall nowcasting of DR2A-UNet were better. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Resource and Water Environment II)
Show Figures

Figure 1

25 pages, 3831 KiB  
Article
Predicting the Spread of a Pandemic Using Machine Learning: A Case Study of COVID-19 in the UAE
by Donthi Sankalpa, Salam Dhou, Michel Pasquier and Assim Sagahyroon
Appl. Sci. 2024, 14(10), 4022; https://doi.org/10.3390/app14104022 (registering DOI) - 9 May 2024
Abstract
Pandemics can result in large morbidity and mortality rates that can cause significant adverse effects on the social and economic situations of communities. Monitoring and predicting the spread of pandemics helps the concerned authorities manage the required resources, formulate preventive measures, and control [...] Read more.
Pandemics can result in large morbidity and mortality rates that can cause significant adverse effects on the social and economic situations of communities. Monitoring and predicting the spread of pandemics helps the concerned authorities manage the required resources, formulate preventive measures, and control the spread effectively. In the specific case of COVID-19, the UAE (United Arab Emirates) has undertaken many initiatives, such as surveillance and contact tracing by introducing mobile apps such as Al Hosn, containment of spread by limiting the gathering of people, online schooling and remote work, sanitation drives, and closure of public places. The aim of this paper is to predict the trends occurring in pandemic outbreak, with COVID-19 in the UAE being a specific case study to investigate. In this paper, a predictive modeling approach is proposed to predict the future number of cases based on the recorded history, taking into consideration the enforced policies and provided vaccinations. Machine learning models such as LASSO Regression and Exponential Smoothing, and deep learning models such as LSTM, LSTM-AE, and bi-directional LSTM-AE, are utilized. The dataset used is publicly available from the UAE government, Federal Competitiveness and Statistics Centre (FCSC) and consists of several attributes, such as the numbers of confirmed cases, recovered cases, deaths, tests, and vaccinations. An additional categorical attribute is manually added to the dataset describing whether an event has taken place, such as a national holiday or a sanitization drive, to study the effect of such events on the pandemic trends. Experimental results showed that the Univariate LSTM model with an input of a five-day history of Confirmed Cases achieved the best performance with an RMSE of 275.85, surpassing the current state of the art related to the UAE by over 30%. It was also found that the bi-directional LSTMs performed relatively well. The approach proposed in the paper can be applied to monitor similar infectious disease outbreaks and thus contribute to strengthening the authorities’ preparedness for future pandemics. Full article
Show Figures

Figure 1

20 pages, 2906 KiB  
Article
Sustainable Utilization of Food Biowaste (Papaya Peel) Extract for Gold Nanoparticle Biosynthesis and Investigation of Its Multi-Functional Potentials
by Jayanta Kumar Patra, Han-Seung Shin, In-Jun Yang, Ly Thi Huong Nguyen and Gitishree Das
Antioxidants 2024, 13(5), 581; https://doi.org/10.3390/antiox13050581 (registering DOI) - 9 May 2024
Abstract
Papaya contains high amounts of vitamins A, C, riboflavin, thiamine, niacin, ascorbic acid, potassium, and carotenoids. It is confirmed by several studies that all food waste parts such as the fruit peels, seeds, and leaves of papaya are potential sources of phenolic compounds, [...] Read more.
Papaya contains high amounts of vitamins A, C, riboflavin, thiamine, niacin, ascorbic acid, potassium, and carotenoids. It is confirmed by several studies that all food waste parts such as the fruit peels, seeds, and leaves of papaya are potential sources of phenolic compounds, particularly in the peel. Considering the presence of numerous bioactive compounds in papaya fruit peels, the current study reports a rapid, cheap, and environmentally friendly method for the production of gold nanoparticles (AuNPs) employing food biowaste (vegetable papaya peel extract (VPPE)) and investigated its antioxidant, antidiabetic, tyrosinase inhibition, anti-inflammatory, antibacterial, and photocatalytic degradation potentials. The phytochemical analysis gave positive results for tannins, saponins, steroids, cardiac steroidal glycoside, protein, and carbohydrates. The manufactured VPPE-AuNPs were studied by UV–Vis scan (with surface plasmon resonance of 552 nm), X-ray diffraction analysis (XRD) (with average crystallite size of 44.41 nm as per the Scherrer equation), scanning electron microscopy–energy-dispersive X-ray (SEM-EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), particle size, zeta potential, etc. The mean dimension of the manufactured VPPE-AuNPs is 112.2 d.nm (PDI—0.149) with a −26.1 mV zeta potential. The VPPE-AuNPs displayed a significant antioxidant effect (93.24% DPPH scavenging and 74.23% SOD inhibition at 100 µg/mL); moderate tyrosinase effect (with 30.76%); and substantial α-glucosidase (95.63%) and α-amylase effect (50.66%) at 100 µg/mL. Additionally, it was found to be very proficient in the removal of harmful methyl orange and methylene blue dyes with degradation of 34.70% at 3 h and 24.39% at 5 h, respectively. Taken altogether, the VPPE-AuNPs have been proven to possess multiple biopotential activities, which can be explored by the food, cosmetics, and biomedical industries. Full article
(This article belongs to the Special Issue Agri-Food Wastes as Natural Source of Bioactive Antioxidants Vol. III)
Show Figures

Figure 1

18 pages, 2015 KiB  
Article
Effect of Step Load Based on Time under Tension in Hypoxia on the ACL Pre-Operative Rehabilitation and Hormone Levels: A Case Study
by Joanna Motowidło, Katarzyna Stronska-Garbien, Marta Bichowska-Pawęska, Maciej Kostrzewa, Adam Zając, Krzysztof Ficek and Miłosz Drozd
J. Clin. Med. 2024, 13(10), 2792; https://doi.org/10.3390/jcm13102792 (registering DOI) - 9 May 2024
Abstract
The aim of the study was to determine the effect of step load in hypoxia on the effectiveness of preoperative rehabilitation (PR) and hormone levels based on a case study. Introduction: We assessed the impact of variables such as rate of movement [...] Read more.
The aim of the study was to determine the effect of step load in hypoxia on the effectiveness of preoperative rehabilitation (PR) and hormone levels based on a case study. Introduction: We assessed the impact of variables such as rate of movement and time under tension (TUT) in normobaric hypoxia on the levels of growth hormone (GH), insulin-like growth factor 1 (IGF-1), and erythropoietin (EPO). Additionally, the impact of step load on the hypertrophy and strength of knee extensors and flexors was assessed. Methods: The work uses a case study, the research subject of which was a 23-year-old female professional handball player. The tests included an isokinetic assessment of the peak torque of knee extensors and flexors as well as body composition analysis. Results: The results showed a more than (10.81-fold) increase in GH after the microcycle with time under tension (TUT). The deficit between the lower limbs was also reduced. Conclusions: Using a hypoxic environment based on an appropriate altitude, combined with changes such as a short rest break between sets and a controlled tempo of movement with an eccentric phase, TUT may offer an alternative to the PR process, especially among athletes who care about fast RTS. Full article
(This article belongs to the Special Issue Sports Injuries: Recent Advances in Prevention and Rehabilitation)
Show Figures

Figure 1

18 pages, 10221 KiB  
Article
Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells
by Nuzhet Nihaar Nasir Ahamed, Carlos A. Mendiola-Escobedo, Victor H. Perez-Gonzalez and Blanca H. Lapizco-Encinas
Biosensors 2024, 14(5), 237; https://doi.org/10.3390/bios14050237 (registering DOI) - 9 May 2024
Abstract
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated [...] Read more.
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
Show Figures

Figure 1

14 pages, 247 KiB  
Review
Theorizing Interpersonal and Technological Dimensions of Privacy in the Exchange of Sexual Communication
by Kathryn D. Coduto
Sexes 2024, 5(2), 71-84; https://doi.org/10.3390/sexes5020006 (registering DOI) - 9 May 2024
Abstract
As technology continues to evolve, so too do privacy concerns individuals have about technology. This is especially true when individuals share highly sensitive, personal content through technology. When individuals sext, they are sharing sexually explicit messages, photos, and videos with another person. Two [...] Read more.
As technology continues to evolve, so too do privacy concerns individuals have about technology. This is especially true when individuals share highly sensitive, personal content through technology. When individuals sext, they are sharing sexually explicit messages, photos, and videos with another person. Two theories are interrogated in how they may apply to sexting and privacy: communication privacy management theory and privacy calculus. Utilizing these theories, privacy is highlighted in this article as a negotiation process between partners and technologies. Individuals must consider who they share material with and the channels they use, and these theories can help in developing a better understanding of these processes. Sexting can be a positive influence on adults’ romantic relationships, whether serious or casual; yet, they need to be able to engage in these behaviors in ways that encourage trust both interpersonally and with their technology. Full article
14 pages, 978 KiB  
Article
Development and Internal Validation of Nomograms for Survival of Advanced Epithelial Ovarian Cancer Based on Established Prognostic Factors and Hematologic Parameters
by Sherin Abdo Said, Joanna IntHout, Judith E. den Ouden, Janneke E. W. Walraven, Maaike A. van der Aa, Joanne A. de Hullu and Anne M. van Altena
J. Clin. Med. 2024, 13(10), 2789; https://doi.org/10.3390/jcm13102789 (registering DOI) - 9 May 2024
Abstract
Objective: To assess the association between pretreatment thrombocytosis, anemia, and leukocytosis and overall survival (OS) of advanced-stage EOC. Furthermore, to develop nomograms using established prognostic factors and pretreatment hematologic parameters to predict the OS of advanced EOC patients. Methods: Advanced-stage EOC patients [...] Read more.
Objective: To assess the association between pretreatment thrombocytosis, anemia, and leukocytosis and overall survival (OS) of advanced-stage EOC. Furthermore, to develop nomograms using established prognostic factors and pretreatment hematologic parameters to predict the OS of advanced EOC patients. Methods: Advanced-stage EOC patients treated between January 1996 and January 2010 in eastern Netherlands were included. Survival outcomes were compared between patients with and without pretreatment thrombocytosis (≥450,000 platelets/µL), anemia (hemoglobin level of <7.5 mmol/L), or leukocytosis (≥11.0 × 109 leukocytes/L). Three nomograms (for ≤3-, ≥5-, and ≥10-year OS) were developed. Candidate predictors were fitted into multivariable logistic regression models. Multiple imputation was conducted. Model performance was assessed on calibration, discrimination, and Brier scores. Bootstrap validation was used to correct for model optimism. Results: A total of 773 advanced-stage (i.e., FIGO stages IIB–IV) EOC patients were included. The median [interquartile range, IQR] OS was 2.3 [1.3–4.2] and 3.0 [1.4–7.0] years for patients with and without pretreatment thrombocytosis (p < 0.01). The median OS was not notably different for patients with and without pretreatment leukocytosis (p = 0.58) or patients with and without pretreatment anemia (p = 0.07). The final nomograms comprised established predictors with either pretreatment leukocyte or platelet count. The ≥5- and ≥10-year OS models demonstrated good calibration and adequate discrimination with optimism-corrected c-indices [95%-CI] of 0.76 [0.72–0.80] and 0.78 [0.73–0.83], respectively. The ≤3-year OS model demonstrated suboptimal performance with an optimism-corrected c-index of 0.71 [0.66–0.75]. Conclusions: Pretreatment thrombocytosis is associated with poorer EOC survival. Two well-performing models predictive of ≥5-year and ≥10-year OS in advanced-stage EOC were developed and internally validated. Full article
(This article belongs to the Special Issue Gynecologic Oncology: Diagnosis, Targeted Therapies, and Management)
Show Figures

Figure 1

9 pages, 903 KiB  
Case Report
Primary Solid Pseudopapillary Tumor of the Ovary: A Case Report and Review of the Literature
by Juhun Lee, Seung Ho Song, In Hee Lee, Dong Ja Kim and Hyun Jung Lee
J. Clin. Med. 2024, 13(10), 2791; https://doi.org/10.3390/jcm13102791 (registering DOI) - 9 May 2024
Abstract
Introduction: Solid pseudopapillary neoplasms (SPNs) are rare and mainly originate from the pancreas. SPNs originating from the ovary (SPN-O) are extremely rare, and only 13 cases have been reported in the English literature since 2010. Case: We report a 31-year-old woman with SPN-O [...] Read more.
Introduction: Solid pseudopapillary neoplasms (SPNs) are rare and mainly originate from the pancreas. SPNs originating from the ovary (SPN-O) are extremely rare, and only 13 cases have been reported in the English literature since 2010. Case: We report a 31-year-old woman with SPN-O accompanied by multiple metastases in the abdominal cavity. The patient underwent staging surgery and cytoreduction. Furthermore, the multidisciplinary board decided on adjuvant chemotherapy with an FP regimen (fluorouracil plus cisplatin) because a microscopic metastasis was discovered in the peritoneum near the appendix. Next-generation sequencing showed some pathologic mutations of oncogenes/cancer-associated genes, including CTNNB1 and TP53. This is the fourteenth case of SPN-O and the first one to demonstrate the TP53 pathogenic mutant variant in SPN-O. The patient showed 8 months of disease-free survival until February 2024. Conclusion: The combination of R0 cytoreduction with FOLFIRI chemotherapy appears to be an effective and feasible treatment option. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop