The 2023 MDPI Annual Report has
been released!
 
23 pages, 3154 KiB  
Article
Implementation and Verification of a Micro-Jet-Vane System of a Solid Rocket Motor for a Micro-Nano Satellite
by Gang Zhang, Wen Feng, Youwen Tan, Yang Liu and Weihua Hui
Aerospace 2024, 11(5), 384; https://doi.org/10.3390/aerospace11050384 (registering DOI) - 10 May 2024
Abstract
To achieve rapid vector maneuvering of a space micro-nano satellite, a micro-sized solid rocket motor was utilized as its propulsion system, and a micro-jet-vane-thrust-vector control system was devised. Computational fluid dynamics (CFD) numerical simulations were conducted on the designed micro-vane structure at various [...] Read more.
To achieve rapid vector maneuvering of a space micro-nano satellite, a micro-sized solid rocket motor was utilized as its propulsion system, and a micro-jet-vane-thrust-vector control system was devised. Computational fluid dynamics (CFD) numerical simulations were conducted on the designed micro-vane structure at various deflection angles to ascertain the lateral force and flow field characteristics. The motor’s combustion temperature is 1380 K. Therefore, materials such as 45 steel, alumina ceramics, and tungsten–molybdenum alloy were chosen for the jet vanes to carry out ground-based-motor-jet-ablation experiments and measure the ablation amount. Concurrently, experimental data, including lateral force, were gathered. The tests demonstrated that despite 45 steel having a higher melting point than the combustion temperature significant ablation still occurred. Alumina ceramics exhibited defects and experienced ablation and fragmentation post-test. In contrast, tungsten–molybdenum alloy, being a refractory metal, showed minimal ablation after testing, making it an ideal material for micro-jet vanes. At a 20° deflection of the jet vanes, the lateral force calculated via numerical simulation was 3.76 N, whereas the lateral force obtained from the test was approximately 3.8 N, resulting in an error within 1% and validating the numerical simulation’s validity and accuracy. The jet vanes can generate a maximum steering angle of 8°, thus ensuring the micro-nano satellite’s swift vector maneuvering at large angles. Full article
14 pages, 906 KiB  
Article
Mitochondrial Genomic Evidence of Selective Constraints in Small-Bodied Terrestrial Cetartiodactyla
by Xuesong Mei, Xibao Wang, Xiaoyang Wu, Guangshuai Liu, Yao Chen, Shengyang Zhou, Yongquan Shang, Zhao Liu, Xiufeng Yang, Weilai Sha and Honghai Zhang
Animals 2024, 14(10), 1434; https://doi.org/10.3390/ani14101434 (registering DOI) - 10 May 2024
Abstract
Body size may drive the molecular evolution of mitochondrial genes in response to changes in energy requirements across species of different sizes. In this study, we perform selection pressure analysis and phylogenetic independent contrasts (PIC) to investigate the association between molecular evolution of [...] Read more.
Body size may drive the molecular evolution of mitochondrial genes in response to changes in energy requirements across species of different sizes. In this study, we perform selection pressure analysis and phylogenetic independent contrasts (PIC) to investigate the association between molecular evolution of mitochondrial genome protein-coding genes (mtDNA PCGs) and body size in terrestrial Cetartiodactyla. Employing selection pressure analysis, we observe that the average non-synonymous/synonymous substitution rate ratio (ω) of mtDNA PCGs is significantly reduced in small-bodied species relative to their medium and large counterparts. PIC analysis further confirms that ω values are positively correlated with body size (R2 = 0.162, p = 0.0016). Our results suggest that mtDNA PCGs of small-bodied species experience much stronger purifying selection as they need to maintain a heightened metabolic rate. On the other hand, larger-bodied species may face less stringent selective pressures on their mtDNA PCGs, potentially due to reduced relative energy expenditure per unit mass. Furthermore, we identify several genes that undergo positive selection, possibly linked to species adaptation to specific environments. Therefore, despite purifying selection being the predominant force in the evolution of mtDNA PCGs, positive selection can also occur during the process of adaptive evolution. Full article
(This article belongs to the Section Animal Genetics and Genomics)
18 pages, 2073 KiB  
Article
Determination of Optimal Machining Parameters Based on Roughness and Vibration Measurements of Pieces Produced by Whirling on a Lathe Machine
by Zlatko Botak, Katarina Pisačić, Marko Horvat and Tanja Tomić
Machines 2024, 12(5), 328; https://doi.org/10.3390/machines12050328 (registering DOI) - 10 May 2024
Abstract
Worms can be produced using special machines or standard lathes equipped with a whirling thread-cutting device. A blank is placed on the mandrel and tightened using the three-jawed chuck of the standard lathe. If the workpiece diameter is excessively large, passage through the [...] Read more.
Worms can be produced using special machines or standard lathes equipped with a whirling thread-cutting device. A blank is placed on the mandrel and tightened using the three-jawed chuck of the standard lathe. If the workpiece diameter is excessively large, passage through the driven pulley is not possible, and the workpiece cannot be supported. Therefore, a new tool holder for whirling devices is needed. During the whirling process, vibrations in the form of machine velocity amplitudes were measured. After whirling was complete, roughness values were calculated. Using numerical procedures of Wolfram Mathematica 10, vibration peaks were extracted, from which frequencies and maximum amplitudes were determined. The data were then inputted into Design Expert, and the rotational speed and amount of separated material were optimized. The results of the study showed that the quality of the processed surface did not improve with processing in two passes of the tool. The measured vibration amplitudes on the lathe carrier and thread whirling attachment increased with cutting speed at the same cutting depth, whereas the quality of the machined surface was best at the smallest and largest cutting depths. Full article
23 pages, 1507 KiB  
Article
Technoeconomic Analysis of Intensified PEGylated Biopharmaceutical Recombinant Protein Production: Alpha Antitrypsin as a Model Case
by Salem Alkanaimsh, Abdullah M. Alsalal and Hesham El-Touney
Processes 2024, 12(5), 979; https://doi.org/10.3390/pr12050979 (registering DOI) - 10 May 2024
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterized by the insufficient production of the AAT protein. Due to availability limitations, not all AATD patients receive protein therapy treatment. In this study, the technoeconomic analysis of different processes (conventional and intensified) producing 200 [...] Read more.
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterized by the insufficient production of the AAT protein. Due to availability limitations, not all AATD patients receive protein therapy treatment. In this study, the technoeconomic analysis of different processes (conventional and intensified) producing 200 kg/year of PEGylated recombinant AAT (PEG-AAT) using a Chinese hamster ovary cell line was investigated. All bioprocesses consist of upstream, downstream, and PEGylation sections. A base-case model (process A) of the conventional fed-batch production bioreactor was developed using SuperPro Designer software (Version 13) to evaluate the economic feasibility of the process. The cost of goods (COG) was estimated to be approximately USD 387.6/g. Furthermore, an intensified process (B) was modeled and evaluated to reduce the COG. Process intensification was implemented in the process (N-1 perfusion bioreactor). The specific operating COG for process B was found to be 10% less than that of process A. Scenario analysis was performed to assess the impact of process capacity (100–1000 kg/year) and cell-specific productivity (30–90 pg/cell/day). With an increase in process capacity, the specific operating COG was reduced for all processes. Increasing cell-specific productivity decreases the specific operating COG at different rates for each process, depending on the titer level. Future investigations into the PEGylation section are required since it has the highest COG of all the sections. Full article
28 pages, 7118 KiB  
Review
Ceramic Matrix Composites: Classifications, Manufacturing, Properties, and Applications
by Shriya Shrivastava, Dipen Kumar Rajak, Tilak Joshi, Dwesh K. Singh and D. P. Mondal
Ceramics 2024, 7(2), 652-679; https://doi.org/10.3390/ceramics7020043 (registering DOI) - 10 May 2024
Abstract
Ceramic matrix composites (CMCs) are a significant advancement in materials science and engineering because they combine the remarkable characteristics of ceramics with the strength and toughness of fibers. With their unique properties, which offer better performance and endurance in severe settings, these advanced [...] Read more.
Ceramic matrix composites (CMCs) are a significant advancement in materials science and engineering because they combine the remarkable characteristics of ceramics with the strength and toughness of fibers. With their unique properties, which offer better performance and endurance in severe settings, these advanced composites have attracted significant attention in various industries. At the same time, lightweight ceramic matrix composites (LCMCs) provide an appealing alternative for a wide range of industries that require materials with excellent qualities such as high-temperature stability, low density, corrosion resistance, and excellent mechanical performance. CMC uses will expand as production techniques and material research improve, revolutionizing aerospace, automotive, and other industries. The effectiveness of CMCs primarily relies on the composition of their constituent elements and the methods employed in their manufacturing. Therefore, it is crucial to explore the functional properties of various global ceramic matrix reinforcements, their classifications, and the manufacturing techniques used in CMC fabrication. This study aims to overview a diverse range of CMCs reinforced with primary fibers, including their classifications, manufacturing techniques, functional properties, significant applications, and global market size. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

24 pages, 4349 KiB  
Article
Elucidating the Role of MicroRNA-18a in Propelling a Hybrid Epithelial–Mesenchymal Phenotype and Driving Malignant Progression in ER-Negative Breast Cancer
by Madhumathy G. Nair, Apoorva D. Mavatkar, Chandrakala M. Naidu, Snijesh V.P., Anupama C.E., Savitha Rajarajan, Sarthak Sahoo, Gayathri Mohan, Vishnu Sunil Jaikumar, Rakesh S. Ramesh, Srinath B.S., Mohit Kumar Jolly, Tessy Thomas Maliekal and Jyothi S. Prabhu
Cells 2024, 13(10), 821; https://doi.org/10.3390/cells13100821 (registering DOI) - 10 May 2024
Abstract
Epigenetic alterations that lead to differential expression of microRNAs (miRNAs/miR) are known to regulate tumour cell states, epithelial–mesenchymal transition (EMT) and the progression to metastasis in breast cancer. This study explores the key contribution of miRNA-18a in mediating a hybrid E/M cell state [...] Read more.
Epigenetic alterations that lead to differential expression of microRNAs (miRNAs/miR) are known to regulate tumour cell states, epithelial–mesenchymal transition (EMT) and the progression to metastasis in breast cancer. This study explores the key contribution of miRNA-18a in mediating a hybrid E/M cell state that is pivotal to the malignant transformation and tumour progression in the aggressive ER-negative subtype of breast cancer. The expression status and associated effects of miR-18a were evaluated in patient-derived breast tumour samples in combination with gene expression data from public datasets, and further validated in in vitro and in vivo breast cancer model systems. The clinical relevance of the study findings was corroborated against human breast tumour specimens (n = 446 patients). The down-regulated expression of miR-18a observed in ER-negative tumours was found to drive the enrichment of hybrid epithelial/mesenchymal (E/M) cells with luminal attributes, enhanced traits of migration, stemness, drug-resistance and immunosuppression. Further analysis of the miR-18a targets highlighted possible hypoxia-inducible factor 1-alpha (HIF-1α)-mediated signalling in these tumours. This is a foremost report that validates the dual role of miR-18a in breast cancer that is subtype-specific based on hormone receptor expression. The study also features a novel association of low miR-18a levels and subsequent enrichment of hybrid E/M cells, increased migration and stemness in a subgroup of ER-negative tumours that may be attributed to HIF-1α mediated signalling. The results highlight the possibility of stratifying the ER-negative disease into clinically relevant groups by analysing miRNA signatures. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Cancer Invasion and Metastasis)
9 pages, 258 KiB  
Brief Report
Comparison of Direct and Indirect Detection of Toxoplasma gondii in Ovine Using Real-Time PCR, Serological and Histological Techniques
by Roberto Condoleo, Davide Santori, Erminia Sezzi, Salvatore Serra, Sara Tonon, Claudia Eleni, Antonio Bosco, Lucy Nicole Papa Caminiti and Maria Francesca Iulietto
Animals 2024, 14(10), 1432; https://doi.org/10.3390/ani14101432 (registering DOI) - 10 May 2024
Abstract
Toxoplasma gondii is a zoonotic pathogen and the ingestion of tissue cysts by consumption of lamb or mutton has been identified as a possible cause of infection in humans. Many serological surveys in sheep have been performed, showing relevant serological rates; however, while [...] Read more.
Toxoplasma gondii is a zoonotic pathogen and the ingestion of tissue cysts by consumption of lamb or mutton has been identified as a possible cause of infection in humans. Many serological surveys in sheep have been performed, showing relevant serological rates; however, while the detection of antibodies indicates an exposure to T. gondii, this does not necessarily imply the presence of tissue cysts in edible tissue. The current study aims to provide further understanding on the occurrence of T. gondii in sheep muscles and the strength of correlation between serological positivity and presence of the parasite in sheep. From 349 sheep, samples (i.e., blood, heart and diaphragm) were collected and subjected to ELISA tests, real-time PCR and histological tests. Despite the high seroprevalence, T. gondii DNA was detected in the heart and/or the diaphragm from 13 out of the 349 tested sheep (3.7%); all were adults (13/191). Furthermore, the histological tests did not reveal the presence of T. gondii tissue cysts in any of the examined portions of interventricular septum. It should be considered that the likelihood of detecting genetic material of the parasite is probably influenced by the uneven distribution of the tissue cysts in the carcass as well as the methodology applied. The findings of this study support the importance of describing the uncertainty associated with the data used for risk assessment to reduce inaccurate estimation or risk overestimation. Full article
(This article belongs to the Collection Diseases of Small Ruminants)
28 pages, 684 KiB  
Review
Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice
by Corrado Benevolo Savelli, Matteo Bisio, Luca Legato, Filippo Fasano, Elisa Santambrogio, Maura Nicolosi, Deborah Morra, Carola Boccomini, Roberto Freilone, Barbara Botto and Mattia Novo
Cancers 2024, 16(10), 1830; https://doi.org/10.3390/cancers16101830 (registering DOI) - 10 May 2024
Abstract
Classical Hodgkin Lymphoma (cHL) is a highly curable disease, but around 20% of patients experience progression or relapse after standard frontline chemotherapy regimens. Salvage regimens followed by autologous stem cell transplants represent the historical treatment approach for these cases. In the last decade, [...] Read more.
Classical Hodgkin Lymphoma (cHL) is a highly curable disease, but around 20% of patients experience progression or relapse after standard frontline chemotherapy regimens. Salvage regimens followed by autologous stem cell transplants represent the historical treatment approach for these cases. In the last decade, with the increasing understanding of cHL biology and tumor microenvironment role in disease course, novel molecules have been introduced in clinical practice, improving outcomes in the relapsed/refractory setting. The anti-CD30 antibody-drug conjugated brentuximab vedotin and PD-1/PD-L1 checkpoint inhibitors represent nowadays curative options for chemorefractory patients, and randomized trials recently demonstrated their efficacy in frontline immune-chemo-combined modalities. Several drugs able to modulate the patients’ T-lymphocytes and NK cell activity are under development, as well as many anti-CD30 chimeric antigen receptor T-cell products. Multiple tumor aberrant epigenetic mechanisms are being investigated as targets for antineoplastic compounds such as histone deacetylase inhibitors and hypomethylating agents. Moreover, JAK2 inhibition combined with anti-PD1 blockade revealed a potential complementary therapeutic pathway in cHL. In this review, we will summarize recent findings on cHL biology and novel treatment options clinically available, as well as promising future perspectives in the field. Full article
(This article belongs to the Special Issue Hodgkin Lymphoma (Volume II))
18 pages, 2127 KiB  
Article
A Sensorized 3D-Printed Knee Test Rig for Preliminary Experimental Validation of Patellar Tracking and Contact Simulation
by Florian Michaud, Francisco Mouzo, Daniel Dopico and Javier Cuadrado
Sensors 2024, 24(10), 3042; https://doi.org/10.3390/s24103042 (registering DOI) - 10 May 2024
Abstract
Experimental validation of computational simulations is important because it provides empirical evidence to verify the accuracy and reliability of the simulated results. This validation ensures that the simulation accurately represents real-world phenomena, increasing confidence in the model’s predictive capabilities and its applicability to [...] Read more.
Experimental validation of computational simulations is important because it provides empirical evidence to verify the accuracy and reliability of the simulated results. This validation ensures that the simulation accurately represents real-world phenomena, increasing confidence in the model’s predictive capabilities and its applicability to practical scenarios. The use of musculoskeletal models in orthopedic surgery allows for objective prediction of postoperative function and optimization of results for each patient. To ensure that simulations are trustworthy and can be used for predictive purposes, comparing simulation results with experimental data is crucial. Although progress has been made in obtaining 3D bone geometry and estimating contact forces, validation of these predictions has been limited due to the lack of direct in vivo measurements and the economic and ethical constraints associated with available alternatives. In this study, an existing commercial surgical training station was transformed into a sensorized test bench to replicate a knee subject to a total knee replacement. The original knee inserts of the training station were replaced with personalized 3D-printed bones incorporating their corresponding implants, and multiple sensors with their respective supports were added. The recorded movement of the patella was used in combination with the forces recorded by the pressure sensor and the load cells, to validate the results obtained from the simulation, which was performed by means of a multibody dynamics formulation implemented in a custom-developed library. The utilization of 3D-printed models and sensors facilitated cost-effective and replicable experimental validation of computational simulations, thereby advancing orthopedic surgery while circumventing ethical concerns. Full article
12 pages, 605 KiB  
Article
Incidence of Pediatric Cancers in French Guiana: How Does It Compare to Global Estimates?
by Mathieu Nacher, Qiannan Wang, Lindsay Osei, Benjamin Faivre, Narcisse Elenga, Antoine Adenis, Nathalie Deschamps and Kinan Drak Alsibai
Cancers 2024, 16(10), 1829; https://doi.org/10.3390/cancers16101829 (registering DOI) - 10 May 2024
Abstract
French Guiana is a French territory in South America. The exposome of persons living there is quite different from that in mainland France and the ethnic make-up of the population is also quite different. Poverty is also widespread with difficulties in accessing care [...] Read more.
French Guiana is a French territory in South America. The exposome of persons living there is quite different from that in mainland France and the ethnic make-up of the population is also quite different. Poverty is also widespread with difficulties in accessing care magnified by the low medical-professional density. In this singular context, we aimed to measure the incidence of pediatric cancers and to compare it with other continents. We used French Guiana’s certified cancer registry to study this between 2003 and 2017. Incidences were standardized using the world population with three strata: 0–4 years, 5–9 years, and 10–14 years. There were 164 solid tumors or hematologic malignancies diagnosed in children under the age of 15 (92 in boys and 72 in girls). Over the study period, the standardized incidence rate was 14.1 per 100,000 among children aged under 15 years. There was no significant trend during the study period. The three most common causes of cancer were leukemias—mostly lymphoblastic—CNS tumors, and sarcoma. The standardized incidence of pediatric cancers in French Guiana was similar to those in Western Europe and North America. As others have discovered, we found that males tended to be more likely to develop cancer, notably leukemia, CNS tumors, sarcoma, and retinoblastoma. As elsewhere, the predominant cancer types changed with age. Our initial assumption was that given the singular context of French Guiana, there may have been differences in pediatric cancer incidences. Here we showed that overall, contrary to our assumption and to trends in tropical countries, the incidence of pediatric cancers was in a range between Western Europe and North America with some apparent but non-significant differences in the main types of cancers observed in global statistics. Quality cancer registry data in this tropical region confirm the suspicion that lower incidences in tropical low- and middle-income countries are likely to result from incomplete diagnosis and data collection. Full article
(This article belongs to the Section Pediatric Oncology)
13 pages, 835 KiB  
Article
Medium- and Long-Term Electric Vehicle Ownership Forecasting for Urban Residents
by Zhao-Xia Xiao, Jiang-Wei Jia, Xiang-Yu Liu, Hong-Kun Bai, Qiu-Yan Li and Yuan-Peng Hua
World Electr. Veh. J. 2024, 15(5), 212; https://doi.org/10.3390/wevj15050212 (registering DOI) - 10 May 2024
Abstract
With the rapid development of electric vehicles (EVs) in Chinese cities, accurately forecasting the number of EVs used by urban residents in the next five years and more long term is beneficial for the government to adjust industrial policies of EVs, guide the [...] Read more.
With the rapid development of electric vehicles (EVs) in Chinese cities, accurately forecasting the number of EVs used by urban residents in the next five years and more long term is beneficial for the government to adjust industrial policies of EVs, guide the rational planning of urban charging facilities and supporting distribution network, and achieve the rational and orderly development of the EV industry. The paper considers the advantages of using the grey GM(1,1) prediction model to predict the short-term ownership of EVs by urban residents. Then, by forecasting the number of EV users in a certain city in the future and predicting the number of private vehicles in the future, the boundary conditions for long-term year ownership of EVs by residents are determined. Combined with historical data and short-term forecast data generated by the grey prediction model, the model parameters that include the innovation coefficient and imitation coefficient of the Bass model are trained using a genetic algorithm. Finally, the Bass model is used for medium- to long-term ownership forecasting from 2023 to 2040. The prediction error for the target year is provided. The simulation results indicate that the ownership of resident EVs in this city will experience rapid growth in the next five years. Full article
13 pages, 1511 KiB  
Article
Environmental Surveillance through Machine Learning-Empowered Utilization of Optical Networks
by Hasan Awad, Fehmida Usmani, Emanuele Virgillito, Rudi Bratovich, Roberto Proietti, Stefano Straullu, Francesco Aquilino, Rosanna Pastorelli and Vittorio Curri
Sensors 2024, 24(10), 3041; https://doi.org/10.3390/s24103041 (registering DOI) - 10 May 2024
Abstract
We present the use of interconnected optical mesh networks for early earthquake detection and localization, exploiting the existing terrestrial fiber infrastructure. Employing a waveplate model, we integrate real ground displacement data from seven earthquakes with magnitudes ranging from four to six to simulate [...] Read more.
We present the use of interconnected optical mesh networks for early earthquake detection and localization, exploiting the existing terrestrial fiber infrastructure. Employing a waveplate model, we integrate real ground displacement data from seven earthquakes with magnitudes ranging from four to six to simulate the strains within fiber cables and collect a large set of light polarization evolution data. These simulations help to enhance a machine learning model that is trained and validated to detect primary wave arrivals that precede earthquakes’ destructive surface waves. The validation results show that the model achieves over 95% accuracy. The machine learning model is then tested against an M4.3 earthquake, exploiting three interconnected mesh networks as a smart sensing grid. Each network is equipped with a sensing fiber placed to correspond with three distinct seismic stations. The objective is to confirm earthquake detection across the interconnected networks, localize the epicenter coordinates via a triangulation method and calculate the fiber-to-epicenter distance. This setup allows early warning generation for municipalities close to the epicenter location, progressing to those further away. The model testing shows a 98% accuracy in detecting primary waves and a one second detection time, affording nearby areas 21 s to take countermeasures, which extends to 57 s in more distant areas. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2024)
27 pages, 16687 KiB  
Article
The Influence of Variations in Synthesis Conditions on the Phase Composition, Strength and Shielding Characteristics of CuBi2O4 Films
by Dauren B. Kadyrzhanov, Medet T. Idinov, Dmitriy I. Shlimas and Artem L. Kozlovskiy
Crystals 2024, 14(5), 453; https://doi.org/10.3390/cryst14050453 (registering DOI) - 10 May 2024
Abstract
This paper presents the results of the influence of variation of the synthesis conditions of CuBi/CuBi2O4 films with a change in the applied potential difference, as well as a change in electrolyte solutions (in the case of adding cobalt or [...] Read more.
This paper presents the results of the influence of variation of the synthesis conditions of CuBi/CuBi2O4 films with a change in the applied potential difference, as well as a change in electrolyte solutions (in the case of adding cobalt or nickel sulfates to the electrolyte solution) on changes in the phase composition, structural parameters and strength characteristics of films obtained using the electrochemical deposition method. During the experiments, it was found that, in the case of the addition of cobalt or nickel to the electrolyte solutions, the formation of films with a spinel-type tetragonal CuBi2O4 phase is observed. In this case, a growth in the applied potential difference leads to the substitution of copper with cobalt (nickel), which in turn leads to an increase in the structural ordering degree. It should be noted that, during the formation of CuBi/CuBi2O4 films from solution–electrolyte №1, the formation of the CuBi2O4 phase is observed only with an applied potential difference of 4.0 V, while the addition of cobalt or nickel sulfates to the electrolyte solution results in the formation of the tetragonal CuBi2O4 phase over the entire range of the applied potential difference (from 2.0 to 4.0 V). Studies have been carried out on the strength and tribological characteristics of synthesized films depending on the conditions of their production. It has been established that the addition of cobalt or nickel sulfates to electrolyte solutions leads to an increase in the strength of the resulting films from 20 to 80%, depending on the production conditions (with variations in the applied potential difference). During the studies, it was established that substitution of copper with cobalt or nickel in the composition of CuBi2O4 films results in a rise in the shielding efficiency of low-energy gamma radiation by 3.0–4.0 times in comparison with copper films, and 1.5–2.0 times for high-energy gamma rays, in which case the decrease in efficiency is due to differences in the mechanisms of interaction of gamma quanta, as well as the occurrence of secondary radiation as a result of the formation of electron–positron pairs and the Compton effect. Full article
Show Figures

Figure 1

18 pages, 3629 KiB  
Article
Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats
by Gulfira A. Yestemirova, Zura B. Yessimsiitova and Michael Danilenko
Pharmaceuticals 2024, 17(5), 619; https://doi.org/10.3390/ph17050619 (registering DOI) - 10 May 2024
Abstract
The inhalation of gasoline vapors (GV) is associated with developing various pathologies. Particularly, oil refinery and gas station workers are at a greater risk of developing lung cancer, kidney cancer, bladder cancer, and hematological disorders, including acute myeloid leukemia. Therefore, preventing the harmful [...] Read more.
The inhalation of gasoline vapors (GV) is associated with developing various pathologies. Particularly, oil refinery and gas station workers are at a greater risk of developing lung cancer, kidney cancer, bladder cancer, and hematological disorders, including acute myeloid leukemia. Therefore, preventing the harmful effects of GV and alleviating their consequences appear to be important and timely issues. In this study, we investigated the potential of vitamin D3, turmeric powder, and their combination to ameliorate the toxicity of gasoline fumes in rats. Separate groups of animals fed with a standard rodent diet, with or without the supplementation of vitamin D3 (750 IU/kg body weight) and/or turmeric powder (0.5%, w/w, in food), were untreated or treated with GV (11.5 ± 1.3 cm3/h/m3/day) for 30, 60, or 90 days. Changes in the body weight were monitored weekly. Histological, biochemical, and hematological parameters were determined at the end of each treatment period. While the exposure of rats to GV resulted in a time-dependent reduction in body weight, supplementation with vitamin D3, but not with turmeric root powder or their combination, partially prevented weight loss. Macroscopical and histological analyses showed pronounced time-dependent changes in the organs and tissues of GV-treated rats. These included alveolar wall collapse in the lungs, the destruction of the lobular structure and hepatocytolysis in the liver, the shrinkage and fragmentation of glomeruli in the kidneys, and the disorganization of the lymphoid follicles in the spleen. However, co-treatment with the nutritional supplements tested, especially vitamin D3, noticeably alleviated the above conditions. This was accompanied by a significant improvement in the blood chemistry and hematological parameters. Collectively, our results demonstrate that the harmful effects of environmental exposure to GV can be reduced upon supplementation of vitamin D3. The fact that the protective activity of vitamin D3 alone was higher than that of turmeric root powder or the combined treatment suggests that combinations of these supplements may not always be more beneficial than each agent applied separately. Full article
22 pages, 2273 KiB  
Article
Robust Fixed-Time Fault-Tolerant Control for USV with Prescribed Tracking Performance
by Zifu Li and Kai Lei
J. Mar. Sci. Eng. 2024, 12(5), 799; https://doi.org/10.3390/jmse12050799 (registering DOI) - 10 May 2024
Abstract
The unmanned surface vessel (USV) is an emerging marine tool with its advantages of automation and intelligence in recent years; the good trajectory tracking performance is an important capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control scheme for a USV [...] Read more.
The unmanned surface vessel (USV) is an emerging marine tool with its advantages of automation and intelligence in recent years; the good trajectory tracking performance is an important capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control scheme for a USV with model parameter uncertainties, unknown external disturbances, and actuator faults, based on an improved fixed-time disturbances observer. Firstly, the proposed observer can not only accurately and quickly estimate and compensate the lumped nonlinearity, including actuator faults, but also reduce the chattering phenomenon by introducing the hyperbolic tangent function. Then, under the framework of prescribed performance control, a prescribed performance fault-tolerant controller is designed based on a nonsingular fixed-time sliding mode surface, which guarantees the transient and steady-state performance of a USV under actuator faults and meets the prescribed tracking performance requirements. In addition, it is proved that the closed-loop control system has fixed-time stability according to Lyapunov’s theory. Finally, upon conducting numerical simulations and comparing the proposed control scheme with the SMC and the finite-time NFTSMC scheme, it is evident that the absolute error tracking performance index of the proposed control scheme is significantly lower, thus indicating its superior accuracy. Full article
19 pages, 3021 KiB  
Article
An Evaluation of the Anxiolytic Potential of Amentoflavone in Adult Zebrafish Undergoing Alcohol Withdrawal: In Vivo and In Silico Studies
by Lucas Soares Frota, Wildson Max Barbosa da Silva, Daniela Ribeiro Alves, Sacha Aubrey Alves Santos Rodrigues, Gabriela Alves do Nascimento, Francisco Ernani Alves Magalhães, Adriana Rolim Campos and Selene Maia de Morais
Receptors 2024, 3(2), 201-219; https://doi.org/10.3390/receptors3020011 - 10 May 2024
Abstract
The constant use of alcoholic beverages can deregulate serotonin levels, affecting neurotransmitters and triggering symptoms of anxiety. In this context, the objective of this work was to evaluate the anxiolytic potential and possible action mechanisms of the natural compound amentoflavone against the deleterious [...] Read more.
The constant use of alcoholic beverages can deregulate serotonin levels, affecting neurotransmitters and triggering symptoms of anxiety. In this context, the objective of this work was to evaluate the anxiolytic potential and possible action mechanisms of the natural compound amentoflavone against the deleterious effects caused by alcohol withdrawal on the behavior of adult zebrafish (aZF). The experiments showed that amentoflavone did not change locomotion and did not cause toxicity in aZF during up to 96 h of analysis, with a median lethal concentration (LC50) greater than 1.0 mg/mL. The reversal of anxiety by pretreatment with granisetron suggested that the anxiolytic effect of amentoflavone is dependent on serotonergic 5-HT3A/3B receptors. Furthermore, amentoflavone reversed anxiety due to flumazenil pretreatment, suggesting a dependence on the GABAA receptor. The three concentrations of amentoflavone tested were effective in treating anxiety resulting from alcohol withdrawal. In silico analysis validated the in vivo results, supporting the idea that the interaction of amentoflavone with the protein occurs in a more stable manner than reference compounds. Amid growing interest in natural alternatives to treat anxiety disorders, amentoflavone is a potential candidate for a new anxiolytic compound that acts specifically on the 5HT3A/3B and GABAergic serotonergic pathways. Full article
Show Figures

Figure 1

18 pages, 329 KiB  
Article
Demographics and Fives Cs of PYD as Predictors of the Domains of Contribution among Youth in Nigeria
by Temitayo Kofoworola Olurin
Youth 2024, 4(2), 661-678; https://doi.org/10.3390/youth4020045 - 10 May 2024
Abstract
In recent times, research has focused on positive youth development (PYD) amidst the deficits of youth. However, little is known about PYD and its potential to predict social engagement. Thus, this study aimed to examine the presence of the 5Cs of PYD (competence, [...] Read more.
In recent times, research has focused on positive youth development (PYD) amidst the deficits of youth. However, little is known about PYD and its potential to predict social engagement. Thus, this study aimed to examine the presence of the 5Cs of PYD (competence, confidence, connection, character, and caring) and its difference in gender and prediction to contribution, specifically social engagement among family, peers, schools, and community. The sample size consisted of Nigerian youth in University (N = 394, Mage = 18.42, SD = 1.02). The PYD framework served as the theoretical perspective underpinning the study. Questionnaires were administered using the 5Cs model of PYD and contribution items. Data were analysed for descriptive, correlations, and hierarchical regression to examine the predictors of contribution while controlling for demographics. The results showed greater scores in competence, connection, and character for women. Competence and connection (β = 0.56, p < 0.05) specifically had significantly independent associations with community volunteerism. While the findings highlight the Cs experienced and predictive values among each variable in the Nigerian context, future research could consider how each domain of the 5Cs holistically promotes contribution equally in males and females among diverse Nigerian youth. The research has implications for research, policy, and practice. Full article
14 pages, 522 KiB  
Article
Racism and Mental Health: The Moderating Role of Critical Consciousness for Black Adolescents
by Elan C. Hope, Alexandrea R. Golden and Nkemka Anyiwo
Youth 2024, 4(2), 647-660; https://doi.org/10.3390/youth4020044 - 10 May 2024
Abstract
This study examined experiences of individual, institutional, and cultural racism, along with critical consciousness (i.e., critical reflection, critical agency, critical action), and how they are associated with mental health outcomes for Black adolescents (N = 604; Mage = 15.4; 47.4% female). [...] Read more.
This study examined experiences of individual, institutional, and cultural racism, along with critical consciousness (i.e., critical reflection, critical agency, critical action), and how they are associated with mental health outcomes for Black adolescents (N = 604; Mage = 15.4; 47.4% female). Consistent with previous research, we found that more experiences of racism were associated with more mental health distress for Black adolescents. We also found that the relationship between racism and mental health varied by critical reflection and critical action, in a three-way interaction effect. The positive association between racism and mental health distress was weaker for the Black adolescents in our sample who reported higher than average critical reflection and lower than average critical action. This evidence suggests that the reflection and action components of critical consciousness, together, can serve as an adaptive coping strategy to guard against the harm racism can cause to mental health. Black adolescents experience less mental health distress when they have a deep understanding of oppression, but do not engage heavily in actions to dismantle those unjust systems. These findings have implications for how youth researchers and practitioners can support critical consciousness development in ways that do not compromise adolescent mental health. Full article
Show Figures

Figure 1

15 pages, 949 KiB  
Article
SARS-CoV-2-Induced Type I Interferon Signaling Dysregulation in Olfactory Networks Implications for Alzheimer’s Disease
by George D. Vavougios, Theodoros Mavridis, Triantafyllos Doskas, Olga Papaggeli, Pelagia Foka and Georgios Hadjigeorgiou
Curr. Issues Mol. Biol. 2024, 46(5), 4565-4579; https://doi.org/10.3390/cimb46050277 - 10 May 2024
Abstract
Type I interferon signaling (IFN-I) perturbations are major drivers of COVID-19. Dysregulated IFN-I in the brain, however, has been linked to both reduced cognitive resilience and neurodegenerative diseases such as Alzheimer’s. Previous works from our group have proposed a model where peripheral induction [...] Read more.
Type I interferon signaling (IFN-I) perturbations are major drivers of COVID-19. Dysregulated IFN-I in the brain, however, has been linked to both reduced cognitive resilience and neurodegenerative diseases such as Alzheimer’s. Previous works from our group have proposed a model where peripheral induction of IFN-I may be relayed to the CNS, even in the absence of fulminant infection. The aim of our study was to identify significantly enriched IFN-I signatures and genes along the transolfactory route, utilizing published datasets of the nasal mucosa and olfactory bulb amygdala transcriptomes of COVID-19 patients. We furthermore sought to identify these IFN-I signature gene networks associated with Alzheimer’s disease pathology and risk. Gene expression data involving the nasal epithelium, olfactory bulb, and amygdala of COVID-19 patients and transcriptomic data from Alzheimer’s disease patients were scrutinized for enriched Type I interferon pathways. Gene set enrichment analyses and gene–Venn approaches were used to determine genes in IFN-I enriched signatures. The Agora web resource was used to identify genes in IFN-I signatures associated with Alzheimer’s disease risk based on its aggregated multi-omic data. For all analyses, false discovery rates (FDR) <0.05 were considered statistically significant. Pathways associated with type I interferon signaling were found in all samples tested. Each type I interferon signature was enriched by IFITM and OAS family genes. A 14-gene signature was associated with COVID-19 CNS and the response to Alzheimer’s disease pathology, whereas nine genes were associated with increased risk for Alzheimer’s disease based on Agora. Our study provides further support to a type I interferon signaling dysregulation along the extended olfactory network as reconstructed herein, ranging from the nasal epithelium and extending to the amygdala. We furthermore identify the 14 genes implicated in this dysregulated pathway with Alzheimer’s disease pathology, among which HLA-C, HLA-B, HLA-A, PSMB8, IFITM3, HLA-E, IFITM1, OAS2, and MX1 as genes with associated conferring increased risk for the latter. Further research into its druggability by IFNb therapeutics may be warranted. Full article
(This article belongs to the Special Issue Advanced Research in Neuroinflammation)
Show Figures

Graphical abstract

19 pages, 5555 KiB  
Article
Changes in the Water Area of an Inland River Terminal Lake (Taitma Lake) Driven by Climate Change and Human Activities, 2017–2022
by Feng Zi, Yong Wang, Shanlong Lu, Harrison Odion Ikhumhen, Chun Fang, Xinru Li, Nan Wang and Xinya Kuang
Remote Sens. 2024, 16(10), 1703; https://doi.org/10.3390/rs16101703 (registering DOI) - 10 May 2024
Abstract
Constructed from a dataset capturing the seasonal and annual water body distribution of the lower Qarqan River in the Taitma Lake area from 2017 to 2022, and combined with the meteorological and hydraulic engineering data, the spatial and temporal change patterns of the [...] Read more.
Constructed from a dataset capturing the seasonal and annual water body distribution of the lower Qarqan River in the Taitma Lake area from 2017 to 2022, and combined with the meteorological and hydraulic engineering data, the spatial and temporal change patterns of the Taitma Lake watershed area were determined. Analyses were conducted using Planetscope (PS) satellite images and a deep learning model. The results revealed the following: ① Deep learning-based water body extraction provides significantly greater accuracy than the conventional water body index approach. With an impressive accuracy of up to 96.0%, UPerNet was found to provide the most effective extraction results among the three convolutional neural networks (U-Net, DeeplabV3+, and UPerNet) used for semantic segmentation; ② Between 2017 and 2022, Taitma Lake’s water area experienced a rapid decrease, with the distribution of water predominantly shifting towards the east–west direction more than the north–south. The shifts between 2017 and 2020 and between 2020 and 2022 were clearly discernible, with the latter stage (2020–2022) being more significant than the former (2017–2020); ③ According to observations, Taitma Lake’s changing water area has been primarily influenced by human activity over the last six years. Based on the research findings of this paper, it was observed that this study provides a valuable scientific basis for water resource allocation aiming to balance the development of water resources in the middle and upper reaches of the Tarim and Qarqan Rivers, as well as for the ecological protection of the downstream Taitma Lake. Full article
14 pages, 1059 KiB  
Review
Adverse Skeletal Muscle Adaptations in Individuals Born Preterm—A Comprehensive Review
by Nick L. Dobson, Danielle E. Levitt, Hui Ying Luk and Heather L. Vellers
Curr. Issues Mol. Biol. 2024, 46(5), 4551-4564; https://doi.org/10.3390/cimb46050276 - 10 May 2024
Abstract
Infants born preterm face an increased risk of deleterious effects on lung and brain health that can significantly alter long-term function and quality of life and even lead to death. Moreover, preterm birth is also associated with a heightened risk of diabetes and [...] Read more.
Infants born preterm face an increased risk of deleterious effects on lung and brain health that can significantly alter long-term function and quality of life and even lead to death. Moreover, preterm birth is also associated with a heightened risk of diabetes and obesity later in life, leading to an increased risk of all-cause mortality in young adults born prematurely. While these preterm-birth-related conditions have been well characterized, less is known about the long-term effects of preterm birth on skeletal muscle health and, specifically, an individual’s skeletal muscle hypertrophic potential later in life. In this review, we discuss how a confluence of potentially interrelated and self-perpetuating elements associated with preterm birth might converge on anabolic and catabolic pathways to ultimately blunt skeletal muscle hypertrophy, identifying critical areas for future research. Full article
(This article belongs to the Collection Molecular Mechanisms in Human Diseases)
Show Figures

Figure 1

13 pages, 2859 KiB  
Article
Production of Anthocyanin-Rich Red Rose Petal Extract by Enzymatic Maceration
by Bernardo Dias Ribeiro, Rachel de Moraes Ferreira, Liliana Areia Bastos Coelho and Daniel Weingart Barreto
Biomass 2024, 4(2), 429-441; https://doi.org/10.3390/biomass4020021 - 10 May 2024
Abstract
The use of enzymes to hydrolyze the plant cell matrix is a method known for extracting bioactive substances. The current work used this strategy to produce a rose petal extract rich in anthocyanins that is stable in the presence of marine polysaccharides and [...] Read more.
The use of enzymes to hydrolyze the plant cell matrix is a method known for extracting bioactive substances. The current work used this strategy to produce a rose petal extract rich in anthocyanins that is stable in the presence of marine polysaccharides and has a high antioxidant activity. The process evaluation was carried out sequentially, initially comparing water, ethanol, and their mixtures to anthocyanins extracted in the presence or absence of enzymes. Then, a multi-objective desirability function optimized experimental conditions such as solvent and enzyme concentrations. This study is the first report describing the use of a statistical tool, the central composite rotatable design (CCRD), to optimize anthocyanin extraction from rose petals. This method obtained a maximum extraction of 9.99 mg/g of phenols. The stability of the rose petal extract when using marine polysaccharides retained 60% of the anthocyanins over 28 days without deterioration when protected from sunlight but was practically degraded upon exposure to sunlight. The rose petal extract demonstrated a very high antioxidant capacity of 3.19 μg/mL, close to the literature data for citrus compounds, known to be high in antioxidant compounds for cosmetic food purposes. Full article
Show Figures

Figure 1

22 pages, 2504 KiB  
Article
Status of Livability in Indonesian Affordable Housing
by Laksana Gema Perdamaian and Zhiqiang (John) Zhai
Architecture 2024, 4(2), 281-302; https://doi.org/10.3390/architecture4020017 - 10 May 2024
Abstract
Indonesia is experiencing population growth, as well as urbanization, thus increasing the needs of housing. As a result, land prices are soaring, and the housing supply cannot meet the demand. The most recent measure to overcome housing problems is the One Million House [...] Read more.
Indonesia is experiencing population growth, as well as urbanization, thus increasing the needs of housing. As a result, land prices are soaring, and the housing supply cannot meet the demand. The most recent measure to overcome housing problems is the One Million House Program, which aims to provide more than a million homes annually, with the majority of them being simple housing. The main characteristics of simple housing are limited space, limited facilities, and the use of basic materials. Regulation stated that any housing must satisfy the requirement of livable housing, which means the fulfilment of safety, health, and living-area requirements. This paper looks at affordability, livability, and sustainability criteria based on government regulation. It is found that the performance of housing cannot satisfy some of the requirements. The problems come from either inherently limited housing design, occupant requirements, or local climates. The existing research only focuses on one of three factors. Intertwined relationships between the three factors make an integrated approach necessary. A solution based on integrated performance modeling of the criteria is proposed. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop