The 2023 MDPI Annual Report has
been released!
 
14 pages, 2093 KiB  
Article
A Double-Threshold Cooperative Spectrum Sensing Algorithm in the Internet of Vehicles
by Hong Du and Yuhan Wang
World Electr. Veh. J. 2024, 15(5), 195; https://doi.org/10.3390/wevj15050195 (registering DOI) - 02 May 2024
Abstract
To address the shortage of wireless spectrum resources caused by the rapid development of the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm is introduced. [...] Read more.
To address the shortage of wireless spectrum resources caused by the rapid development of the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm is introduced. This algorithm enhances traditional energy detection technology to mitigate the high sensitivity to noise interference in the Internet of Vehicles environment. A double-threshold judgment mechanism can be established based on the uncertainty of noise. Varying fusion rules are implemented in the collaborative spectrum sensing scheme according to the density of vehicles and the spectrum resource demand. Simulation results demonstrate that the performance of the double-threshold cooperative spectrum sensing algorithm surpasses that of the traditional single-threshold energy detection scheme, particularly evident under lower Signal-to-Noise Ratio (SNR) conditions. Moreover, the proposed algorithm exhibits superior sensing performance in environments characterized by higher noise uncertainty. Full article
Show Figures

Figure 1

19 pages, 5788 KiB  
Article
Mutual Inductance Identification and Bilateral Cooperation Control Strategy for MCR-BE System
by Ke Li, Yuanmeng Liu, Xiaodong Sun and Xiang Tian
World Electr. Veh. J. 2024, 15(5), 196; https://doi.org/10.3390/wevj15050196 (registering DOI) - 02 May 2024
Abstract
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements [...] Read more.
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements of maximum transmission efficiency and constant voltage output of the system, a bilateral cooperation control strategy is proposed. For the strategy, the buck converter in the receiving side of the system can maintain maximum transmission efficiency through impedance matching, while the inverter in the transmitting side can keep the output voltage constant through phase shift modulation. In the control process, considering that the offset of coupling coils will affect the control results, a grey wolf optimization–particle swarm optimization algorithm is proposed to identify mutual inductance. Simulation and experimental results show that this identification algorithm can improve the identification accuracy and maximize the avoidance of falling into local optima. The final experimental result shows that the bilateral cooperation control strategy can maintain the output voltage around 48 V and the transmission efficiency around 84.5%, which meets the expected requirements. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

12 pages, 2275 KiB  
Article
Chemical and Thermal Analysis of Fly Ash-Reinforced Aluminum Matrix Composites (AMCs)
by Siti Syazwani Nordin, Ervina Efzan Mhd Noor and Palanisamy Chockalingam
J. Compos. Sci. 2024, 8(5), 170; https://doi.org/10.3390/jcs8050170 (registering DOI) - 02 May 2024
Abstract
Fly ash has been utilized as a reinforcing material in the production of aluminum matrix composites, and in this investigation, Al-Si (LM6) fly ash composites were fabricated using the compocasting method. Various compositions of fly ash were incorporated into the samples (4, 5 [...] Read more.
Fly ash has been utilized as a reinforcing material in the production of aluminum matrix composites, and in this investigation, Al-Si (LM6) fly ash composites were fabricated using the compocasting method. Various compositions of fly ash were incorporated into the samples (4, 5 and 6 wt%), and the preparation temperature ranged from 560 to 800°C. This study investigated the thermal (CTE and DTA) and chemical properties (XRD) of fly ash reinforcement and the aluminum melt in the composites. The results revealed that composites with 5 wt% of fly ash exhibited the lowest CTE value compared to those with 4 and 6 wt%. This observation was corroborated by XRD analysis, indicating a reaction between the fly ash particles and the aluminum melt. However, the DTA analysis did not find a significant impact of the addition of fly ash on the melting temperature of the prepared composites. In contrast, this study identified and investigated the existence of reaction effects between the fly ash particles and the aluminum melt. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
13 pages, 270 KiB  
Article
New Model for Hill’s Problem in the Framework of Continuation Fractional Potential
by Elbaz I. Abouelmagd
Math. Comput. Appl. 2024, 29(3), 34; https://doi.org/10.3390/mca29030034 (registering DOI) - 02 May 2024
Abstract
In this work, we derived a new type model for spatial Hill’s system considering the created perturbation by the parameter effect of the continuation fractional potential. The new model is considered a reduced system from the restricted three-body problem under the same effect [...] Read more.
In this work, we derived a new type model for spatial Hill’s system considering the created perturbation by the parameter effect of the continuation fractional potential. The new model is considered a reduced system from the restricted three-body problem under the same effect for describing Hill’s problem. We identified the associated Lagrangian and Hamiltonian functions of the new system, and used them to verify the existence of the new equations of motion. We also proved that the new model has different six valid solutions under different six symmetries transformations as well as the original solution, where the new model is an invariant under these transformations. The several symmetries of Hill’s model can extremely simplify the calculation and analysis of preparatory studies for the dynamical behavior of the system. Finally, we confirm that these symmetries also authorize us to explore the similarities and differences among many classes of paths that otherwise differ from the obtained trajectories by restricted three-body problem. Full article
17 pages, 1990 KiB  
Article
Genetic Basis for Morphological Variation in the Zebrafish Danio rerio: Insights from a Low-Heterozygosity Line
by Gil Martinez-Bautista, Pamela Padilla and Warren W. Burggren
Fishes 2024, 9(5), 164; https://doi.org/10.3390/fishes9050164 (registering DOI) - 02 May 2024
Abstract
Data variability complicates reproducibility and the interpretation of experimental results. Different animal models have been employed to decrease variability to enhance experimental power. However, variation frequently persists among and within strains/lines. In zebrafish (Danio rerio), inbred lines (e.g., NHGRI-1) derived from [...] Read more.
Data variability complicates reproducibility and the interpretation of experimental results. Different animal models have been employed to decrease variability to enhance experimental power. However, variation frequently persists among and within strains/lines. In zebrafish (Danio rerio), inbred lines (e.g., NHGRI-1) derived from wild-type lines have been produced to greatly decrease genetic variation, with the goal of providing better understanding of genetic backgrounds that may influence the experimental outcome of studies employing such lines. We hypothesized that variations in morphological phenotypes shaped by environmental stressors early in development are correlated with the intrinsic degree of genetic variability of zebrafish lines. We compared morphological variability (yolk–chorion ratio, body mass, embryo mass, total length, condition factor, and specific growth rate) in wild-type AB and NHGRI-1 zebrafish lines as a function of their responses to altered temperature and oxygen availability during the first 7 days post-fertilization. Overall, both lines showed similar developmental trajectories for yolk–chorion ratio, embryo mass, and total length. Additionally, condition factor and specific growth rate showed similar responses within each line, regardless of temperature and hypoxia. Importantly, the coefficient of variation for each variable was significantly lower in NHGRI-1 than AB larvae for 151 of 187 assessed morphological endpoints. Thus, the low-heterozygosity NHGRI-1 zebrafish line can be useful for decreasing inter-individual variation in morphological responses to environmental stressors, thereby aiding in the interpretation of results and enhancing experimental reproducibility. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

12 pages, 627 KiB  
Commentary
Vibrio cholerae Bacteremia: An Enigma in Cholera-Endemic African Countries
by Foster K. Agyei, Birgit Scharf and Samuel Duodu
Trop. Med. Infect. Dis. 2024, 9(5), 103; https://doi.org/10.3390/tropicalmed9050103 (registering DOI) - 02 May 2024
Abstract
Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and [...] Read more.
Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and translocate into the bloodstream of humans. The non-toxigenic strains of V. cholerae (non-O1/O139), also known as NOVC, which do not cause epidemic or pandemic cases of cholera, are the major culprits of V. cholerae bacteremia. In non-cholera-endemic regions, clinical reports on NOVC infection have been noted over the past few decades, particularly in Europe and America. Although low–middle-income countries are most susceptible to cholera infections because of challenges with access to clean water and inappropriate sanitation issues, just a few cases of V. cholerae bloodstream infections have been reported. The lack of evidence-based research and surveillance of V. cholerae bacteremia in Africa may have significant clinical implications. This commentary summarizes the existing knowledge on the host risk factors, pathogenesis, and diagnostics of NOVC bacteremia. Full article
Show Figures

Figure 1

17 pages, 291 KiB  
Article
Optimizing Variational Problems through Weighted Fractional Derivatives
by Ricardo Almeida
Fractal Fract. 2024, 8(5), 272; https://doi.org/10.3390/fractalfract8050272 (registering DOI) - 02 May 2024
Abstract
In this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. [...] Read more.
In this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. Besides the fractional operators, the Lagrange function depends on extremal points. We examine the fundamental problem, providing the fractional Euler–Lagrange equation and the associated transversality conditions. Both the isoperimetric and Herglotz problems are also explored. Finally, we conclude with an analysis of the variational problem, incorporating fractional derivatives of any positive real order. Full article
51 pages, 21171 KiB  
Review
Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future
by Heike Aupperle-Lellbach, Alexandra Kehl, Simone de Brot and Louise van der Weyden
Vet. Sci. 2024, 11(5), 199; https://doi.org/10.3390/vetsci11050199 (registering DOI) - 02 May 2024
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues [...] Read more.
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going ‘bench to bedside’, i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
19 pages, 1556 KiB  
Article
State of Health Estimation for Lithium-Ion Battery Based on Sample Transfer Learning under Current Pulse Test
by Yuanyuan Li, Xinrong Huang, Jinhao Meng, Kaibo Shi, Remus Teodorescu and Daniel Ioan Stroe
Batteries 2024, 10(5), 156; https://doi.org/10.3390/batteries10050156 (registering DOI) - 02 May 2024
Abstract
Considering the diversity of battery data under dynamic test conditions, the stability of battery working data is affected due to the diversity of charge and discharge rates, variability of operating temperature, and randomness of the current state of charge, and the data types [...] Read more.
Considering the diversity of battery data under dynamic test conditions, the stability of battery working data is affected due to the diversity of charge and discharge rates, variability of operating temperature, and randomness of the current state of charge, and the data types are multi-sourced, which increases the difficulty of estimating battery SOH based on data-driven methods. In this paper, a lithium-ion battery state of health estimation method with sample transfer learning under dynamic test conditions is proposed. Through the Tradaboost.R2 method, the weight of the source domain sample data is adjusted to complete the update of the sample data distribution. At the same time, considering the division methods of the six auxiliary and the source domain data set, aging features from different state of charge ranges are selected. It is verified that while the aging feature dimension and the demand for target domain label data are reduced, the estimation accuracy of the lithium-ion battery state of health is not affected by the initial value of the state of charge. By considering the mean absolute error, mean square error and root mean square error, the estimated error results do not exceed 1.2% on the experiment battery data, which highlights the advantages of the proposed methods. Full article
Show Figures

Figure 1

12 pages, 576 KiB  
Article
The Role of Different TET Proteins in Cytosine Demethylation Revealed by Mathematical Modeling
by Karolina Kurasz, Joanna Rzeszowska-Wolny, Ryszard Oliński, Marek Foksiński and Krzysztof Fujarewicz
Epigenomes 2024, 8(2), 18; https://doi.org/10.3390/epigenomes8020018 (registering DOI) - 02 May 2024
Abstract
In living cells, some reactions can be conducted by more than one enzyme and sometimes it is difficult to establish which enzyme is responsible. Such is the case with proteins from the TET family, capable of converting 5-methyl-2’-deoxycytidine (5-mdC) [...] Read more.
In living cells, some reactions can be conducted by more than one enzyme and sometimes it is difficult to establish which enzyme is responsible. Such is the case with proteins from the TET family, capable of converting 5-methyl-2’-deoxycytidine (5-mdC) in DNA to 5-(hydroxymethyl)-2’-deoxycytidine (5-hmdC) and further to 5-formyl-2’-deoxycytidine (5-fdC) and 5-carboxy-2’-deoxycytidine (5-cadC). The estimation of the efficiency of particular TETs in particular oxidative reactions and different cell types is important but experimentally difficult. Here, we propose an approach with mathematical modeling in which methylation and known deoxycytidine modification pathways are presented by 343 possible model versions with assumed different combinations of TET1, 2, and 3 activities in different pathways. Model parameters were calculated on the basis of 5-mdC, 5-hmdC, 5-fdC, 5-cadC, and 5-hmdU levels experimentally assessed in five human cultured cell lines and previously published. Selection of the model versions that give in simulations the best average fit to experimental data suggested that not all TET proteins participate in all modification reactions and that TET3 activity may be especially important in the reaction of 5-fdC removal. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

9 pages, 2673 KiB  
Article
Association between Abdominal Aortic Calcification and Coronary Heart Disease in Essential Hypertension: A Cross-Sectional Study from the 2013–2014 National Health and Nutrition Examination Survey
by Lan He, Xu Li, E Shen and Yong-Ming He
J. Cardiovasc. Dev. Dis. 2024, 11(5), 143; https://doi.org/10.3390/jcdd11050143 (registering DOI) - 02 May 2024
Abstract
Background: This study aimed to investigate the association between abdominal aortic calcification (AAC) and coronary heart disease (CHD) in essential hypertension (EH). Methods: This study included patients diagnosed with EH during the 2013–2014 NHANES survey cycle. The study cohort was categorized into the [...] Read more.
Background: This study aimed to investigate the association between abdominal aortic calcification (AAC) and coronary heart disease (CHD) in essential hypertension (EH). Methods: This study included patients diagnosed with EH during the 2013–2014 NHANES survey cycle. The study cohort was categorized into the following four groups based on their AAC-24 score: no AAC (0); mild AAC (1–4); moderate AAC (5–15); and severe AAC (16–24). Logistic regression models were used to assess the association between AAC and CHD. Restricted cubic spline curves (RCS) were used to explore possible nonlinear relationships between AAC and CHD. Results: The prevalence of CHD was found to be higher in the moderate AAC and severe AAC groups than in the group without AAC (40.1% versus 30.9%, 47.7% versus 30.9%). On a continuous scale, the fully adjusted model showed a 7% increase in the risk of CHD prevalence per score increase in AAC [OR (95% CI) = 1.07 (1.03–1.11)]. On a categorical scale, the fully adjusted model showed the risk of CHD prevalence in EH patients with moderate AAC and severe AAC was 2.06 (95%CI, 1.23–3.45) and 2.18 (1.09–5.25) times higher than that in patients without AAC, respectively. The RCS curve suggested a dose-response linear relationship between AAC and CHD. Conclusion: These findings highlight that in patients with EH, a higher severity of AAC is associated with a higher risk of CHD prevalence. Full article
Show Figures

Figure 1

12 pages, 507 KiB  
Article
A Clinical Study on Urinary Clusterin and Cystatin B in Dogs with Spontaneous Acute Kidney Injury
by Emilia Gordin, Sanna Viitanen, Daniel Gordin, Donald Szlosek, Sarah Peterson, Thomas Spillmann and Mary Anna Labato
Vet. Sci. 2024, 11(5), 200; https://doi.org/10.3390/vetsci11050200 (registering DOI) - 02 May 2024
Abstract
Novel biomarkers are needed in diagnosing reliably acute kidney injury (AKI) in dogs and in predicting morbidity and mortality after AKI. Our hypothesis was that two novel tubular biomarkers, urinary clusterin (uClust) and cystatin B (uCysB), are elevated in dogs with AKI of [...] Read more.
Novel biomarkers are needed in diagnosing reliably acute kidney injury (AKI) in dogs and in predicting morbidity and mortality after AKI. Our hypothesis was that two novel tubular biomarkers, urinary clusterin (uClust) and cystatin B (uCysB), are elevated in dogs with AKI of different etiologies. In a prospective, longitudinal observational study, we collected serum and urine samples from 18 dogs with AKI of different severity and of various etiology and from 10 healthy control dogs. Urinary clusterin and uCysB were compared at inclusion between dogs with AKI and healthy controls and remeasured one and three months later. Dogs with AKI had higher initial levels of uClust (median 3593 ng/mL; interquartile range [IQR]; 1489–10,483) and uCysB (554 ng/mL; 29–821) compared to healthy dogs (70 ng/mL; 70–70 and 15 ng/mL; 15–15; p < 0.001, respectively). Initial uCysB were higher in dogs that died during the one-month follow-up period (n = 10) (731 ng/mL; 517–940), compared to survivors (n = 8) (25 ng/mL; 15–417 (p = 0.009). Based on these results, uClust and especially uCysB are promising biomarkers of AKI. Further, they might reflect the severity of tubular injury, which is known to be central to the pathology of AKI. Full article
(This article belongs to the Section Veterinary Internal Medicine)
17 pages, 3508 KiB  
Article
Single Sequential Trajectory Optimization with Centroidal Dynamics and Whole-Body Kinematics for Vertical Jump of Humanoid Robot
by Yaliang Liu, Xuechao Chen, Zhangguo Yu, Haoxiang Qi and Chuanku Yi
Biomimetics 2024, 9(5), 274; https://doi.org/10.3390/biomimetics9050274 (registering DOI) - 02 May 2024
Abstract
High vertical jumping motion, which enables a humanoid robot to leap over obstacles, is a direct reflection of its extreme motion capabilities. This article proposes a single sequential kino-dynamic trajectory optimization method to solve the whole-body motion trajectory for high vertical jumping motion. [...] Read more.
High vertical jumping motion, which enables a humanoid robot to leap over obstacles, is a direct reflection of its extreme motion capabilities. This article proposes a single sequential kino-dynamic trajectory optimization method to solve the whole-body motion trajectory for high vertical jumping motion. The trajectory optimization process is decomposed into two sequential optimization parts: optimization computation of centroidal dynamics and coherent whole-body kinematics. Both optimization problems converge on the common variables (the center of mass, momentum, and foot position) using cost functions while allowing for some tolerance in the consistency of the foot position. Additionally, complementarity conditions and a pre-defined contact sequence are implemented to constrain the contact force and foot position during the launching and flight phases. The whole-body trajectory, including the launching and flight phases, can be efficiently solved by a single sequential optimization, which is an efficient solution for the vertical jumping motion. Finally, the whole-body trajectory generated by the proposed optimized method is demonstrated on a real humanoid robot platform, and a vertical jumping motion of 0.5 m in height (foot lifting distance) is achieved. Full article
(This article belongs to the Special Issue Bio-Inspired Locomotion and Manipulation of Legged Robot: 2nd Edition)
14 pages, 2236 KiB  
Article
Polyhydroxyalkanoate Copolymer Production by Recombinant Ralstonia eutropha Strain 1F2 from Fructose or Carbon Dioxide as Sole Carbon Source
by Chih-Ting Wang, Ramamoorthi M Sivashankari, Yuki Miyahara and Takeharu Tsuge
Bioengineering 2024, 11(5), 455; https://doi.org/10.3390/bioengineering11050455 (registering DOI) - 02 May 2024
Abstract
Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of [...] Read more.
Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of strain H16, known as R. eutropha strain PHB4, cannot produce PHA. Strain 1F2, derived from strain PHB4, is a leucine analog-resistant mutant. Remarkably, the recombinant 1F2 strain exhibits the capacity to synthesize 3HB-based PHA copolymers containing 3-hydroxyvalerate (3HV) and 3-hydroxy-4-methyvalerate (3H4MV) comonomer units from fructose or CO2. This ability is conferred by the expression of a broad substrate-specific PHA synthase and tolerance to feedback inhibition of branched amino acids. However, the total amount of comonomer units incorporated into PHA was up to around 5 mol%. In this study, strain 1F2 underwent genetic engineering to augment the comonomer supply incorporated into PHA. This enhancement involved several modifications, including the additional expression of the broad substrate-specific 3-ketothiolase gene (bktB), the heterologous expression of the 2-ketoacid decarboxylase gene (kivd), and the phenylacetaldehyde dehydrogenase gene (padA). Furthermore, the genome of strain 1F2 was altered through the deletion of the 3-hydroxyacyl-CoA dehydrogenase gene (hbdH). The introduction of bktB-kivd-padA resulted in increased 3HV incorporation, reaching 13.9 mol% from fructose and 6.4 mol% from CO2. Additionally, the hbdH deletion resulted in the production of PHA copolymers containing (S)-3-hydroxy-2-methylpropionate (3H2MP). Interestingly, hbdH deletion increased the weight-average molecular weight of the PHA to over 3.0 × 106 on fructose. Thus, it demonstrates the positive effects of hbdH deletion on the copolymer composition and molecular weight of PHA. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, Volume 4)
Show Figures

Figure 1

18 pages, 5757 KiB  
Review
Is Conduction System Pacing a Valuable Alternative to Biventricular Pacing for Cardiac Resynchronization Therapy?
by Davide Castagno, Francesco Zanon, Gianni Pastore, Gaetano Maria De Ferrari and Lina Marcantoni
J. Cardiovasc. Dev. Dis. 2024, 11(5), 144; https://doi.org/10.3390/jcdd11050144 (registering DOI) - 02 May 2024
Abstract
Cardiac resynchronization therapy (CRT) significantly improves clinical outcomes in patients with ventricular systolic dysfunction and dyssynchrony. Biventricular pacing (BVP) has a class IA recommendation for patients with symptomatic heart failure with reduced ejection fraction (HFrEF) and left bundle branch block (LBBB). However, approximately [...] Read more.
Cardiac resynchronization therapy (CRT) significantly improves clinical outcomes in patients with ventricular systolic dysfunction and dyssynchrony. Biventricular pacing (BVP) has a class IA recommendation for patients with symptomatic heart failure with reduced ejection fraction (HFrEF) and left bundle branch block (LBBB). However, approximately 30% of patients have a poor therapeutic response and do not achieve real clinical benefit. Pre-implant imaging, together with tailored programming and dedicated device algorithms, have been proposed as possible tools to improve success rate but have shown inconsistent results. Over the last few years, conduction system pacing (CSP) is becoming a real and attractive alternative to standard BVP as it can restore narrow QRS in patients with bundle branch block (BBB) by stimulating and recruiting the cardiac conduction system, thus ensuring true resynchronization. It includes His bundle pacing (HBP) and left bundle branch area pacing (LBBAP). Preliminary data coming from small single-center experiences are very promising and have laid the basis for currently ongoing randomized controlled trials comparing CSP with BVP. The purpose of this review is to delve into the emerging role of CSP as an alternative method of achieving CRT. After framing CSP in a historical perspective, the pathophysiological rationale and available clinical evidence will be examined, and crucial technical aspects will be discussed. Finally, evidence gaps and future perspectives on CSP as a technique of choice to deliver CRT will be summarized. Full article
Show Figures

Figure 1

17 pages, 2171 KiB  
Article
An Innovative Layer-by-Layer Edible Coating to Regulate Oxidative Stress and Ascorbate–Glutathione Cycle in Fresh-Cut Melon
by Danilo Cice, Elvira Ferrara, Maria Tommasina Pecoraro, Giuseppe Capriolo and Milena Petriccione
Horticulturae 2024, 10(5), 465; https://doi.org/10.3390/horticulturae10050465 (registering DOI) - 02 May 2024
Abstract
Fresh-cut fruits, renowned for their convenience and nutritional value, are susceptible to rapid deterioration, compromising their quality and shelf life. In this study, a sustainable and environmentally friendly edible coating was developed based on sodium alginate (SA; 1% w/v), cedar mucilage (CM; [...] Read more.
Fresh-cut fruits, renowned for their convenience and nutritional value, are susceptible to rapid deterioration, compromising their quality and shelf life. In this study, a sustainable and environmentally friendly edible coating was developed based on sodium alginate (SA; 1% w/v), cedar mucilage (CM; 4% w/v), and calcium chloride (2% w/v), applied using a layer-by-layer technique to preserve the quality and prolong the shelf life of fresh-cut melon. Fruits were cut into cubes coated or uncoated by dipping and subsequently packaged in a polyethylene terephthalate container and stored for 15 days at 4 °C. Physicochemical traits and qualitative features such as polyphenol, flavonoid, carotenoid, ascorbic acid content, as well as antioxidant activity, were assessed. Furthermore, the enzymatic antioxidant system and the ascorbate–glutathione cycle were investigated. The coating reduced weight loss and enhanced polyphenol, flavonoid, and ascorbic acid content and antioxidant activity during cold storage. Edible coating (SA + CM) represents a valid tool to extend the postharvest life, improve the storability, and enhance the physicochemical and qualitative traits of fresh-cut melon. Further research is required to optimize coating formulations and application techniques to maximize their effectiveness and commercial viability in the food industry. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

19 pages, 6789 KiB  
Review
New Frontiers in Breast Cancer Imaging: The Rise of AI
by Stephanie B. Shamir, Arielle L. Sasson, Laurie R. Margolies and David S. Mendelson
Bioengineering 2024, 11(5), 451; https://doi.org/10.3390/bioengineering11050451 (registering DOI) - 02 May 2024
Abstract
Artificial intelligence (AI) has been implemented in multiple fields of medicine to assist in the diagnosis and treatment of patients. AI implementation in radiology, more specifically for breast imaging, has advanced considerably. Breast cancer is one of the most important causes of cancer [...] Read more.
Artificial intelligence (AI) has been implemented in multiple fields of medicine to assist in the diagnosis and treatment of patients. AI implementation in radiology, more specifically for breast imaging, has advanced considerably. Breast cancer is one of the most important causes of cancer mortality among women, and there has been increased attention towards creating more efficacious methods for breast cancer detection utilizing AI to improve radiologist accuracy and efficiency to meet the increasing demand of our patients. AI can be applied to imaging studies to improve image quality, increase interpretation accuracy, and improve time efficiency and cost efficiency. AI applied to mammography, ultrasound, and MRI allows for improved cancer detection and diagnosis while decreasing intra- and interobserver variability. The synergistic effect between a radiologist and AI has the potential to improve patient care in underserved populations with the intention of providing quality and equitable care for all. Additionally, AI has allowed for improved risk stratification. Further, AI application can have treatment implications as well by identifying upstage risk of ductal carcinoma in situ (DCIS) to invasive carcinoma and by better predicting individualized patient response to neoadjuvant chemotherapy. AI has potential for advancement in pre-operative 3-dimensional models of the breast as well as improved viability of reconstructive grafts. Full article
(This article belongs to the Special Issue Advances in Breast Cancer Imaging)
Show Figures

Figure 1

16 pages, 1436 KiB  
Review
Updates on the Care of Cloacal Exstrophy
by Claire A. Ostertag-Hill, Patrick T. Delaplain, Ted Lee and Belinda H. Dickie
Children 2024, 11(5), 544; https://doi.org/10.3390/children11050544 (registering DOI) - 02 May 2024
Abstract
Cloacal exstrophy is the most severe congenital anomaly of the exstrophy–epispadias complex and is characterized by gastrointestinal, genitourinary, neurospinal, and musculoskeletal malformations. Individualized surgical reconstruction by a multidisciplinary team is required for these complex patients. Not infrequently, patients need staged surgical procedures throughout [...] Read more.
Cloacal exstrophy is the most severe congenital anomaly of the exstrophy–epispadias complex and is characterized by gastrointestinal, genitourinary, neurospinal, and musculoskeletal malformations. Individualized surgical reconstruction by a multidisciplinary team is required for these complex patients. Not infrequently, patients need staged surgical procedures throughout childhood and adolescence. Following significant improvements in medical care and surgical reconstructive techniques, nearly all patients with cloacal exstrophy now survive, leading to an increased emphasis on quality of life. Increased attention is given to gender identity and the implications of reconstructive decisions. Long-term sequelae of cloacal exstrophy, including functional continence and sexual dysfunction, are recognized, and many patients require ongoing complex care into adulthood. Full article
(This article belongs to the Special Issue Recent Advances in Pediatric Colorectal Surgery)
Show Figures

Figure 1

14 pages, 1301 KiB  
Article
Evaluation of the Genotoxicity of Almond Hull: Implications for Its Use as a Novel Food Ingredient
by Yuyang Yao, Juer Liu, Qiming Miao, Xinyue Zhu, Wei Hua, Na Zhang, Guangwei Huang, Xiangyang Lin, Shengquan Mi, Yanling Cheng and Roger Ruan
Foods 2024, 13(9), 1404; https://doi.org/10.3390/foods13091404 (registering DOI) - 02 May 2024
Abstract
Almond hull, a substantial byproduct comprising more than half of almond fresh weight, has recently gained attention due to its functionality and sustainability benefits. Despite heightened interest, information regarding its toxicity remains limited. In order to assess its genotoxic potential, we conducted Good [...] Read more.
Almond hull, a substantial byproduct comprising more than half of almond fresh weight, has recently gained attention due to its functionality and sustainability benefits. Despite heightened interest, information regarding its toxicity remains limited. In order to assess its genotoxic potential, we conducted Good Laboratory Practice-compliant in vitro and in vivo studies following Organization for Economic Co-operation and Development (OECD) guidelines. No evidence of toxicity or mutagenicity was observed in a bacterial reverse mutation assay using five tester strains, evaluating almond hull at concentrations up to 5 mg/plate, with or without metabolic activation. Almond hull did not induce chromosome structural damage in a chromosome aberration assay using Chinese hamster ovary cells, nor did it cause any spermatogonial chromosomal aberration in tested male BALB/c mice. To evaluate its ability to induce DNA damage in rodents, a combined micronucleus assay was conducted in KM mice of both sexes. Almond hull was administered at doses of 1250, 2500, and 5000 mg/kg/day via gavage once daily for 2 days. No adverse effects of almond hull were observed in the micronucleus assay. Our results indicate no evidence of the genotoxic potential of almond hull administered up to the maximum concentrations of 5 g/kg, as recommended by OECD guidelines. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 4432 KiB  
Article
Intermodal Fiber Interferometer with Spectral Interrogation and Fourier Analysis of Output Signals for Sensor Application
by Aleksandr Petrov, Andrey Golovchenko, Mikhail Bisyarin, Nikolai Ushakov and Oleg Kotov
Photonics 2024, 11(5), 423; https://doi.org/10.3390/photonics11050423 (registering DOI) - 02 May 2024
Abstract
Interferometric fiber-optic sensors provide very high measurement accuracy and come with many other benefits. As such, the study of signal processing techniques for fiber-optic interferometers in order to extract information about external perturbation is an important area of research. In this work, the [...] Read more.
Interferometric fiber-optic sensors provide very high measurement accuracy and come with many other benefits. As such, the study of signal processing techniques for fiber-optic interferometers in order to extract information about external perturbation is an important area of research. In this work, the method of Fourier analysis was applied to extract information from the output signals of an intermodal fiber interferometer with spectral interrogation. It is shown that the external perturbation can be measured by obtaining the phase spectrum of the spectral transfer function of an intermodal fiber interferometer and determining the phase difference of a certain pair of mode groups. A mathematical model of this approach was developed, taking into account the parameters of the laser and the optical fiber, the number of excited mode groups, and the parameters of external perturbation. The theoretically considered method of Fourier analysis was experimentally verified, and it was proved to provide a linear response to external perturbation in a wide dynamic range. Full article
(This article belongs to the Special Issue Fiber Optic Sensors: Science and Applications)
Show Figures

Figure 1

12 pages, 2271 KiB  
Article
Production of Margarine Fat Containing Medium- and Long-Chain Triacylglycerols by Enzymatic Interesterification of Peony Seed Oil, Palm Stearin and Coconut Oil Blends
by Man Zhang, Baocheng Xu, Dongkun Zhao, Mengqi Shen, Mengjie Li, Donghao Liu and Lili Liu
Foods 2024, 13(9), 1405; https://doi.org/10.3390/foods13091405 (registering DOI) - 02 May 2024
Abstract
This paper reports the preparation of margarine fat using Lipozyme TL IM as a catalyst and peony seed oil (PSO), palm stearin (PS) and coconut oil (CO) as raw materials. The results indicate that there were no significant changes in fatty acid composition [...] Read more.
This paper reports the preparation of margarine fat using Lipozyme TL IM as a catalyst and peony seed oil (PSO), palm stearin (PS) and coconut oil (CO) as raw materials. The results indicate that there were no significant changes in fatty acid composition before or after interesterification of the oil samples. However, the total amount of medium- and long-chain triglycerides (MLCTs) increased from 2.92% to 11.38% in sample E1 after interesterification, mainly including LaLaO, LaMO, LaPM, LaOO, LaPO and LaPP. Moreover, the slip melting point (SMP) of sample E1 decreased from 45.9 °C (B1) to 33.5 °C. The solid fat content (SFC) of all the samples at 20 °C was greater than 10%, indicating that they could effectively prevent oil exudation. After interesterification, the samples exhibited a β′ crystal form and could be used to prepare functional margarine. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

20 pages, 4815 KiB  
Article
Postmortem Digital Image Correlation and Finite Element Modeling Demonstrate Posterior Scleral Deformations during Optic Nerve Adduction Tethering
by Seongjin Lim, Changzoo Kim, Somaye Jafari, Joseph Park, Stephanie S. Garcia and Joseph L. Demer
Bioengineering 2024, 11(5), 452; https://doi.org/10.3390/bioengineering11050452 (registering DOI) - 02 May 2024
Abstract
Postmortem human eyes were subjected to optic nerve (ON) traction in adduction and elevated intraocular pressure (IOP) to investigate scleral surface deformations. We incrementally adducted 11 eyes (age 74.1 ± 9.3 years, standard deviation) from 26° to 32° under normal IOP, during imaging [...] Read more.
Postmortem human eyes were subjected to optic nerve (ON) traction in adduction and elevated intraocular pressure (IOP) to investigate scleral surface deformations. We incrementally adducted 11 eyes (age 74.1 ± 9.3 years, standard deviation) from 26° to 32° under normal IOP, during imaging of the posterior globe, for analysis by three-dimensional digital image correlation (3D-DIC). In the same eyes, we performed uniaxial tensile testing in multiple regions of the sclera, ON, and ON sheath. Based on individual measurements, we analyzed eye-specific finite element models (FEMs) simulating adduction and IOP loading. Analysis of 3D-DIC showed that the nasal sclera up to 1 mm from the sheath border was significantly compressed during adduction. IOP elevation from 15 to 30 mmHg induced strains less than did adduction. Tensile testing demonstrated ON sheath stiffening above 3.4% strain, which was incorporated in FEMs of adduction tethering that was quantitatively consistent with changes in scleral deformation from 3D-DIC. Simulated IOP elevation to 30 mmHg did not induce scleral surface strains outside the ON sheath. ON tethering in incremental adduction from 26° to 32° compressed the nasal and stretched the temporal sclera adjacent to the ON sheath, more so than IOP elevation. The effect of ON tethering is influenced by strain stiffening of the ON sheath. Full article
(This article belongs to the Special Issue Biomechanics Studies in Ophthalmology)
Show Figures

Figure 1

23 pages, 5508 KiB  
Review
Research Progress on Molecularly Imprinted Materials for the Screening and Identification of Organic Pollutants
by Jialing Song, Xuanhao Lin, Liang Ying Ee and Sam F. Y. Li
Chemosensors 2024, 12(5), 72; https://doi.org/10.3390/chemosensors12050072 (registering DOI) - 02 May 2024
Abstract
Organic pollutants, distinguished by their persistence and bioaccumulation in the environment, pose significant ecological and health threats that surpass those of traditional pollutants. Crucial to understanding their environmental behavior, health risks, and mitigation strategies, is the screening and identification of these pollutants. This [...] Read more.
Organic pollutants, distinguished by their persistence and bioaccumulation in the environment, pose significant ecological and health threats that surpass those of traditional pollutants. Crucial to understanding their environmental behavior, health risks, and mitigation strategies, is the screening and identification of these pollutants. This process indispensably employs functional materials, among which molecularly imprinted polymers (MIPs) prove to be particularly advantageous because of their specific recognition capabilities and extensive application range. This review presents cutting-edge techniques and strategies for the fabrication of MIPs, including surface imprinting techniques and dummy molecular strategies. It encapsulates the last five years’ advancements in MIP research within the domains of sample pretreatment, as well as optical and electrochemical sensing analysis. The objective of this discourse is to potentially foster the evolution of MIP technology and establish the groundwork for its transition from lab-scale to commercial production. Full article
Show Figures

Graphical abstract

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop