The 2023 MDPI Annual Report has
been released!
 
14 pages, 1589 KiB  
Article
Lipidomic Assessment of the Inhibitory Effect of Standardized Water Extract of Hydrangea serrata (Thunb.) Ser. Leaves during Adipogenesis
by Jae Sik Yu, Hee Ju Kim, Yeo Eun Kim, Hyun Ok Yang, Yu-Kyong Shin, Hyunjae Kim, Soyoon Park and Gakyung Lee
Nutrients 2024, 16(10), 1508; https://doi.org/10.3390/nu16101508 (registering DOI) - 16 May 2024
Abstract
Obesity is primarily exacerbated by excessive lipid accumulation during adipogenesis, with triacylglycerol (TG) as a major lipid marker. However, as the association between numerous lipid markers and various health conditions has recently been revealed, investigating the lipid metabolism in detail has become necessary. [...] Read more.
Obesity is primarily exacerbated by excessive lipid accumulation during adipogenesis, with triacylglycerol (TG) as a major lipid marker. However, as the association between numerous lipid markers and various health conditions has recently been revealed, investigating the lipid metabolism in detail has become necessary. This study investigates the lipid metabolic effects of Hydrangea serrata (Thunb.) Ser. hot water leaf extract (WHS) on adipogenesis using LC-MS-based lipidomics analysis of undifferentiated, differentiated, and WHS-treated differentiated 3T3-L1 cells. WHS treatment effectively suppressed the elevation of glycerolipids, including TG and DG, and prevented a molecular shift in fatty acyl composition towards long-chain unsaturated fatty acids. This shift also impacted glycerophospholipid metabolism. Additionally, WHS stabilized significant lipid markers such as the PC/PE and LPC/PE ratios, SM, and Cer, which are associated with obesity and related comorbidities. This study suggests that WHS could reduce obesity-related risk factors by regulating lipid markers during adipogenesis. This study is the first to assess the underlying lipidomic mechanisms of the adipogenesis-inhibitory effect of WHS, highlighting its potential in developing natural products for treating obesity and related conditions. Our study provides a new strategy for the development of natural products for the treatment of obesity and related diseases. Full article
(This article belongs to the Special Issue Bioactive Lipids and Metabolism Disease)
30 pages, 9262 KiB  
Article
Study on Household-Level Electricity Consumption of Domestic Consumers in Romania: The Need to Check the Electrical Installation
by Elisabeta Spunei, Nătălița-Mihaela Frumușanu and Mihaela Martin
Sustainability 2024, 16(10), 4203; https://doi.org/10.3390/su16104203 (registering DOI) - 16 May 2024
Abstract
With technological development and the decrease in the price of electrical appliances for domestic consumers, combined with users’ desire for a certain level of comfort, the number of electrical devices in homes has increased. Although current equipment is largely energy-efficient, the high number [...] Read more.
With technological development and the decrease in the price of electrical appliances for domestic consumers, combined with users’ desire for a certain level of comfort, the number of electrical devices in homes has increased. Although current equipment is largely energy-efficient, the high number of these devices, used simultaneously, has led to an increase in electricity consumption. Electrical installation in homes has been replaced in most cases, but the connections have remained the same, without any checks being carried out in terms of load and operational safety. This paper presents an exploratory case study based on a questionnaire answered by 678 individuals from Romania. The objectives of the questionnaire were to identify the characteristics of the domestic consumer and their opinion on the state of the installation, energy costs, and energy consumption. Based on the analysis, 74.15% of the respondents stated that the power installed in their homes as domestic consumers increased. Based on the analysis conducted on-site, the risk of fire outbreaks in the power supply columns of apartment buildings was identified. To avoid critical situations, it is necessary to periodically check the connection and supply columns so that they are functional and safe to operate. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 1592 KiB  
Article
Interior Design Evaluation Based on Deep Learning: A Multi-Modal Fusion Evaluation Mechanism
by Yiyan Fan, Yang Zhou and Zheng Yuan
Mathematics 2024, 12(10), 1560; https://doi.org/10.3390/math12101560 (registering DOI) - 16 May 2024
Abstract
The design of 3D scenes is of great significance, and one of the crucial areas is interior scene design. This study not only pertains to the living environment of individuals but also has applications in the design and development of virtual environments. Previous [...] Read more.
The design of 3D scenes is of great significance, and one of the crucial areas is interior scene design. This study not only pertains to the living environment of individuals but also has applications in the design and development of virtual environments. Previous work on indoor scenes has focused on understanding and editing existing indoor scenes, such as scene reconstruction, segmentation tasks, texture, object localization, and rendering. In this study, we propose a novel task in the realm of indoor scene comprehension, amalgamating interior design principles with professional evaluation criteria: 3D indoor scene design assessment. Furthermore, we propose an approach using a transformer encoder–decoder architecture and a dual-graph convolutional network. Our approach facilitates users in posing text-based inquiries; accepts input in two modalities, point cloud representations of indoor scenes and textual queries; and ultimately generates a probability distribution indicating positive, neutral, and negative assessments of interior design. The proposed method uses separately pre-trained modules, including a 3D visual question-answering module and a dual-graph convolutional network for identifying emotional tendencies of text. Full article
(This article belongs to the Special Issue Advances of Intelligent Systems)
13 pages, 1135 KiB  
Article
Environmental Dyeing and Functionalization of Silk Fabrics with Natural Dye Extracted from Lac
by Qinru Huang, Zhao Wang, Liwei Zhao, Xiaojuan Li, Haohao Cai, Shuang Yang, Maoli Yin and Jian Xing
Molecules 2024, 29(10), 2358; https://doi.org/10.3390/molecules29102358 (registering DOI) - 16 May 2024
Abstract
Most traditional synthetic dyes and functional reagents used in silk fabrics are not biodegradable and lack green environmental protection. Natural dyes have attracted more and more attention because of their coloring, functionalization effects, and environmental benefits. In this study, natural dyes were extracted [...] Read more.
Most traditional synthetic dyes and functional reagents used in silk fabrics are not biodegradable and lack green environmental protection. Natural dyes have attracted more and more attention because of their coloring, functionalization effects, and environmental benefits. In this study, natural dyes were extracted from lac and used for coloring and functionalization in silk fabrics without any other harmful dyes. The extraction conditions were studied and analyzed by the univariate method. The optimal extraction process was that the volume ratio of ethanol to water was 60:40 with a solid–liquid ratio of 1:10, and reacting under the neutrality condition for 1 h at 70 °C. Silk fabric can be dyed dark owing to the certain lifting property of lac. After being dyed by Al3+ post-medium, the levels of the washing fastness, light fastness, and friction fastness of silk fabric are all above four with excellent fastness. The results show that the dyed silk fabrics have good UV protection, antioxidation, and antibacterial properties. The UV protection coefficient UPF is 42.68, the antioxidant property is 98.57%, and the antibacterial property can reach more than 80%. Therefore, the dyeing and functionalization of silk fabrics by utilizing naturally lac dyes show broad prospects in terms of the application of green sustainable dyeing and functionalization. Full article
(This article belongs to the Section Natural Products Chemistry)
13 pages, 911 KiB  
Article
Research on Electromagnetic Environment Characteristic Acquisition System for Industrial Chips
by Yanning Chen, Fang Liu, Jie Gao, Zhaowen Yan and Fuyu Zhao
Electronics 2024, 13(10), 1963; https://doi.org/10.3390/electronics13101963 (registering DOI) - 16 May 2024
Abstract
With the system interconnection and intelligence of application scenario equipment, the electromagnetic environment of chips is becoming more and more complex. Problems such as communication interruption and data loss caused by electromagnetic interference often occur. The electromagnetic reliability of chips has become an [...] Read more.
With the system interconnection and intelligence of application scenario equipment, the electromagnetic environment of chips is becoming more and more complex. Problems such as communication interruption and data loss caused by electromagnetic interference often occur. The electromagnetic reliability of chips has become an important index to measure their availability. In order to effectively detect the electromagnetic reliability of industrial chips applied to specific scenarios, it is necessary to measure and analyze the electromagnetic characteristics of the application scenarios, as the boundary conditions of the electromagnetic protection simulation analysis and design of the chip, and to develop Electromagnetic Compatibility (EMC) test items, test limits and test methods suitable for carrying out tests and monitoring on chips. The paper presents an acquisition system, which can complete the collection of transient electromagnetic interference, steady electromagnetic field, temperature, humidity and near-field data. The transient interference measurement frequency range is 300 kHz–500 MHz, with a rising edge of 1.5 ns; the steady-state electromagnetic field measurement frequency ranges from 100 Hz to 3 GHz. By collecting the electromagnetic environmental characteristics of chips and analyzing situations in which chips are prone to interference, protective measures can be implemented. Full article
16 pages, 6115 KiB  
Article
Influence and Mechanism of the Excavation Width on Excavation Deformations in Shanghai Soft Clay
by Pei Huang, Kexin Dang, Haili Shi, Kun Yang and Jiacheng Wu
Buildings 2024, 14(5), 1450; https://doi.org/10.3390/buildings14051450 (registering DOI) - 16 May 2024
Abstract
This study investigated the influence and mechanism of the excavation width on excavation deformations in Shanghai soft clay. Based on three excavations that had different final excavation depths, dissimilar retaining structures and diverse geological conditions, 40 sets of two-dimensional numerical models with different [...] Read more.
This study investigated the influence and mechanism of the excavation width on excavation deformations in Shanghai soft clay. Based on three excavations that had different final excavation depths, dissimilar retaining structures and diverse geological conditions, 40 sets of two-dimensional numerical models with different excavation widths were employed to analyze the deformation rules affected by the excavation width. Moreover, a series of simplified models with different excavation widths were employed to analyze the effect of the excavation width on excavation deformations. The results show that under the same excavation depth, both the horizontal displacements of the retaining walls and ground surface settlements increase as the excavation width increases, but the increasing rate gradually decreases. Factors such as the unloading influence depth, the overlap degree of the passive zones, the stress state of the basal soils and the development of the relative shear stress have a significant influence on excavation deformations. With increasing excavation width, the unloading influence depth gradually deepens, the overlap area of the passive zones gradually decreases, the direction of the rotation of the major principal stress gradually reduces and the relative shear stress of the distant and deep soils gradually expands. Therefore, the constraint ability of the passive zones on excavation deformation gradually reduces and excavation deformations gradually increase. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

10 pages, 1968 KiB  
Article
Modulation of Standing Spin Waves in Confined Rectangular Elements
by Milad Jalali, Qian Chen, Xuejian Tang, Qingjie Guo, Jian Liang, Xiaochao Zhou, Dong Zhang, Zhaocong Huang and Ya Zhai
Materials 2024, 17(10), 2404; https://doi.org/10.3390/ma17102404 (registering DOI) - 16 May 2024
Abstract
Magnonics is an emerging field within spintronics that focuses on developing novel magnetic devices capable of manipulating information through the modification of spin waves in nanostructures with submicron size. Here, we provide a confined magnetic rectangular element to modulate the standing spin waves, [...] Read more.
Magnonics is an emerging field within spintronics that focuses on developing novel magnetic devices capable of manipulating information through the modification of spin waves in nanostructures with submicron size. Here, we provide a confined magnetic rectangular element to modulate the standing spin waves, by changing the saturation magnetisation (MS), exchange constant (A), and the aspect ratio of rectangular magnetic elements via micromagnetic simulation. It is found that the bulk mode and the edge mode of the magnetic element form a hybrid with each other. With the decrease in MS, both the Kittel mode and the standing spin waves undergo a shift towards higher frequencies. On the contrary, as A decreases, the frequencies of standing spin waves become smaller, while the Kittel mode is almost unaffected. Moreover, when the length-to-width aspect ratio of the element is increased, standing spin waves along the width and length become split, leading to the observation of additional modes in the magnetic spectra. For each mode, the vibration style is discussed. These spin dynamic modes were further confirmed via FMR experiments, which agree well with the simulation results. Full article
(This article belongs to the Special Issue Advanced Spintronic Materials and Devices)
31 pages, 1359 KiB  
Article
Climate Change Risks for the Mediterranean Agri-Food Sector: The Case of Greece
by Elena Georgopoulou, Nikos Gakis, Dimitris Kapetanakis, Dimitris Voloudakis, Maria Markaki, Yannis Sarafidis, Dimitris P. Lalas, George P. Laliotis, Konstantina Akamati, Iosif Bizelis, Markos Daskalakis, Sevastianos Mirasgedis and Iordanis Tzamtzis
Agriculture 2024, 14(5), 770; https://doi.org/10.3390/agriculture14050770 (registering DOI) - 16 May 2024
Abstract
The study assesses the direct effects of climate change by 2060, including extreme events, on the productivity of regional crop farming and livestock in Greece, and the broader socio-economic effects on the agri-food and other sectors. Different approaches (i.e., agronomic models, statistical regression [...] Read more.
The study assesses the direct effects of climate change by 2060, including extreme events, on the productivity of regional crop farming and livestock in Greece, and the broader socio-economic effects on the agri-food and other sectors. Different approaches (i.e., agronomic models, statistical regression models, and equations linking thermal stress to livestock output) were combined to estimate the effects on productivity from changes in the average values of climatic parameters, and subsequently the direct economic effects from this long-term climate change. Recorded damages from extreme events together with climatic thresholds per event and crop were combined to estimate the direct economic effects of these extremes. The broader socio-economic effects were then estimated through input–output analysis. Under average levels of future extreme events, the total direct economic losses for Greek agriculture due to climate change will be significant, from EUR 437 million/year to EUR 1 billion/year. These losses approximately double when indirect effects on other sectors using agricultural products as inputs (e.g., food and beverage, hotels, and restaurants) are considered, and escalate further under a tenfold impact of extreme events. Losses in the GDP and employment are moderate at the national level, but significant in regions where the contribution of agriculture is high. Full article
(This article belongs to the Special Issue Mediterranean Agriculture under Climate Change)
13 pages, 1911 KiB  
Article
A Novel Adjoint-Based Reduced-Order Model for Depletion Calculations in Nuclear Reactor Physics
by Thibault Sauzedde, Pascal Archier and Frédéric Nguyen
Energies 2024, 17(10), 2406; https://doi.org/10.3390/en17102406 (registering DOI) - 16 May 2024
Abstract
The licensing of new reactors implies the use of verified and validated neutronic codes. Numerical validation can rely on sensitivity and uncertainty studies, but they require repeated execution of time-consuming neutron flux and depletion calculations. The computational costs can be reduced by using [...] Read more.
The licensing of new reactors implies the use of verified and validated neutronic codes. Numerical validation can rely on sensitivity and uncertainty studies, but they require repeated execution of time-consuming neutron flux and depletion calculations. The computational costs can be reduced by using perturbation theories. However, the uncoupled Depletion Perturbation Theory is restricted to single integral values such as nuclide density. Relying on reduced-basis approaches, which reconstruct all nuclide densities at once, is one way to get around this restriction. Furthermore, the adjoint-based reduced-order model uses the direct and adjoint equations for projection. For diffusion or transport calculations, the Exact-to-Precision Generalized Perturbation Theory was developed. Still, no models for depletion calculations are readily available. Therefore, this paper describes a novel adjoint-based reduced-order model for the Bateman Equation. It uses a range-finding algorithm to create the basis and the uncoupled Depletion Perturbation Theory for the reconstruction of the first order replaced by with a first order formulation. Our paper shows that for several perturbed cases, the depletion reduced-order model successfully reconstructs the nuclide densities. As a result, this serves as a proof of concept for our adjoint-based reduced-order model, which can perform sensitivity and uncertainty burn-up analysis in a shorter time. Full article
18 pages, 3407 KiB  
Article
Thermal Stress Mechanism of Thermochemical Reactor of 5 kW Solar Simulator with Temperature Distribution as the Load Condition
by Xing Huang, Yan Lin, Xin Yao, Yang Liu, Fanglin Gao and Hao Zhang
Processes 2024, 12(5), 1016; https://doi.org/10.3390/pr12051016 (registering DOI) - 16 May 2024
Abstract
In this paper, a solar thermochemical reactor is designed based on a 5 kW non-coaxial concentrating solar simulator, and a mathematical model is established for thermal calculations. The calculated temperature distribution is used as a load condition for thermal stress analyses. The model [...] Read more.
In this paper, a solar thermochemical reactor is designed based on a 5 kW non-coaxial concentrating solar simulator, and a mathematical model is established for thermal calculations. The calculated temperature distribution is used as a load condition for thermal stress analyses. The model is used to study the influence of the solar simulator power, solar reactor inner wall material’s emissivity, working pressure, gas inlet velocity, and thermocouple opening diameter on the thermal stress of the solar reactor. The results show that thermal stress increases with the increase in solar simulator power and the emissivity of the inner wall material in the solar reactor. The inlet velocity and working pressure have little effect on the thermal stress of the reactor and cannot prevent damage to the reactor. In the case of maintaining the diameter of the thermocouple at the front end of the reactor, increasing the diameter of the thermocouple inside the reactor leads to an increase in thermal stress around the reactor. Meanwhile, using a finer thermocouple can reduce the thermal stress inside the reactor and extend its service life, which will provide a foundation for designing practical industrial applications in the future. Full article
(This article belongs to the Section Energy Systems)
14 pages, 2374 KiB  
Article
Improvement in Noodle Quality and Changes in Microstructure and Disulfide Bond Content through the Addition of Pepper Straw Ash Leachate
by Xinyang Li, Yongjun Wu, Cen Li, Shuoqiu Tong, Lincheng Zhang and Jin Jin
Foods 2024, 13(10), 1562; https://doi.org/10.3390/foods13101562 (registering DOI) - 16 May 2024
Abstract
Every year, a significant amount of pepper stalks are wasted due to low utilization. The ash produced from pepper stalks contains a significant amount of alkaline salts, which are food additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw [...] Read more.
Every year, a significant amount of pepper stalks are wasted due to low utilization. The ash produced from pepper stalks contains a significant amount of alkaline salts, which are food additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw ash to improve the quality of noodles shows promising development prospects. In this study, pepper straw ash leachate (PSAL) was extracted and added to noodles. The quality of the noodles gradually improved with the addition of PSAL, with the best effect observed at a concentration of 18% (PSAL mass/flour mass). This addition resulted in a 57.8% increase in noodle hardness, a 55.43% increase in chewiness, a 19.41% rise in water absorption rate, and a 13.28% increase in disulfide bond content. These alterations rendered the noodles more resilient during cooking, reducing their tendency to soften and thus enhancing chewiness and palatability. Incorporating PSAL also reduced cooking loss by 57.79%. Free sulfhydryl groups decreased by 5.1%, and scanning electron microscopy revealed a denser gluten network structure in the noodles, with more complete starch wrapping. This study significantly enhanced noodle quality and provided a new pathway for the application of pepper straw resources in the food industry. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

23 pages, 1657 KiB  
Article
Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models
by Yang Wang, Ziyi Sheng, Haowei Wang, Xuan Xue, Jiaxin Hu and Yuhai Yang
Sustainability 2024, 16(10), 4202; https://doi.org/10.3390/su16104202 (registering DOI) - 16 May 2024
Abstract
Habitat quality is an important basis for human well-being and the achievement of sustainable development. Based on land-use data for the Bosten Lake Basin in 2000, 2005, 2010, 2015, and 2022, the PLUS and InVEST models are applied in this study to predict [...] Read more.
Habitat quality is an important basis for human well-being and the achievement of sustainable development. Based on land-use data for the Bosten Lake Basin in 2000, 2005, 2010, 2015, and 2022, the PLUS and InVEST models are applied in this study to predict and analyze land-use changes and explore the spatial and temporal evolution characteristics of the region’s habitat quality. Additionally, we use a geographic detector model to reveal the drivers of spatial variation in habitat quality. The results show that: (1) Land use in Bosten Lake Basin is dominated by grassland and bare land, with an area share of 93.21%. Habitat quality shows a trend of degradation followed by improvement, with a spatial pattern of high in the northwest and low in the southeast. (2) Habitat quality in 2030 increased from 2022 in all cases, with a mean of 0.354 for the natural development scenario, a maximum of 0.355 for the ecological development scenario, and a minimum of 0.353 for the economic development scenario. (3) The main drivers affecting habitat quality in the Bosten Lake watershed are DEM, mean annual precipitation (MAP), and GDP per capita. X1∩X4 (0.50) and X4∩X10 (0.51) are the interaction factors with the largest dominant effect in 2000, 2010 and 2020, respectively. Full article
14 pages, 476 KiB  
Article
Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers
by Ahmed Gouda, Hanan Al-Khalaifah, Afaf Al-Nasser, Nancy N. Kamel, Sherin Gabr and Kamal M. A. Eid
Animals 2024, 14(10), 1485; https://doi.org/10.3390/ani14101485 (registering DOI) - 16 May 2024
Abstract
Heat stress is one of the stressors that negatively affect broiler chickens, leading to a reduction in production efficiency and profitability. This reduction affects the economy in general, especially in hot and semi-hot countries. Therefore, improving heat tolerance of broiler chicks is a [...] Read more.
Heat stress is one of the stressors that negatively affect broiler chickens, leading to a reduction in production efficiency and profitability. This reduction affects the economy in general, especially in hot and semi-hot countries. Therefore, improving heat tolerance of broiler chicks is a key to sustained peak performance, especially under adverse environmental heat stress conditions. The present study investigated three early feed withdrawal regimes (FWD) as a potential mitigation for thermal stress exposure. A total of 240 unsexed one-day-old Cobb-500 chicks were randomly recruited to one of four experimental groups using a completely randomized design (10 birds × 6 replicates). The experimental groups included the control group with no feed withdrawal (control), while the other three groups were subjected to early feed withdrawal for either 24 h on the 5th day of age (FWD-24), 12 h on the 3rd and 5th day of age (FWD-12), or 8 h on the 3rd, 4th, and 5th day of age (FWD-8), respectively. Production performance was monitored throughout the experiment. Meanwhile, blood and liver samples were taken at the end of the experimental period to evaluate major physiological dynamic changes. Our findings demonstrated that under chronic heat stress conditions, FWD treatments significantly improved broilers’ production performance and enhanced several physiological parameters compared with the control. Serum levels of thyroid hormones were elevated, whereas leptin hormone was decreased in FWD groups compared with the control. Moreover, serum total protein, globulin, and hemoglobin levels were higher, while total cholesterol and uric acid were lower in the FWD groups. Furthermore, FWD groups showed significantly higher antioxidant marker activity with a significantly lower lipid peroxidation level. Immunoglobulin levels, lysozyme, complement factor C3, and liver heat shock protein 70 (HSP70) concentration were also elevated in FWD compared with the control. Also, serum interleukin-1β (IL-1β) and interferon-gamma (IFN-γ) significantly increased with FWD. Based on our findings, early feed withdrawal can be applied as a promising non-invasive nutritional strategy for broilers reared under chronic heat stress conditions. Such a strategy promotes the alleviation of the deleterious effects of heat stress on broiler performance, immunity, and redox status, owing to the onset of physiological adaptation and the development of thermotolerance ability. Full article
(This article belongs to the Special Issue Sustainable Poultry Production: Physiology and Nutrition)
15 pages, 8956 KiB  
Article
Interspecific Differences in the Effects of Calcium and Phosphorus Coprecipitation Induced by Submerged Plants on the Water-to-Phosphorus Cycle
by Heyun Wang, Runlong Zhang, Qi Chen, Kuang Chen and Rui Hu
Sustainability 2024, 16(10), 4200; https://doi.org/10.3390/su16104200 (registering DOI) - 16 May 2024
Abstract
The effects of submerged plant-induced calcium and phosphorus coprecipitation on the phosphorus cycle in aquatic environments and interspecific differences are still unclear. Herein, we selected Ceratophyllum demersum L. and Potamogeton crispus L. to construct a sediment–water-submerged plant system. We examined how phosphorus concentrations [...] Read more.
The effects of submerged plant-induced calcium and phosphorus coprecipitation on the phosphorus cycle in aquatic environments and interspecific differences are still unclear. Herein, we selected Ceratophyllum demersum L. and Potamogeton crispus L. to construct a sediment–water-submerged plant system. We examined how phosphorus concentrations in the water, sediment, and plant ash changed over time with different phosphorus and calcium treatments and explored the effects of photosynthesis-induced calcium and phosphorus coprecipitation on water’s phosphorus cycle and variations between different submerged plant species. The main results were as follows: (1) The phosphorus reduction in the P. crispus system was less than that in the C. demersum system. (2) P. crispus had higher total ash phosphorus (TAP) values than C. demersum. (3) The sediment total phosphorus (STP) and its fractions with P. crispus were most affected by phosphorus concentration while those with C. demersum were most affected by time. Overall, the two submerged species exhibited different calcium and phosphorus coprecipitation levels and had distinct effects on the water-to-phosphorus cycle. When submerged plants are introduced to reduce and stabilize the phosphorus levels, plant interspecific differences in their induced calcium and phosphorus coprecipitation on water and phosphorus cycling must be fully assessed. Full article
Show Figures

Figure 1

14 pages, 3810 KiB  
Article
Nicotinamide Supplementation Mitigates Oxidative Injury of Bovine Intestinal Epithelial Cells through Autophagy Modulation
by Yihan Guo, Changdong Feng, Yiwei Zhang, Kewei Hu, Chong Wang and Xiaoshi Wei
Animals 2024, 14(10), 1483; https://doi.org/10.3390/ani14101483 (registering DOI) - 16 May 2024
Abstract
The small intestine is important to the digestion and absorption of rumen undegradable nutrients, as well as the barrier functionality and immunological responses in ruminants. Oxidative stress induces a spectrum of pathophysiological symptoms and nutritional deficits, causing various gastrointestinal ailments. Previous studies have [...] Read more.
The small intestine is important to the digestion and absorption of rumen undegradable nutrients, as well as the barrier functionality and immunological responses in ruminants. Oxidative stress induces a spectrum of pathophysiological symptoms and nutritional deficits, causing various gastrointestinal ailments. Previous studies have shown that nicotinamide (NAM) has antioxidant properties, but the potential mechanism has not been elucidated. The aim of this study was to explore the effects of NAM on hydrogen peroxide (H2O2)-induced oxidative injury in bovine intestinal epithelial cells (BIECs) and its potential mechanism. The results showed that NAM increased the cell viability and total antioxidant capacity (T-AOC) and decreased the release of lactate dehydrogenase (LDH) in BIECs challenged by H2O2. The NAM exhibited increased expression of catalase, superoxide dismutase 2, and tight junction proteins. The expression of autophagy-related proteins was increased in BIECs challenged by H2O2, and NAM significantly decreased the expression of autophagy-related proteins. When an autophagy-specific inhibitor was used, the oxidative injury in BIECs was not alleviated by NAM, and the T-AOC and the release of LDH were not affected. Collectively, these results indicated that NAM could alleviate oxidative injury in BIECs by enhancing antioxidant capacity and increasing the expression of tight junction proteins, and autophagy played a crucial role in the alleviation. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

20 pages, 774 KiB  
Article
Detection of the Pine Wilt Disease Using a Joint Deep Object Detection Model Based on Drone Remote Sensing Data
by Youping Wu, Honglei Yang and Yunlei Mao
Forests 2024, 15(5), 869; https://doi.org/10.3390/f15050869 (registering DOI) - 16 May 2024
Abstract
Disease and detection is crucial for the protection of forest growth, reproduction, and biodiversity. Traditional detection methods face challenges such as limited coverage, excessive time and resource consumption, and poor accuracy, diminishing the effectiveness of forest disease prevention and control. By addressing these [...] Read more.
Disease and detection is crucial for the protection of forest growth, reproduction, and biodiversity. Traditional detection methods face challenges such as limited coverage, excessive time and resource consumption, and poor accuracy, diminishing the effectiveness of forest disease prevention and control. By addressing these challenges, this study leverages drone remote sensing data combined with deep object detection models, specifically employing the YOLO-v3 algorithm based on loss function optimization, for the efficient and accurate detection of tree diseases and pests. Utilizing drone-mounted cameras, the study captures insect pest image information in pine forest areas, followed by segmentation, merging, and feature extraction processing. The computing system of airborne embedded devices is designed to ensure detection efficiency and accuracy. The improved YOLO-v3 algorithm combined with the CIoU loss function was used to detect forest pests and diseases. Compared to the traditional IoU loss function, CIoU takes into account the overlap area, the distance between the center of the predicted frame and the actual frame, and the consistency of the aspect ratio. The experimental results demonstrate the proposed model’s capability to process pest and disease images at a slightly faster speed, with an average processing time of less than 0.5 s per image, while achieving an accuracy surpassing 95%. The model’s effectiveness in identifying tree pests and diseases with high accuracy and comprehensiveness offers significant potential for developing forest inspection protection and prevention plans. However, limitations exist in the model’s performance in complex forest environments, necessitating further research to improve model universality and adaptability across diverse forest regions. Future directions include exploring advanced deep object detection models to minimize computing resource demands and enhance practical application support for forest protection and pest control. Full article
18 pages, 2232 KiB  
Article
In Vitro Characterization of Polysaccharides from Fresh Tea Leaves in Simulated Gastrointestinal Digestion and Gut Microbiome Fermentation
by Qiaoyi Zhou, Jinjing Gao, Xueyan Sun, Yicheng Liang, Minqi Ye, Dongxia Liang, Caijin Ling and Binghu Fang
Foods 2024, 13(10), 1561; https://doi.org/10.3390/foods13101561 (registering DOI) - 16 May 2024
Abstract
Tea plants have a long cultivation history in the world, but there are few studies on polysaccharides from fresh tea leaves. In this study, tea polysaccharides (TPSs) were isolated from fresh tea leaves. Then, we investigated the characteristics of TPSs during in vitro [...] Read more.
Tea plants have a long cultivation history in the world, but there are few studies on polysaccharides from fresh tea leaves. In this study, tea polysaccharides (TPSs) were isolated from fresh tea leaves. Then, we investigated the characteristics of TPSs during in vitro simulated digestion and fermentation; moreover, the effects of TPSs on gut microbiota were explored. The results revealed that saliva did not significantly affect TPSs’ molecular weight, monosaccharide composition, and reducing sugar content, indicating that TPSs cannot be digested in the oral cavity. However, TPSs were partially decomposed in the gastrointestinal tract after gastric and intestinal digestion, resulting in the release of a small amount of free glucose monosaccharides. Our in vitro fermentation experiments demonstrated that TPSs are degraded by gut microbiota, leading to short-chain fatty acid (SCFA) production and pH reduction. Moreover, TPSs increased the abundance of Bacteroides, Lactobacillus, and Bifidobacterium but reduced that of Escherichia, Shigella, and Enterococcus, demonstrating that TPSs can regulate the gut microbiome. In conclusion, TPSs are partially decomposed by gut microbiota, resulting in the production of SCFAs and the regulation of gut microbiota composition and function. Therefore, TPSs may be used to develop a prebiotic supplement to regulate the gut microbiome and improve host health. Full article
19 pages, 2813 KiB  
Article
Thermal Vibration of Thick FGM Conical Shells by Using Third-Order Shear Deformation Theory
by Chih-Chiang Hong
Materials 2024, 17(10), 2403; https://doi.org/10.3390/ma17102403 (registering DOI) - 16 May 2024
Abstract
A time-dependent third-order shear deformation theory (TSDT) approach on the displacements of thick functionally graded material (FGM) conical shells under dynamic thermal vibration is studied. Dynamic equations of motion with TSDT for thick FGM conical shells are applied directly with the partial derivative [...] Read more.
A time-dependent third-order shear deformation theory (TSDT) approach on the displacements of thick functionally graded material (FGM) conical shells under dynamic thermal vibration is studied. Dynamic equations of motion with TSDT for thick FGM conical shells are applied directly with the partial derivative of variable R*θ in the curve coordinates (x, θ, z) instead of y in the Cartesian coordinates (x, y, z) for thick FGM plates, where R* is the middle-surface radius at any point on conical shells. The generalized differential quadrature (GDQ) numerical method is used to solve the dynamic differential equations in equilibrium matrix forms under thermal loads. It is the novelty of the current study to identify the parametric effects of shear correction coefficient, environment temperature, TSDT model, and FGM power law index on the displacements and stresses in the thick conical shells only subjected to sinusoidal heating loads. The physical parts with values on the length-to-thickness ratio equals 5, and 10 FGMs can be used in an area of an airplane engine that usually operates near more than 1000 K of temperatures when the thermal stress is considered and affected. The important findings of the presented study are listed as follows. The values of normal stress are in decreasing tendencies with time in cases when the coefficient c1 equals 0.925925/mm2 in TSDT and length-to-thickness ratio equals 5. The shear stress values in x plane z direction on the minor middle-surface radius (r) equals the major middle-surface radius (R) over 8 and length-to-thickness ratio equals to 5 can withstand T = 1000 K of pressure. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Engineering Materials)
Show Figures

Figure 1

11 pages, 3675 KiB  
Article
Low Temperature Raman Spectroscopy of Tetrahydrofuran: Phonon Spectra Compared to Matrix Isolation Spectra in Air
by Vlasta Mohaček-Grošev
Crystals 2024, 14(5), 468; https://doi.org/10.3390/cryst14050468 (registering DOI) - 16 May 2024
Abstract
The conformation of tetrahydrofuran (THF) molecules in vapor has been the subject of considerable computational and experimental studies, the most recent by Park and Kwon stated that the difference between the most stable, twisted C2 conformer and the bent Cs conformer [...] Read more.
The conformation of tetrahydrofuran (THF) molecules in vapor has been the subject of considerable computational and experimental studies, the most recent by Park and Kwon stated that the difference between the most stable, twisted C2 conformer and the bent Cs conformer is 17 ± 15 cm−1. Because of low symmetry, all modes from both conformers are allowed in the Raman and infrared spectra. In 1982, Aleksanyan and Antipov observed the emergence of two Raman bands at 249 and 303 cm−1 at 20 K, while only one band at 293 cm−1 was present in solid THF at 142. They assigned the 249 cm−1 band to the restricted pseudorotational motion of THF in the solid state, because on heating, the band diminishes and is too weak to be observed near melting point (at 142 K). Cadioli et al. reported a study of the vibrational spectrum of tetrahydrofuran, giving a complete assignment of all bands including those present in the low-temperature Raman spectrum at 85 K and infrared bands observed at 90 K. They assigned the band at 242 cm−1 in the Raman spectrum at 85 K as an overtone of the lowest normal mode (pseudorotational mode), while the 299 cm−1 band in the same spectrum was assigned as a radial mode. In the following, low-temperature Raman spectra of solid THF together with the Raman matrix isolated spectrum of THF in air will be presented and compared to published data. Our results indicate that the band observed at 245 cm−1 at 10 K is too strong to be assigned as an overtone, since its intensity is of the same magnitude as the 299 cm−1 band. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

9 pages, 549 KiB  
Communication
Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition
by Nimrod Shteindel, Yoram Gerchman and Alon Silberbush
Insects 2024, 15(5), 364; https://doi.org/10.3390/insects15050364 (registering DOI) - 16 May 2024
Abstract
Numerous species of animals alter their behavior in response to increasing competition. To do so, they must possess the ability to detect the presence and density of interspecific competitors. We studied the role of semiochemicals released by increasing densities of larval Culiseta longiareolata [...] Read more.
Numerous species of animals alter their behavior in response to increasing competition. To do so, they must possess the ability to detect the presence and density of interspecific competitors. We studied the role of semiochemicals released by increasing densities of larval Culiseta longiareolata Macquart on female oviposition habitat selection in two field experiments. Similarly to C. longiareolata larvae, subordinate Culex laticinctus Edwards are periphyton grazers who dwell in rain-filled pools in the Mediterranean region. We show that C. laticinctus females oviposited significantly less in mesocosm pools that were treated with crowding signals originating from C. longiareolata larvae. In the second experiment, we placed a similar number of larvae directly inside the 50 L mesocosms. These low-density mesocosms did not affect C. laticinctus oviposition but were attractive to conspecific oviposition. These results increase our understanding of the female ability to detect species-specific signals, indicating increased larval competition. Full article
(This article belongs to the Section Insect Behavior and Pathology)
21 pages, 2207 KiB  
Article
Study of Oxygen Reduction Reaction on Polycrystalline Rhodium in Acidic and Alkaline Media
by Jelena Golubović, Miroslava Varničić and Svetlana Štrbac
Catalysts 2024, 14(5), 327; https://doi.org/10.3390/catal14050327 (registering DOI) - 16 May 2024
Abstract
This study examines the kinetics and mechanism of the oxygen reduction reaction (ORR) on a polycrystalline rhodium electrode (Rh(poly)) in acidic and alkaline media, using rotating disc electrode measurements. This study found that the ORR activity of the Rh(poly) electrode decreases in the [...] Read more.
This study examines the kinetics and mechanism of the oxygen reduction reaction (ORR) on a polycrystalline rhodium electrode (Rh(poly)) in acidic and alkaline media, using rotating disc electrode measurements. This study found that the ORR activity of the Rh(poly) electrode decreases in the order of 0.1 M NaOH > 0.1 M HClO4 > 0.05 M H2SO4 concerning the half-wave potentials. The Tafel slopes for ORR on Rh(poly) in the cathodic direction are 60 and 120 mV dec−1 at low and high overpotentials, respectively, in perchloric acid and alkaline solutions. However, strongly adsorbed sulfate anions hinder the ORR on Rh(poly) in sulfuric acid, leading to higher Tafel slopes. The highest ORR activity of Rh(poly) in an alkaline media suggests the promoting role of the specifically adsorbed OH anions and RhOH. In all cases, ORR on Rh(poly) proceeds through the 4e-series reaction pathway. Full article
(This article belongs to the Special Issue Exploring the Mechanisms and Kinetics of Electrocatalytic Reactions)
18 pages, 3114 KiB  
Article
CPEB3 Maintains Developmental Competence of the Oocyte
by Lucie Lamacova, Denisa Jansova, Zongliang Jiang, Michal Dvoran, Daria Aleshkina, Rajan Iyyappan, Anna Jindrova, Heng-Yu Fan, Yuxuan Jiao and Andrej Susor
Cells 2024, 13(10), 850; https://doi.org/10.3390/cells13100850 (registering DOI) - 16 May 2024
Abstract
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic [...] Read more.
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3’UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Graphical abstract

11 pages, 305 KiB  
Article
Distributed Control for Non-Cooperative Systems Governed by Time-Fractional Hyperbolic Operators
by Hassan M. Serag, Areej A. Almoneef, Mahmoud El-Badawy and Abd-Allah Hyder
Fractal Fract. 2024, 8(5), 295; https://doi.org/10.3390/fractalfract8050295 (registering DOI) - 16 May 2024
Abstract
This paper studies distributed optimal control for non-cooperative systems involving time-fractional hyperbolic operators. Through the application of the Lax–Milgram theorem, we confirm the existence and uniqueness of weak solutions. Central to our approach is the utilization of the linear quadratic cost functional, which [...] Read more.
This paper studies distributed optimal control for non-cooperative systems involving time-fractional hyperbolic operators. Through the application of the Lax–Milgram theorem, we confirm the existence and uniqueness of weak solutions. Central to our approach is the utilization of the linear quadratic cost functional, which is meticulously crafted to encapsulate the interplay between the system’s state and control variables. This functional serves as a pivotal tool in imposing constraints on the dynamic system under consideration, facilitating a nuanced understanding of its controllability. Using the Euler–Lagrange first-order optimality conditions with an adjoint problem defined by means of the right-time fractional derivative in the Caputo sense, we obtain an optimality system for the optimal control. Finally, some examples are analyzed. Full article
(This article belongs to the Special Issue Optimal Control Problems for Fractional Differential Equations)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop