The 2023 MDPI Annual Report has
been released!
 
14 pages, 594 KiB  
Article
How Political Ideology and Media Shaped Vaccination Intention in the Early Stages of the COVID-19 Pandemic in the United States
by Dilshani Sarathchandra and Jennifer Johnson-Leung
COVID 2024, 4(5), 658-671; https://doi.org/10.3390/covid4050045 (registering DOI) - 20 May 2024
Abstract
As a pharmaceutical intervention, vaccines remain a major public health strategy for mitigating the effects of COVID-19. Yet, vaccine intake has been affected by various cognitive and cultural factors. We examine how a selected set of factors (i.e., knowledge, concern, media, peer influence, [...] Read more.
As a pharmaceutical intervention, vaccines remain a major public health strategy for mitigating the effects of COVID-19. Yet, vaccine intake has been affected by various cognitive and cultural factors. We examine how a selected set of factors (i.e., knowledge, concern, media, peer influence, and demographics) shaped COVID-19 vaccination intention in the early phase of the pandemic (Fall 2020). Using a survey conducted in three US states (Idaho, Texas, and Vermont) just prior to the rollout of the first vaccines against COVID-19, we find that COVID-19 concern was the primary driver of vaccination intention. Concern was shaped mainly by two factors: political ideology and media sources. Yet, ideology and media were much more important in affecting concern for those who leaned politically conservative, as opposed to those who leaned liberal or remained moderate. The results from our structural equation models affirm that the information politically conservative respondents were receiving reinforced the effects of their ideology, leading to a greater reduction in their concern. We discuss the potential implications of these findings for future pandemic preparedness. Full article
18 pages, 4268 KiB  
Article
Unlocking the Long-Term Effectiveness of Benralizumab in Severe Eosinophilic Asthma: A Three-Year Real-Life Study
by Laura Pini, Diego Bagnasco, Bianca Beghè, Fulvio Braido, Paolo Cameli, Marco Caminati, Cristiano Caruso, Claudia Crimi, Gabriella Guarnieri, Manuela Latorre, Francesco Menzella, Claudio Micheletto, Andrea Vianello, Dina Visca, Benedetta Bondi, Yehia El Masri, Jordan Giordani, Andrea Mastrototaro, Matteo Maule, Alessandro Pini, Stefano Piras, Martina Zappa, Gianenrico Senna, Antonio Spanevello, Pierluigi Paggiaro, Francesco Blasi, Giorgio Walter Canonica and on behalf of the SANI Study Groupadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(10), 3013; https://doi.org/10.3390/jcm13103013 (registering DOI) - 20 May 2024
Abstract
Background: Benralizumab has been shown to restore good control of severe eosinophilic asthma (SEA). Robust data on benralizumab effectiveness over periods longer than 2 years are scarce. Methods: This retrospective multicentric study was conducted on 108 Italian SEA patients treated with benralizumab for [...] Read more.
Background: Benralizumab has been shown to restore good control of severe eosinophilic asthma (SEA). Robust data on benralizumab effectiveness over periods longer than 2 years are scarce. Methods: This retrospective multicentric study was conducted on 108 Italian SEA patients treated with benralizumab for up to 36 months. Partial and complete clinical remission (CR) were assessed. Data were analyzed with descriptive statistics or using linear, logistic, and negative binomial mixed-effect regression models. Results: At 36 months, benralizumab reduced the exacerbation rate by 89% and increased the forced expiratory volume in 1 second (FEV1) (+440 mL at 36 months, p < 0.0001). Benralizumab improved asthma control as well as sinonasal symptoms in patients with chronic rhinosinusitis with nasal polyposis (CRSwNP). Up to 93.33% of patients either reduced or discontinued OCS; benralizumab also decreased ICS use and other asthma medications. Overall, 84.31% of patients achieved partial or complete CR. Conclusions: Benralizumab improved asthma and sinonasal outcomes up to 36 months. These findings support the potential of benralizumab to induce CR, emphasizing its role as a disease-modifying anti-asthmatic drug for the management of SEA. Further research is warranted to expand these findings by minimizing data loss and assessing benralizumab’s long-term safety. Full article
Show Figures

Figure 1

24 pages, 5194 KiB  
Review
A Challenged Evaporite Paradigm?
by Hans Konrad Johnsen, Martin Torvald Hovland and Hakon Rueslatten
Minerals 2024, 14(5), 527; https://doi.org/10.3390/min14050527 (registering DOI) - 20 May 2024
Abstract
The general subject of this article deals with the term salt. Salt deposits usually contain chlorides, sulphates/gypsum, borates, carbonates, etc., that are seemingly part of the same system. Even though this article mainly presents data and observations on chlorides, which are not easily [...] Read more.
The general subject of this article deals with the term salt. Salt deposits usually contain chlorides, sulphates/gypsum, borates, carbonates, etc., that are seemingly part of the same system. Even though this article mainly presents data and observations on chlorides, which are not easily explained by the present paradigm, it should also prove relevant for the formation of sulphates and other types of salts observed in major salt deposits. The paradigm explaining large salt deposits rests on two pillars governing salt formation and salt deformation. Salt formation is thought to occur vis solar evaporation of seawater in restricted basins. Salt deformation and forming of salt diapirs is thought to occur due to gravity-induced movements. Our review presents peer-reviewed and published data and observations from different authors within different disciplines that challenge the present evaporite paradigm. The current theory/paradigm rests on numerous observations and interpretations in support of it. Adding more observational interpretations in support of the paradigm will not nullify even one observation that contradicts or remains unexplained by the theory. The contradicting evidence must be explained within the present paradigm for it to survive. Significant observations of and within salt deposits are presented, as well as visual and geophysical observations of salinity in crusts and mantles in relevant tectonic settings. In our view, the omnipresent salinity observed in the subsurface needs to be understood and included in the description of a new salt formation mechanism in order to fully explain all features presented herein. Full article
Show Figures

Figure 1

21 pages, 6361 KiB  
Article
Modeling Environmental Vulnerability for 2050 Considering Different Scenarios in the Doce River Basin, Brazil
by Jasmine Alves Campos, Demetrius David da Silva, Gabrielle Ferreira Pires, Elpídio Inácio Fernandes Filho, Ricardo Santos Silva Amorim, Frederico Carlos Martins de Menezes Filho, Celso Bandeira de Melo Ribeiro, Juliana Ferreira Lorentz and Uilson Ricardo Venâncio Aires
Water 2024, 16(10), 1459; https://doi.org/10.3390/w16101459 (registering DOI) - 20 May 2024
Abstract
Understanding climate change and land use impacts is crucial for mitigating environmental degradation. This study assesses the environmental vulnerability of the Doce River Basin for 2050, considering future climate change and land use and land cover (LULC) scenarios. Factors including slope, elevation, relief [...] Read more.
Understanding climate change and land use impacts is crucial for mitigating environmental degradation. This study assesses the environmental vulnerability of the Doce River Basin for 2050, considering future climate change and land use and land cover (LULC) scenarios. Factors including slope, elevation, relief dissection, precipitation, temperature, pedology, geology, urban distance, road distance, and LULC were evaluated using multicriteria analysis. Regional climate models Eta-HadGEM2-ES and Eta-MIROC5 under RCP 4.5 and RCP 8.5 emission scenarios were employed. The Land Change Modeler tool simulated 2050 LULC changes and hypothetical reforestation of legal reserve (RL) areas. Combining two climate and two LULC scenarios resulted in four future vulnerability scenarios. Projections indicate an over 300 mm reduction in average annual precipitation and an up to 2 °C temperature increase from 2020 to 2050. Scenario 4 (RCP 8.5 and LULC for 2050 with reforested RLs) showed the greatest basin area in the lowest vulnerability classes, while scenario 3 (RCP 4.5 and LULC for 2050) exhibited more high-vulnerability areas. Despite the projected relative improvement in environmental vulnerability by 2050 due to reduced rainfall, the complexity of associated relationships must be considered. These results contribute to mitigating environmental damage and adapting to future climatic conditions in the Doce River Basin. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

12 pages, 486 KiB  
Article
Identifying Mortality Predictors in Hospitalized COVID-19 Patients: Insights from a Single-Center Retrospective Study at a University Hospital
by Ondrej Zahornacky, Alena Rovnakova, Maria Surimova, Stefan Porubcin and Pavol Jarcuska
Microorganisms 2024, 12(5), 1032; https://doi.org/10.3390/microorganisms12051032 (registering DOI) - 20 May 2024
Abstract
Introduction: The pandemic instigated by the SARS-CoV-2 virus has led to over 7 million deaths globally, primarily attributable to viral pneumonia. Identifying fundamental markers associated with an elevated risk of mortality can aid in the early identification of patients prone to disease progression [...] Read more.
Introduction: The pandemic instigated by the SARS-CoV-2 virus has led to over 7 million deaths globally, primarily attributable to viral pneumonia. Identifying fundamental markers associated with an elevated risk of mortality can aid in the early identification of patients prone to disease progression to a severe state, enabling prompt intervention. Methods: This was a single-center, retrospective study. Results: In this study, we examined 299 patients admitted to the Department of Infectology and Travel Medicine in Košice, Slovakia, with PCR-confirmed COVID-19 pneumonia. Patients were monitored from 1 January 2021 to 31 March 2021, with the endpoint being discharge from the hospital or death. All patient-related data were retrospectively collected from medical records. This study identified several risk factors significantly associated with an increased risk of mortality, including the requirement of HFNO (p < 0.001), age over 60 years (p < 0.001), Ne/Ly values of > 6 (p < 0.001), as well as certain lymphocyte subtypes—CD4+ < 0.2 × 109/L (p = 0.035), CD8+ < 0.2 × 109/L (p < 0.001), and CD19+ < 0.1 × 109/L (p < 0.001)—alongside selected biochemical inflammatory markers—IL-6 > 50 ng/L (p < 0.001) and lactate > 3 mmol/L (p < 0.001). Conclusions: We confirmed that the mentioned risk factors were significantly associated with the death of patients from viral pneumonia in the hospital. Full article
(This article belongs to the Special Issue Advances in SARS-CoV-2 Infection—Third Edition)
33 pages, 2066 KiB  
Article
A Sustainable Supply Chain Model with a Setup Cost Reduction Policy for Imperfect Items under Learning in a Cloudy Fuzzy Environment
by Basim S. O. Alsaedi
Mathematics 2024, 12(10), 1603; https://doi.org/10.3390/math12101603 (registering DOI) - 20 May 2024
Abstract
The present paper deals with an integrated sustainable supply chain model with the effect of learning for an imperfect production system under a cloudy fuzzy environment where the demand rate is treated as a cloudy triangular fuzzy (imprecise) number, which means that the [...] Read more.
The present paper deals with an integrated sustainable supply chain model with the effect of learning for an imperfect production system under a cloudy fuzzy environment where the demand rate is treated as a cloudy triangular fuzzy (imprecise) number, which means that the demand rate of the items is not constant, and shortages and a warranty policy are allowed. The vendor governs the manufacturing process to serve the demand of the buyer. When the vendor supplies the demanded lot after the production of items, it is also considered that the delivery lots have some defective items that follow an S-shape learning curve. After receiving the lot, the buyer inspects the whole lot, and the buyer classifies the whole lot into two categories: one is the defective-quality items and the other is the imperfect-quality items. The buyer returns the defective-quality items to the seller after a screening process, for which a warranty cost is included. During the transportation of the items, a lot of carbon units are emitted from the transportation, damaging the quality of the environment. The seller includes carbon emission costs to achieve sustainability as per considerations. A one-time discrete investment is also included for the minimizing of the setup cost of the seller for the next cycles. We developed models for the scenario of the separate decision and for the integrated decision of the players (seller/buyer) under the model’s consideration. Our aim is to jointly optimize the integrated total fuzzy cost under a cloudy fuzzy environment sustained by the seller and buyer. Numerical examples, sensitivity, analysis limitations, future scope and conclusions have been provided for the justification of the proposed model, and the impact of the input parameters on the decision variables and integrated total fuzzy cost for the supply chain are provided for the validity and robustness of this proposed model. The effect of learning in a cloudy fuzzy environment was positive for this proposed model. Full article
21 pages, 2475 KiB  
Article
Effects of Antiretroviral Treatment on Central and Peripheral Immune Response in Mice with EcoHIV Infection
by Qiaowei Xie, Mark D. Namba, Lauren A. Buck, Kyewon Park, Joshua G. Jackson and Jacqueline M. Barker
Cells 2024, 13(10), 882; https://doi.org/10.3390/cells13100882 (registering DOI) - 20 May 2024
Abstract
HIV infection is an ongoing global health issue, despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently [...] Read more.
HIV infection is an ongoing global health issue, despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter the immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify the effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F), and tenofovir alafenamide (TAF) on the expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In the absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes. Full article
Show Figures

Figure 1

23 pages, 5632 KiB  
Article
Molecular Identification of Ascomycetes from American Cranberry (Vaccinium macrocarpon Aiton) Grown in Plantation in Poland
by Małgorzata P. Oksińska, Elżbieta G. Magnucka, Anna Kmieć and Stanisław J. Pietr
Appl. Sci. 2024, 14(10), 4328; https://doi.org/10.3390/app14104328 (registering DOI) - 20 May 2024
Abstract
The American cranberry is a perennial North American fruit plant that is grown successfully on commercial plantations in Poland. The purpose of this study was to recognize filamentous fungi that colonize roots, leaves, and fruits without visible disease symptoms. Pure fungal cultures were [...] Read more.
The American cranberry is a perennial North American fruit plant that is grown successfully on commercial plantations in Poland. The purpose of this study was to recognize filamentous fungi that colonize roots, leaves, and fruits without visible disease symptoms. Pure fungal cultures were isolated from disinfected plant fragments in agar media and identified by sequencing common taxonomic DNA markers such as the ITS region, the TEF-1α, or RPB2 genes. Of the 141 isolates studied, 59% were identified as closely related to soil saprotrophs. They were classified primarily as showing the greatest similarity to type strains of Trichoderma amoenum, Trichoderma dorothopsis, Paraphaeosphaeria sporulosa, and Penicillium murcianum. Additionally, isolates that are most similar to strains of Penicillium crustosum, Aspergillus flavus, and Aspergillus versicolor that produced mycotoxins were detected. The fungi identified as closest to Alternaria geophila, Alternaria senecionicola, Paraphoma radicina, Pestalotiopsis unicolor, Pestalotiopsis scoparia, and Neopestalotiopsis spp., whose hosts are plants other than American cranberry, represented 33.81% of the isolates tested. Only 7.2% of the isolates corresponded to the species of Physalospora vaccinia, Diaporthe vaccinii, and Diaporthe eres, known cranberry pathogens. The results of this study can be used to identify latent plant infection and potential disease risks. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

11 pages, 679 KiB  
Article
The total Phenolic Content and Antioxidant Activity of Nine Monofloral Honey Types
by Chrysoula Tananaki, Maria-Anna Rodopoulou, Maria Dimou, Dimitrios Kanelis and Vasilios Liolios
Appl. Sci. 2024, 14(10), 4329; https://doi.org/10.3390/app14104329 (registering DOI) - 20 May 2024
Abstract
Honey is well known for its antioxidant and antimicrobial properties, which significantly contribute to its high demand among consumers. While there is plenty of information available about the antioxidant potential of honey, there is still a lack of research specifically focused on monofloral [...] Read more.
Honey is well known for its antioxidant and antimicrobial properties, which significantly contribute to its high demand among consumers. While there is plenty of information available about the antioxidant potential of honey, there is still a lack of research specifically focused on monofloral honeys, as most studies have been based on market samples. To address this issue, in the present study we analyzed the total phenolic content and antioxidant activity of nine monofloral honey types produced in Greece: fir, chestnut, citrus, erica, cotton, Jerusalem thorn, pine, oak and thyme, in comparison with manuka honey. The samples were collected from beekeepers applying the appropriate beekeeping practices. In total, ninety-six representative monofloral honey samples meeting the microscopic, physicochemical, and sensory characteristics were analyzed. Oak honey stood out as the darkest type (L* = 33.67) with the highest total phenolic content (203.75 mg GAE/100 g) and antioxidant activity (106.2 mg AAE/100 g). Chestnut honey closely followed, having also the highest electrical conductivity (1.679 mS/cm). Although manuka honey had a high total phenolic content, its total antioxidant activity was found to be medium-low compared to fir, pine, and erica honeys. Citrus honey, being the lightest in color (L* = 37.2), exhibited the lowest total antioxidant activity (6.36 mg AAE/100 g). Statistical analysis revealed significant positive correlation between total antioxidant activity and electrical conductivity (ra-e =0.587, pa-e =0.000), and negative correlation between total antioxidant activity and L* parameter (ra-L = −0.424, pa-L = 0.000). Similar correlations were also observed regarding total phenolic content (rp-e = 0.457, pp-e = 0.000, rp-L = −0.455, pp-L = 0.000). In conclusion, oak and chestnut honeys seem to have a high antioxidant potential, that should be further explored, to highlight their value and help promote them worldwide. Full article
41 pages, 4026 KiB  
Review
The Pivotal Role of Microscopy in Unravelling the Nature of Microbial Deterioration of Waterlogged Wood: A Review
by Adya P. Singh, Jong Sik Kim, Ralf Möller, Ramesh R. Chavan and Yoon Soo Kim
Forests 2024, 15(5), 889; https://doi.org/10.3390/f15050889 (registering DOI) - 20 May 2024
Abstract
This review focuses on the pivotal role microscopy has played in diagnosing the type(s) of microbial attacks present in waterlogged ancient wooden objects, and to understand the nature and extent of deterioration of such objects. The microscopic journey began with the application of [...] Read more.
This review focuses on the pivotal role microscopy has played in diagnosing the type(s) of microbial attacks present in waterlogged ancient wooden objects, and to understand the nature and extent of deterioration of such objects. The microscopic journey began with the application of light microscopy (LM) to examine the deterioration of waterlogged woods, notably foundation piles supporting historic buildings, progressing into the use of high-resolution imaging tools (SEM and TEM) and techniques. Although bacteria were implicated in the deterioration of foundation piles, confirmation that bacteria can indeed degrade wood in its native state came when decaying wood from natural environments was examined using electron microscopy, particularly TEM, which enabled bacterial association with cell wall regions undergoing degradation to be clearly resolved. The information base has been a catalyst, stimulating numerous studies in the past three decades or so to understand the nature of microbial degradation of waterlogged archaeological wood more precisely, combining LM, SEM, and TEM with high-resolution chemical analytical methods, including chemical microscopy. The emerging information is aiding targeted developments towards a more effective conservation of ancient wooden objects as they begin to be uncovered from burial and waterlogging environments. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material—Volume II)
13 pages, 1684 KiB  
Article
Study on Emulsification Effect of Crude Oil in Brine Emulsions by Automated Demulsibility Tester
by Máté Hartyányi, Roland Nagy, László Bartha and Sándor Puskás
Energies 2024, 17(10), 2438; https://doi.org/10.3390/en17102438 (registering DOI) - 20 May 2024
Abstract
The purpose of the surfactants used is to greatly reduce the interfacial tension between the crude oil and brine, thereby decreasing the capillary number. The resulting oil-in-water emulsions are often grouped according to the Winsor theory. Oil recovery aims to produce Winsor type-III [...] Read more.
The purpose of the surfactants used is to greatly reduce the interfacial tension between the crude oil and brine, thereby decreasing the capillary number. The resulting oil-in-water emulsions are often grouped according to the Winsor theory. Oil recovery aims to produce Winsor type-III emulsions because they have the lowest interfacial tension values and the most favorable flow properties. The sensitivity of oil–water–surfactant systems to environmental influences (e.g., mixing speed and equilibration time) increases close to the favorable environmental range (temperature, brine total salt concentration, pressure, etc.) of the Winsor III type, the middle microemulsion phase, which is favorable for crude oil recovery. The tests aimed to investigate the quality and quantity of emulsions prepared with surfactants used in enhanced oil recovery (EOR) using an automatic device to characterize and select surfactants for industrial petroleum applications. An essential method for surfactant selection is to study the emulsifying effect and phase behavior. Phase behavior tests and emulsifying effect tests were performed on surfactants and surfactant packages as a function of mixing parameters. The mixing speed and mixing time can influence the results of the phase behavior and emulsifying effect tests, although during the investigations, other parameters were unchanged. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

13 pages, 2969 KiB  
Article
Efficacy of the Probiotic L. brevis in Counteracting the Demineralizing Process of the Tooth Enamel Surface: Results from an In Vitro Study
by Serena Altamura, Francesca Rosaria Augello, Eleonora Ortu, Davide Pietropaoli, Benedetta Cinque, Mario Giannoni and Francesca Lombardi
Biomolecules 2024, 14(5), 605; https://doi.org/10.3390/biom14050605 (registering DOI) - 20 May 2024
Abstract
Background. Enamel plays an essential role in protecting the underlying layers of the human tooth; therefore, preserving it is vital. This experimental study aimed to evaluate the potential ability of L. brevis to counteract the action of a demineralizing agent on dental enamel [...] Read more.
Background. Enamel plays an essential role in protecting the underlying layers of the human tooth; therefore, preserving it is vital. This experimental study aimed to evaluate the potential ability of L. brevis to counteract the action of a demineralizing agent on dental enamel morphology and mineral composition in vitro. Methods. The sample consisted of 12 healthy human posterior teeth. The coronal portion of each tooth was subdivided into two equal parts longitudinally. The specimens were randomly divided into four groups: artificial saliva, L. brevis suspension, demineralizing agent (DA), and DA plus L. brevis . Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to evaluate the surface micromorphology and the mineral content, respectively. The statistical analysis was conducted using a one-way ANOVA, followed by Tukey’s post hoc test. Results. SEM analysis did not highlight significant changes in the enamel microstructure of L. brevis -treated specimens compared to the control. DA-induced damage to the enamel structure was drastically reduced when the specimens were contextually exposed to the probiotic. The treatment with DA substantially reduced the weight % of crucial enamel minerals, i.e., Ca and P. Notably, the probiotic was able to reverse the demineralization process, bringing Ca and P weight % back to basal levels, including the Ca/P ratio. Conclusions. The findings indicate that L. brevis is able to efficiently protect the dental enamel surface from the damage caused by DA and increase the enamel resistance to demineralization. Overall, L. brevis confirms its efficacy in preventing or counteracting the action of carious lesions through a novel mechanism that protects the tooth surface under a chemical challenge that mimics the caries process. Full article
(This article belongs to the Special Issue Role of Probiotics in Health and Disease)
14 pages, 885 KiB  
Article
Process-Driven Layout Optimization of a Portable Hybrid Manufacturing Robotic Cell Structure
by Harry Bikas, Dimitrios Manitaras, Thanassis Souflas and Panagiotis Stavropoulos
Eng 2024, 5(2), 918-931; https://doi.org/10.3390/eng5020049 (registering DOI) - 20 May 2024
Abstract
Hybrid manufacturing combines manufacturing processes (typically additive manufacturing and machining) exploiting the benefits of each and enabling repair scenarios. Such an approach can be integrated with a robot, and if made portable, can form a flexible machine tool that can be easily transported [...] Read more.
Hybrid manufacturing combines manufacturing processes (typically additive manufacturing and machining) exploiting the benefits of each and enabling repair scenarios. Such an approach can be integrated with a robot, and if made portable, can form a flexible machine tool that can be easily transported anywhere to enable repairs in the field. However, the design of the load-bearing structure determines its transportability, and its stiffness plays a crucial functional role under dynamic loads and affects the product quality. Finding the right balance between weight and stiffness requires accurate boundary conditions and an effective design. In this work, a method is proposed towards process-driven optimization of a portable manufacturing cell structure. The dynamic cutting forces are determined through a machining process model and, via a simplified model of the robot arm, the forces at the base of the robot are estimated. Since the frame consists of beams, the layout optimization method is applied, using the estimated process forces as boundary conditions to optimize the arrangement of beams. The proposed method achieved 0.05 mm displacement in the load-bearing structure under milling and an acceptable accuracy of the position of a hole’s center during drilling, while the overall weight reduced by 17.6%. Full article
18 pages, 3746 KiB  
Article
Robust Forest Fire Detection Method for Surveillance Systems Based on You Only Look Once Version8 and Transfer Learning Approaches
by Nodir Yunusov, Bappy MD Siful Islam, Akmalbek Abdusalomov and Wooseong Kim
Processes 2024, 12(5), 1039; https://doi.org/10.3390/pr12051039 (registering DOI) - 20 May 2024
Abstract
Forest fires have emerged as a significant global concern, exacerbated by both global warming and the expanding human population. Several adverse outcomes can result from this, including climatic shifts and greenhouse effects. The ramifications of fire incidents extend widely, impacting human communities, financial [...] Read more.
Forest fires have emerged as a significant global concern, exacerbated by both global warming and the expanding human population. Several adverse outcomes can result from this, including climatic shifts and greenhouse effects. The ramifications of fire incidents extend widely, impacting human communities, financial resources, the natural environment, and global warming. Therefore, timely fire detection is essential for quick and effective response and not to endanger forest resources, animal life, and the human economy. This study introduces a forest fire detection approach utilizing transfer learning with the YOLOv8 (You Only Look Once version 8) pretraining model and the TranSDet model, which integrates an improved deep learning algorithm. Transfer Learning based on pre-trained YoloV8 enhances a fast and accurate object detection aggregate with the TranSDet structure to detect small fires. Furthermore, to train the model, we collected 5200 images and performed augmentation techniques for data, such as rotation, scaling, and changing due and saturation. Small fires can be detected from a distance by our suggested model both during the day and at night. Objects with similarities can lead to false predictions. However, the dataset augmentation technique reduces the feasibility. The experimental results prove that our proposed model can successfully achieve 98% accuracy to minimize catastrophic incidents. In recent years, the advancement of deep learning techniques has enhanced safety and secure environments. Lastly, we conducted a comparative analysis of our method’s performance based on widely used evaluation metrics to validate the achieved results. Full article
30 pages, 6057 KiB  
Article
Spray Angle and Uniformity of the Flat Fan Nozzle of Deep Loosener Fertilizer for Intra-Soil Application of Fertilizers
by Sayakhat Nukeshev, Khozhakeldi Tanbayev, Mikalai Ramaniuk, Nurbol Kakabayev, Adilet Sugirbay and Aidar Moldazhanov
AgriEngineering 2024, 6(2), 1365-1394; https://doi.org/10.3390/agriengineering6020079 (registering DOI) - 20 May 2024
Abstract
This paper deals with the problem of predetermining the spray angle and uniformity of the flat fan sprayer with a semicircular impact surface for the intra-soil application of liquid mineral fertilizers. The jet impact on a round splash plate and radial atomization properties [...] Read more.
This paper deals with the problem of predetermining the spray angle and uniformity of the flat fan sprayer with a semicircular impact surface for the intra-soil application of liquid mineral fertilizers. The jet impact on a round splash plate and radial atomization properties are investigated theoretically, the formation features of the spray with an obtuse angle are studied in a geometrical way, and the design search of the nozzle shape and optimization calculations are performed using computational fluid dynamics (CFD) simulations and then verified experimentally. It was revealed that the spray rate and spray angle can be adjusted by changing the parameter s, and when the spray angle is within s = 0–0.2 mm, it forms spray angles with range of 140°–175°. The spraying angle, in turn, shows the potential length of the tillage knife in accordance with the undersoil cavity dimensions. A spray uniformity of up to 74% was achieved, which is sufficient for applied studies and for intra-soil application operations. According to the investigations and field experiments, it can be concluded that the designed nozzle is applicable for the intra-soil application of liquid mineral fertilizers. The use of flat fan nozzles that form a spraying band under the soil cavity and along the entire length of the tillage knife ensures a highly efficient mixing process, the liquid mineral fertilizers with treated soil (particles) positively contributing to plant maturation. Full article
14 pages, 2955 KiB  
Article
The Proteoglycans Biglycan and Decorin Protect Cardiac Cells against Irradiation-Induced Cell Death by Inhibiting Apoptosis
by Renáta Gáspár, Petra Diószegi, Dóra Nógrádi-Halmi, Barbara Erdélyi-Furka, Zoltán Varga, Zsuzsanna Kahán and Tamás Csont
Cells 2024, 13(10), 883; https://doi.org/10.3390/cells13100883 (registering DOI) - 20 May 2024
Abstract
Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is [...] Read more.
Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells. Full article
(This article belongs to the Special Issue Focus on Machinery of Cell Death)
Show Figures

Graphical abstract

17 pages, 5749 KiB  
Article
Research on the Interaction Mechanism of Multi-Fracture Propagation in Hydraulic Fracturing
by Lin-Peng Zhang, Tuan Gu, Bin Li and Peng Zheng
Processes 2024, 12(5), 1040; https://doi.org/10.3390/pr12051040 (registering DOI) - 20 May 2024
Abstract
During the hydraulic-fracturing process, stress interference occurs among multiple wells and fractures, potentially affecting the trajectory of hydraulic fracture propagation. Previous studies have largely overlooked the influence of proppant support stresses on the trajectories of fracture propagation. This paper establishes a mathematical model, [...] Read more.
During the hydraulic-fracturing process, stress interference occurs among multiple wells and fractures, potentially affecting the trajectory of hydraulic fracture propagation. Previous studies have largely overlooked the influence of proppant support stresses on the trajectories of fracture propagation. This paper establishes a mathematical model, grounded in the boundary element method, designed to compute the propagation of multiple fractures, considering both proppant support on the fracture surface and dynamic perturbations within the local stress field. The findings of this research reveal that the stress field induced by hydraulic fracturing exhibits dynamic evolution characteristics, necessitating a comprehensive study of the fracture initiation and extension across the entire fracturing time domain. The effect of the residual fracture width under proppant action on the in situ stress field cannot be ignored. During simultaneous fracturing, hydraulic fractures are inclined to propagate in the direction of the maximum horizontal principal stress, particularly as the in situ differential stress escalates. Staggered fracturing between wells has been proven to be more effective than head-to-head fracturing. Simply increasing the well spacing cannot solve the problem of inter-well fracture interference. In zipper fracturing, adjusting the fracturing sequence can inhibit the fracture intersections between wells, thereby controlling the trajectory of fracture propagation. The aforementioned research has considerable significance in guiding the control of fracture morphology during hydraulic-fracturing processes. Full article
(This article belongs to the Special Issue Numerical Simulations of Fracturing in Petroleum Engineering)
Show Figures

Figure 1

24 pages, 3316 KiB  
Article
Exploring Binocular Visual Attention by Presenting Rapid Dichoptic and Dioptic Series
by Manuel Moreno-Sánchez, Elton H. Matsushima and Jose Antonio Aznar-Casanova
Brain Sci. 2024, 14(5), 518; https://doi.org/10.3390/brainsci14050518 (registering DOI) - 20 May 2024
Abstract
This study addresses an issue in attentional distribution in a binocular visual system using RSVP tasks under Attentional Blink (AB) experimental protocols. In Experiment 1, we employed dichoptic RSVP to verify whether, under interocular competition, attention may be captured by a monocular channel. [...] Read more.
This study addresses an issue in attentional distribution in a binocular visual system using RSVP tasks under Attentional Blink (AB) experimental protocols. In Experiment 1, we employed dichoptic RSVP to verify whether, under interocular competition, attention may be captured by a monocular channel. Experiment 2 was a control experiment, where a monoptic RSVP assessed by both or only one eye determines whether Experiment 1 monocular condition results were due to an allocation of attention to one eye. Experiment 3 was also a control experiment designed to determine whether Experiment 1 results were due to the effect of interocular competition or to a diminished visual contrast. Results from Experiment 1 revealed that dichoptic presentations caused a delay in the type stage of the Wyble’s eSTST model, postponing the subsequent tokenization process. The delay in monocular conditions may be further explained by a visual attenuation, due to fusion of target and an empty frame. Experiment 2 evidenced the attentional allocation to monocular channels when forced by eye occlusion. Experiment 3 disclosed that monocular performance in Experiment 1 differs significantly from conditions with interocular competition. While both experiments revealed similar performance in monocular conditions, rivalry conditions exhibit lower detection rates, suggesting that competing stimuli was not responsible for Experiment 1 results. These findings highlight the differences between dichoptic and monoptic presentations of stimuli, particularly on the AB effect, which appears attenuated or absent in dichoptic settings. Furthermore, results suggest that monoptic presentation and binocular fusion stages were a necessary condition for the attentional allocation. Full article
Show Figures

Figure 1

14 pages, 3975 KiB  
Article
Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro
by Kelum Chamara Manoj Lakmal Elvitigala, Wildan Mubarok and Shinji Sakai
Biomolecules 2024, 14(5), 604; https://doi.org/10.3390/biom14050604 (registering DOI) - 20 May 2024
Abstract
The development of hydrogels that allow vascular endothelial cells to form capillary-like networks is critical for advancing tissue engineering and drug discovery. In this study, we developed hydrogels composed of phenolated hyaluronic acid (HA-Ph) with an average molecular weight of 490–159 kDa via [...] Read more.
The development of hydrogels that allow vascular endothelial cells to form capillary-like networks is critical for advancing tissue engineering and drug discovery. In this study, we developed hydrogels composed of phenolated hyaluronic acid (HA-Ph) with an average molecular weight of 490–159 kDa via sonication in an aqueous solution. These hydrogels were synthesized by the horseradish peroxidase-catalyzed crosslinking of phenol moieties in the presence of hydrogen peroxide and phenolated gelatin. The sonication-degraded HA-Ph (198 kDa) significantly enhanced the migration ability of human umbilical vein endothelial cells (HUVECs) on cell culture plates when added to the medium compared to the original HA-Ph (490 kDa) and less-degraded HA-Ph (312–399 kDa). In addition, HUVECs cultured on these hydrogels formed networks that did not occur on hydrogels made from the original HA-Ph. CD44 expression and PI3K gene expression, both markers related to angiogenesis, were 3.5- and 1.8-fold higher, respectively, in cells cultured on sonication-degraded HA-Ph hydrogels than in those cultured on hydrogels comprising the original HA-Ph. These results highlight the potential of hydrogels containing sonication-degraded HA-Ph for tissue engineering and drug-screening applications involving human vascular endothelial cells. Full article
(This article belongs to the Collection Feature Papers in 'Biological and Bio- Materials' Section)
24 pages, 33360 KiB  
Article
Heavy Metal Concentration Estimation for Different Farmland Soils Based on Projection Pursuit and LightGBM with Hyperspectral Images
by Nan Lin, Xiaofan Shao, Huizhi Wu, Ranzhe Jiang and Menghong Wu
Sensors 2024, 24(10), 3251; https://doi.org/10.3390/s24103251 (registering DOI) - 20 May 2024
Abstract
Heavy metal pollution in farmland soil threatens soil environmental quality. It is an important task to quickly grasp the status of heavy metal pollution in farmland soil in a region. Hyperspectral remote sensing technology has been widely used in soil heavy metal concentration [...] Read more.
Heavy metal pollution in farmland soil threatens soil environmental quality. It is an important task to quickly grasp the status of heavy metal pollution in farmland soil in a region. Hyperspectral remote sensing technology has been widely used in soil heavy metal concentration monitoring. How to improve the accuracy and reliability of its estimation model is a hot topic. This study analyzed 440 soil samples from Sihe Town and the surrounding agricultural areas in Yushu City, Jilin Province. Considering the differences between different types of soils, a local regression model of heavy metal concentrations (As and Cu) was established based on projection pursuit (PP) and light gradient boosting machine (LightGBM) algorithms. Based on the estimations, a spatial distribution map of soil heavy metals in the region was drawn. The findings of this study showed that considering the differences between different soils to construct a local regression estimation model of soil heavy metal concentration improved the estimation accuracy. Specifically, the relative percent difference (RPD) of As and Cu element estimations in black soil increased the most, by 0.30 and 0.26, respectively. The regional spatial distribution map of heavy metal concentration derived from local regression showed high spatial variability. The number of characteristic bands screened by the PP method accounted for 10–13% of the total spectral bands, effectively reducing the model complexity. Compared with the traditional machine model, the LightGBM model showed better estimation ability, and the highest determination coefficients (R2) of different soil validation sets reached 0.73 (As) and 0.75 (Cu), respectively. In this study, the constructed PP–LightGBM estimation model takes into account the differences in soil types, which effectively improves the accuracy and reliability of hyperspectral image estimation of soil heavy metal concentration and provides a reference for drawing large-scale spatial distributions of heavy metals from hyperspectral images and mastering soil environmental quality. Full article
(This article belongs to the Special Issue Methodologies Used in Hyperspectral Remote Sensing in Agriculture)
24 pages, 4521 KiB  
Article
Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data
by Hareem Abbasi, Usman Shahzad, Walid Emam, Muhammad Hanif, Nasir Ali and Mubeen Mukhtar
Symmetry 2024, 16(5), 633; https://doi.org/10.3390/sym16050633 (registering DOI) - 20 May 2024
Abstract
The traditional stratification weight is widely used in survey sampling for estimation under stratified random sampling (StRS). A neutrosophic calibration approach is proposed under neutrosophic statistics for the first time with the aim of improving conventional stratification weight. This addresses the challenge of [...] Read more.
The traditional stratification weight is widely used in survey sampling for estimation under stratified random sampling (StRS). A neutrosophic calibration approach is proposed under neutrosophic statistics for the first time with the aim of improving conventional stratification weight. This addresses the challenge of estimating the empirical cumulative distribution function (CDF) of a finite population using the neutrosophic technique. The neutrosophic technique extends traditional statistics, dealing with indeterminate, vague, and uncertain values. Thus, using additional information, we are able to obtain an effective estimate of the neutrosophic CDF. The suggested estimator yields an interval range in which the population empirical CDF is likely to exist rather than a single numerical value. The proposed family of neutrosophic estimators will be defined under suitable calibration constraints. A simulation study is also computed in order to assess the effectiveness of the suggested and adapted neutrosophic estimators using real-life symmetric and asymmetric datasets. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

27 pages, 560 KiB  
Article
Community Care Needs of Highly Complex Chronic Patients: An Epidemiological Study in a Healthcare Area
by Pedro Ruymán Brito-Brito, Martín Rodríguez-Álvaro, Domingo Ángel Fernández-Gutiérrez, Janet Núñez-Marrero, Antonio Cabeza-Mora and Alfonso Miguel García-Hernández
Nurs. Rep. 2024, 14(2), 1260-1286; https://doi.org/10.3390/nursrep14020096 (registering DOI) - 20 May 2024
Abstract
: One of the priorities in family and community care is the epidemiological surveillance of the care needs and dysfunctionality present in populations of highly complex chronic patients (HCCPs) using standardised nursing languages. The aim of this study is to establish the prevalence [...] Read more.
: One of the priorities in family and community care is the epidemiological surveillance of the care needs and dysfunctionality present in populations of highly complex chronic patients (HCCPs) using standardised nursing languages. The aim of this study is to establish the prevalence of care needs and dysfunctionality among HCCPs in a specific health area by municipalities and geographical areas (metropolitan, north, and south) while verifying correlations with sociodemographic, financial, and health characteristics. This is an epidemiological, observational, descriptive, cross-sectional study carried out with a sample of 51,374 HCCPs, whose data were grouped into 31 municipalities. Data were collected on the following variables: sociodemographic, financial, health, functional status (health patterns), and care needs (nursing diagnoses). The mean age of the HCCPs was 73.41 (1.45) years, of which 56.18 (2.86)% were women. The municipalities in the northern area have a significantly higher proportion of older patients, HCCPs, lower incomes, and higher unemployment rates. The southern area had higher proportions of non-Spanish nationals and professionals in the hotel and catering industry, and the metropolitan area had a higher proportion of employed individuals and higher levels of education. Northern municipalities had a higher prevalence of illnesses and anxiolytic and anti-psychotic treatments. Dysfunctionality frequencies did not differ significantly by area. However, a higher prevalence of 13 nursing diagnoses was observed in the north. A high number of correlations were observed between population characteristics, dysfunctionality, and prevalent diagnoses. Finally, the frequencies of dysfunctionality in the population and the most common care needs were mapped by municipality. This research sought to ascertain whether there was an unequal distribution of these two aspects among HCCPs in order to gain a deeper epidemiological understanding of them from a family and community perspective using standardised nursing languages. This study was not registered. Full article
27 pages, 1903 KiB  
Article
Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study
by Guoyin Liu, Weiqian Huang, Nannan Leng, Peng He, Xin Li, Muliang Lin, Zhonghua Lian, Yong Wang, Jianmin Chen and Weihua Cai
Bioengineering 2024, 11(5), 519; https://doi.org/10.3390/bioengineering11050519 (registering DOI) - 20 May 2024
Abstract
A novel H-shaped miniplate (HSM) was specifically designed for restorative laminoplasties to restore patients’ posterior elements after laminectomies. A validated finite element (FE) model of L2/4 was utilized to create a laminectomy model, as well as three restorative laminoplasty models based on the [...] Read more.
A novel H-shaped miniplate (HSM) was specifically designed for restorative laminoplasties to restore patients’ posterior elements after laminectomies. A validated finite element (FE) model of L2/4 was utilized to create a laminectomy model, as well as three restorative laminoplasty models based on the fixation of different miniplates after a laminectomy (the RL-HSM model, the RL-LSM model, and the RL-THM model). The biomechanical effects of motion and displacement on a laminectomy and restorative laminoplasty with three different shapes for the fixation of miniplates were compared under the same mechanical conditions. This study aimed to validate the biomechanical stability, efficacy, and feasibility of a restorative laminoplasty with the fixation of miniplates post laminectomy. The laminectomy model demonstrated the greatest increase in motion and displacement, especially in axial rotation, followed by extension, flexion, and lateral bending. The restorative laminoplasty was exceptional in preserving the motion and displacement of surgical segments when compared to the intact state. This preservation was particularly evident in lateral bending and flexion/extension, with a slight maintenance efficacy observed in axial rotation. Compared to the laminectomy model, the restorative laminoplasties with the investigated miniplates demonstrated a motion-limiting effect for all directions and resulted in excellent stability levels under axial rotation and flexion/extension. The greatest reduction in motion and displacement was observed in the RL-HSM model, followed by the RL-LSM model and then the RL-THM model. When comparing the fixation of different miniplates in restorative laminoplasties, the HSMs were found to be superior to the LSMs and THMs in maintaining postoperative stability, particularly in axial rotation. The evidence suggests that a restorative laminoplasty with the fixation of miniplates is more effective than a conventional laminectomy due to the biomechanical effects of restoring posterior elements, which helps patients regain motion and limit load displacement responses in the spine after surgery, especially in axial rotation and flexion/extension. Additionally, our evaluation in this research study could benefit from further research and provide a methodological and modeling basis for the design and optimization of restorative laminoplasties. Full article
(This article belongs to the Special Issue Mechanobiology in Biomedical Engineering)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop