The 2023 MDPI Annual Report has
been released!
 
16 pages, 416 KiB  
Review
Recent Data about the Use of Corticosteroids in Sepsis—Review of Recent Literature
by Alexandra Lazar
Biomedicines 2024, 12(5), 984; https://doi.org/10.3390/biomedicines12050984 (registering DOI) - 30 Apr 2024
Abstract
Sepsis, characterized by life-threatening organ dysfunction due to a maladaptive host response to infection, and its more severe form, septic shock, pose significant global health challenges. The incidence of these conditions is increasing, highlighting the need for effective treatment strategies. This review explores [...] Read more.
Sepsis, characterized by life-threatening organ dysfunction due to a maladaptive host response to infection, and its more severe form, septic shock, pose significant global health challenges. The incidence of these conditions is increasing, highlighting the need for effective treatment strategies. This review explores the complex pathophysiology of sepsis, emphasizing the role of the endothelium and the therapeutic potential of corticosteroids. The endothelial glycocalyx, critical in maintaining vascular integrity, is compromised in sepsis, leading to increased vascular permeability and organ dysfunction. Corticosteroids have been used for over fifty years to treat severe infections, despite ongoing debate about their efficacy. Their immunosuppressive effects and the risk of exacerbating infections are significant concerns. The rationale for corticosteroid use in sepsis is based on their ability to modulate the immune response, promote cardiovascular stability, and potentially facilitate organ restoration. However, the evidence is mixed, with some studies suggesting benefits in terms of microcirculation and shock reversal, while others report no significant impact on mortality or organ dysfunction. The Surviving Sepsis Campaign provides cautious recommendations for their use. Emerging research highlights the importance of genomic and transcriptomic analyses in identifying patient subgroups that may benefit from corticosteroid therapy, suggesting a move toward personalized medicine in sepsis management. Despite potential benefits, the use of corticosteroids in sepsis requires careful consideration of individual patient risk profiles, and further research is needed to optimize their use and integrate genomic insights into clinical practice. This review underscores the complexity of sepsis treatment and the ongoing need for evidence-based approaches to improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Biomarkers and More Efficient Therapies for Sepsis)
Show Figures

Figure 1

11 pages, 1356 KiB  
Article
Phosphate Recovery Mechanism from Low P-Containing Wastewaters via CaP Crystallization Using Apatite as Seed: Seed Adsorption, Surface-Induced Crystallization, or Ion Clusters Aggregation?
by Xiaobao Nie, Yinan Li, Junli Wan, Shuai Ouyang, Zhengbo Wang, Guoqi Wang and Heng Jiang
Separations 2024, 11(5), 138; https://doi.org/10.3390/separations11050138 (registering DOI) - 30 Apr 2024
Abstract
Low P-containing wastewaters (LPWs) exhibit huge P recovery potential, considering their larger volume. P recovery via CaP crystallization using apatite as seed is documented as being potentially well suited for LPWs. However, its responsible mechanisms remain a subject for debate. Taking hydroxyapatite (HAP) [...] Read more.
Low P-containing wastewaters (LPWs) exhibit huge P recovery potential, considering their larger volume. P recovery via CaP crystallization using apatite as seed is documented as being potentially well suited for LPWs. However, its responsible mechanisms remain a subject for debate. Taking hydroxyapatite (HAP) as the seed of LPWs, this paper conducted HAP adsorption/dissolution experiments, titration experiments, and P recovery experiments to distinguish the primary responsible mechanism. Results showed that it was HAP dissolution, not P adsorption, that occurred when the initial P concentration was no higher than 5 mg/L, ruling out adsorption mechanism of P recovery from LPWs using HAP as the seed. Significant OH consumption and rapid P recovery occurred simultaneously within the first 60 s in titration experiments, suggesting CaP crystallization should be responsible for P recovery. Moreover, the continuous increase in P recovery efficiency with seed dosages observed in P recovery experiments seemed to follow well the mechanism of pre-nucleation ion clusters (PNCs) aggregation. During PNCs aggregation, P aggregates with Ca2+ quickly, generating CaP PNCs; then, CaP PNCs aggregate with seed particles, followed by CaP PNCs fusion, and ultimately transform into fines attached to the seed surface. PNCs’ aggregation mechanism was further supported by a comparison of seed SEM images before and after P recovery, since denser and smaller rod-shaped fines were observed on the seed surface after P recovery. This study suggests that PNCs’ aggregation is the dominant mechanism responsible for the recovery of P from LPWs via CaP crystallization using HAP as the seed. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

3 pages, 172 KiB  
Editorial
Editorial for the Special Issue on Multidisciplinary Composites
by Swadesh Kumar Singh, Suresh Kumar Tummala, Satyanarayana Kosaraju and Julfikar Haider
J. Compos. Sci. 2024, 8(5), 166; https://doi.org/10.3390/jcs8050166 (registering DOI) - 30 Apr 2024
Abstract
The remarkable blend of features that advanced composites can provide, such as high stiffness, good strength-to-weight ratio, good corrosion resistance, design freedom, and product variety, has expanded their applicability [...] Full article
(This article belongs to the Special Issue Multidisciplinary Composites)
16 pages, 3406 KiB  
Article
Improvement of Commercial Vehicle Seat Suspension Employing a Mechatronic Inerter Element
by Xiaofeng Yang, Shuilan Bi, Yanling Liu, Yi Yang, Changning Liu and Jiahao Qin
World Electr. Veh. J. 2024, 15(5), 194; https://doi.org/10.3390/wevj15050194 (registering DOI) - 30 Apr 2024
Abstract
To further improve the ride comfort of commercial vehicles, a seat ISD (Inerter–Spring–Damper) suspension utilizing a mechatronic inerter is proposed in this paper. Firstly, a five-DOF (degree-of-freedom) commercial vehicle seat ISD model was built. Then, the positive real network constraint conditions of a [...] Read more.
To further improve the ride comfort of commercial vehicles, a seat ISD (Inerter–Spring–Damper) suspension utilizing a mechatronic inerter is proposed in this paper. Firstly, a five-DOF (degree-of-freedom) commercial vehicle seat ISD model was built. Then, the positive real network constraint conditions of a biquadratic impedance transfer function were determined, and the meta-heuristic intelligent optimization algorithm was used to solve the parameters. According to the solution, the impedance transfer function was obtained and the specific network structure was realized by network synthesis. Lastly, this study compares the vibration isolation performance of the mechatronic ISD suspension of the vehicle seat with that of a passive suspension. In comparison to passive seat suspension, the seat mechatronic ISD suspension reduces seat vibration transmissibility by 16.33% and vertical acceleration by 16.78%. Results indicate that the new suspension system can be an effective improvement in ride comfort. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Figure 1

18 pages, 4294 KiB  
Article
Examining Mechanical Property Differences in Concrete with Natural and Synthetic Fiber Additives
by Walid Fouad Edris, Samy Elbialy, Ayman El-Zohairy, Ashraf Mohamed Soliman, Shymaa M. M. Shawky, Tarek Ibrahim Selouma and Abd Al-Kader A. Al Sayed
J. Compos. Sci. 2024, 8(5), 167; https://doi.org/10.3390/jcs8050167 (registering DOI) - 30 Apr 2024
Abstract
The rapid growth of Natural Fiber Laminate (NFL) innovation is a direct response to environmental challenges, positioning these materials as superior alternatives to synthetic fiber composites. This paper delved into the outcomes of an extensive experimental study investigating the influence of sisal fiber [...] Read more.
The rapid growth of Natural Fiber Laminate (NFL) innovation is a direct response to environmental challenges, positioning these materials as superior alternatives to synthetic fiber composites. This paper delved into the outcomes of an extensive experimental study investigating the influence of sisal fiber (SLF), banana fiber (BF), and glass fiber (GF) on the mechanical and microstructural characteristics of concrete. The water absorption curves were established for sisal fiber concrete (SLFC), banana fiber concrete (BFC), and glass fiber concrete (GFC). Furthermore, Scanning Electron Microscope (SEM) observations were conducted to perform microanalysis and failure analysis of the tested specimens. The results revealed significant improvements in the concrete containing fibers compared to its counterpart in fiber-free concrete. For mixtures with a water-to-binder (W/B) ratio of 0.3, the most optimal mix (GF-30-135) showed improvements in compressive strength, flexural strength, and splitting tensile strengths by 4.13%, 8.93%, and 10.10%, respectively. On the other hand, for W/B of 0.4, mix GF-30-135 showed improvements of 5.05%, 8.55%, and 11.60%, respectively. Furthermore, as the fiber content increased, microscopic analyses revealed a weakening of the bond between the fibers and the rest of the matrix, contributing to the deterioration of the mechanical properties. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

15 pages, 4531 KiB  
Article
Recycling of Rhenium from Superalloys and Manganese from Spent Batteries to Produce Manganese(II) Perrhenate Dihydrate
by Katarzyna Leszczyńska-Sejda, Arkadiusz Palmowski, Michał Ochmański, Grzegorz Benke, Alicja Grzybek, Szymon Orda, Karolina Goc, Joanna Malarz and Dorota Kopyto
Recycling 2024, 9(3), 36; https://doi.org/10.3390/recycling9030036 (registering DOI) - 30 Apr 2024
Abstract
This work presents the research results on the development of an innovative, hydrometallurgical technology for the production of manganese(II) perrhenate dihydrate from recycled waste. These wastes are scraps of Ni-based superalloys containing Re and scraps of Li–ion batteries containing Mn—specifically, solutions from the [...] Read more.
This work presents the research results on the development of an innovative, hydrometallurgical technology for the production of manganese(II) perrhenate dihydrate from recycled waste. These wastes are scraps of Ni-based superalloys containing Re and scraps of Li–ion batteries containing Mn—specifically, solutions from the leaching of black mass. This work presents the conditions for the production of Mn(ReO4)2·2H2O. Thus, to obtain Mn(ReO4)2·2H2O, manganese(II) oxide was used, precipitated from the solutions obtained after the leaching of black mass from Li–ion batteries scrap and purified from Cu, Fe and Al (pH = 5.2). MnO2 precipitation was carried out at a temperature < 50 °C for 30 min using a stoichiometric amount of KMnO4 in the presence of H2O2. MnO2 precipitated in this way was purified using a 20% H2SO4 solution and then H2O. Purified MnO2 was then added alternately with a 30% H2O2 solution to an aqueous HReO4 solution. The reaction was conducted at room temperature for 30 min to obtain a pH of 6–7. Mn(ReO4)2·2H2O precipitated by evaporating the solution to dryness was purified by recrystallization from H2O with the addition of H2O2 at least twice. Purified Mn(ReO4)2·2H2O was dried at a temperature of 100–110 °C. Using the described procedure, Mn(ReO4)2·2H2O was obtained with a purity of >99.0%. This technology is an example of the green transformation method, taking into account the 6R principles. Full article
Show Figures

Figure 1

12 pages, 2027 KiB  
Article
Are Local Heat Transfer Quantities Useful for Predicting the Working Behavior of Different Pulsating Heat Pipe Layouts? A Comparative Study
by Luca Pagliarini and Fabio Bozzoli
Fluids 2024, 9(5), 107; https://doi.org/10.3390/fluids9050107 (registering DOI) - 30 Apr 2024
Abstract
Despite a continuous effort devoted by the scientific community, a large-scale employment of Pulsating Heat Pipes for thermal management applications is still nowadays undermined by the low reliability of such heat transfer systems. The main reason underlying this critical issue is linked to [...] Read more.
Despite a continuous effort devoted by the scientific community, a large-scale employment of Pulsating Heat Pipes for thermal management applications is still nowadays undermined by the low reliability of such heat transfer systems. The main reason underlying this critical issue is linked to the strongly chaotic thermofluidic behavior of these devices, which prevents a robust prediction of their working behavior for different geometries and operating conditions, consequently hampering proper industrial design. The present work proposes to thoroughly compare data referring to previous infrared investigations on different Pulsating Heat Pipe layouts, which have focused on the estimation of heat fluxes locally exchanged at the wall–fluid interfaces. The aim is to understand the beneficial contribution of local heat transfer quantities in the prediction of the complex physics underlying such heat transfer systems. The results have highlighted that, regardless of the considered geometry and working conditions, wall-to-fluid heat fluxes are able to provide useful quantities to be employed, to some extent, to generalize Pulsating Heat Pipe operation and to improve their existing numerical models. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

27 pages, 2331 KiB  
Article
Battery Passports for Second-Life Batteries: An Experimental Assessment of Suitability for Mobile Applications
by Marwan Hassini, Eduardo Redondo-Iglesias and Pascal Venet
Batteries 2024, 10(5), 153; https://doi.org/10.3390/batteries10050153 (registering DOI) - 30 Apr 2024
Abstract
End-of-life electric vehicle (EV) batteries can be reused to reduce their environmental impact and economic costs. However, the growth of the second-life market is limited by the lack of information on the characteristics and performance of these batteries. As the volume of end-of-life [...] Read more.
End-of-life electric vehicle (EV) batteries can be reused to reduce their environmental impact and economic costs. However, the growth of the second-life market is limited by the lack of information on the characteristics and performance of these batteries. As the volume of end-of-life EVs may exceed the amount of batteries needed for stationary applications, investigating the possibility of repurposing them in mobile applications is also necessary. This article presents an experimental test that can be used to collect the data necessary to fill a battery passport. The proposed procedure can facilitate the decision-making process regarding the suitability of a battery for reuse at the end of its first life. Once the battery passport has been completed, the performance and characteristics of the battery are compared with the requirements of several mobile applications. Mobile charging stations and forklift trucks were identified as relevant applications for the reuse of high-capacity prismatic cells. Finally, a definition of the state of health (SoH) is proposed to track the suitability of the battery during use in the second-life application considering not only the energy but also the power and efficiency of the battery. This SoH shows that even taking into account accelerated ageing data, a repurposed battery can have an extended life of 11 years at 25 °C. It has also been shown that energy fade is the most limiting performance factor for the lifetime and that cell-to-cell variation should be tracked as it has been shown to have a significant impact on the battery life. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

15 pages, 2054 KiB  
Article
Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification
by Ben Topham, Millie de Vries, Maria Nonis, Rebecca van Berkel, Juliet M. Pullar, Nicholas J. Magon, Margreet C. M. Vissers, Margaret J. Currie, Bridget A. Robinson, David Gibbs, Abel Ang and Gabi U. Dachs
Epigenomes 2024, 8(2), 17; https://doi.org/10.3390/epigenomes8020017 (registering DOI) - 30 Apr 2024
Abstract
The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to [...] Read more.
The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to mediate changes in cancer-stimulated monocytes in vitro. We therefore investigated the relationship of ascorbate with monocyte subsets and epigenetic modifications in patients with metastatic melanoma receiving immunotherapy. Patients receiving immunotherapy were compared to other cancer cohorts and age-matched healthy controls. Ascorbate levels in plasma and peripheral blood-derived mononuclear cells (PBMCs), monocyte subtype and epigenetic markers were measured, and adverse events, tumour response and survival were recorded. A quarter of the immunotherapy cohort had hypovitaminosis C, with plasma and PBMC ascorbate levels significantly lower than those from other cancer patients or healthy controls. PBMCs from the immunotherapy cohort contained similar frequencies of non-classical and classical monocytes. DNA methylation markers and intracellular ascorbate concentration were correlated with monocyte subset frequency in healthy controls, but correlation was lost in immunotherapy patients. No associations between ascorbate status and immune-related adverse events or tumour response or overall survival were apparent. Full article
Show Figures

Figure 1

12 pages, 1891 KiB  
Article
Optimizing Curdlan Synthesis: Engineering Agrobacterium tumefaciens ATCC31749 for Enhanced Production Using Dextrin as a Carbon Source
by Tingting Yu, Yu Wang, Wei Wang, Yonggang Zhang, Yanmin Zhang, Hongyu Han, Yang Liu, Siduo Zhou and Xueqian Dong
Fermentation 2024, 10(5), 240; https://doi.org/10.3390/fermentation10050240 (registering DOI) - 30 Apr 2024
Abstract
A key goal in current research on industrial curdlan production is the expansion of carbon sources for fermentation. In this study, a recombinant bacterial strain, sp-AmyAXCC, capable of fermenting and synthesizing curdlan using dextrin as a carbon source, was produced via heterologous expression [...] Read more.
A key goal in current research on industrial curdlan production is the expansion of carbon sources for fermentation. In this study, a recombinant bacterial strain, sp-AmyAXCC, capable of fermenting and synthesizing curdlan using dextrin as a carbon source, was produced via heterologous expression of IPTG-inducible α-amylase from Xanthomonas campestris NRRL B-1459 in Agrobacterium tumefaciens ATCC31749. External expression of the enzyme was confirmed by western blotting, and the expression levels of exogenous proteins during the fermentation process were monitored. Additionally, the properties of the curdlan product were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray diffraction. The recombinant strain produced curdlan at a titer of 30.40 ± 0.14 g/L, gel strength of 703.5 ± 34.2 g/cm2, and a molecular weight of 3.58 × 106 Da, which is 33% greater than the molecular weight of native curdlan (2.69 × 106 Da). In the batch fermentation of sp-AmyAXCC with 12% dextrin as a carbon source, the titer of curdlan was 66.7 g/L with a yield of 0.56 g/g, and a productivity rate of 0.62 g/L/h at 108 h. The results of this study expand the substrate spectrum for Agrobacterium fermentation in curdlan production and provides guidance for further industrialization of curdlan production. Full article
Show Figures

Figure 1

14 pages, 2857 KiB  
Article
Biodepolymerization of Polyamide Fibers Using Yarrowia lipolytica as Whole-Cell Biocatalyst
by Adriano Carniel, Nathália Ferreira dos Santos, Filipe Smith Buarque, Absai da Conceição Gomes, Luiz Silvino Chinelatto Junior, Luiz Alexandre Sacorague, Maria Alice Zarur Coelho and Aline M. Castro
Fermentation 2024, 10(5), 239; https://doi.org/10.3390/fermentation10050239 (registering DOI) - 30 Apr 2024
Abstract
Polyamide is a thermoplastic polymer widely used for several applications, including cables in offshore oil and gas operations. Due to its growing annual production worldwide, this poorly biodegradable material has been a source of pollution. Given this scenario, the need has arisen to [...] Read more.
Polyamide is a thermoplastic polymer widely used for several applications, including cables in offshore oil and gas operations. Due to its growing annual production worldwide, this poorly biodegradable material has been a source of pollution. Given this scenario, the need has arisen to develop environmentally friendly techniques to degrade this waste, and biotechnology has emerged as a possible solution to mitigate this problem. This study aimed to investigate the potential of Yarrowia lipolytica to biodepolymerize polyamide fibers (PAF). Microbial cultures were grown in shaken flasks containing different concentrations of PAF (0.5 and 2 g·L−1) and in a bioreactor with and without pH adjustment. PAF mass loss was up to 16.8%, achieved after 96 h of cultivation in a bioreactor without pH adjustment. Additionally, NMR analyses revealed that the amorphous regions of PAF, which are more susceptible to depolymerization, were reduced by 6% during cultivation. These preliminary results indicate the biotechnological potential of Y. lipolytica to depolymerize PAF. Full article
Show Figures

Figure 1

14 pages, 3665 KiB  
Article
Hydrometallurgical Method of Producing Lithium Perrhenate from Solutions Obtained during the Processing of Li-Ion Battery Scrap
by Katarzyna Leszczyńska-Sejda, Michał Ochmański, Arkadiusz Palmowski, Grzegorz Benke, Alicja Grzybek, Szymon Orda, Karolina Goc, Joanna Malarz and Dorota Kopyto
Batteries 2024, 10(5), 151; https://doi.org/10.3390/batteries10050151 (registering DOI) - 30 Apr 2024
Abstract
The work presents the research results regarding the development of an innovative technology for the production of lithium perrhenate. The new technology is based entirely on hydrometallurgical processes. The source of lithium was solutions created during the processing of Li-ion battery masses, and [...] Read more.
The work presents the research results regarding the development of an innovative technology for the production of lithium perrhenate. The new technology is based entirely on hydrometallurgical processes. The source of lithium was solutions created during the processing of Li-ion battery masses, and the source of rhenium was perrhenic acid, produced from the scraps of Ni-based superalloys. The research showed that with the use of lithium carbonate, obtained from post-leaching solutions of Li-ion battery waste and properly purified (by washing with water, alcohol, and cyclic purification with CO2), and perrhenic acid, lithium perrhenate can be obtained. The following conditions: room temperature, time 1 h, 30% excess of lithium carbonate, and rhenium concentration in the acid from 20 g/dm3 to 300 g/dm3, allowed to produce a compound containing a total of 1000 ppm of metal impurities. The developed technology is characterized by the management of all aqueous waste solutions and solid waste and the lack of loss of valuable metals such as rhenium and lithium after the initial precipitation step of lithium carbonate. Full article
(This article belongs to the Special Issue Recycling of Lithium-Ion Batteries: Processes and Technologies)
Show Figures

Figure 1

21 pages, 6589 KiB  
Article
Prediction of the Remaining Useful Life of Lithium-Ion Batteries Based on the 1D CNN-BLSTM Neural Network
by Jianhui Mou, Qingxin Yang, Yi Tang, Yuhui Liu, Junjie Li and Chengcheng Yu
Batteries 2024, 10(5), 152; https://doi.org/10.3390/batteries10050152 (registering DOI) - 30 Apr 2024
Abstract
Lithium-ion batteries are currently widely employed in a variety of applications. Precise estimation of the remaining useful life (RUL) of lithium-ion batteries holds significant function in intelligent battery management systems (BMS). Therefore, in order to increase the fidelity and stabilization of predicting the [...] Read more.
Lithium-ion batteries are currently widely employed in a variety of applications. Precise estimation of the remaining useful life (RUL) of lithium-ion batteries holds significant function in intelligent battery management systems (BMS). Therefore, in order to increase the fidelity and stabilization of predicting the RUL of lithium-ion batteries, in this paper, an innovative strategy for RUL prediction is proposed by integrating a one-dimensional convolutional neural network (1D CNN) and a bilayer long short-term memory (BLSTM) neural network. Feature extraction is carried out through the input capacity data of the model using 1D CNN, and these deep features are used as the input of the BLSTM. The memory function of the BLSTM is applied to retain key information in the database and to better understand the coupling relationship among consecutive time series data along the time axis, thereby effectively predicting the RUL trends of lithium-ion batteries. Two different types of lithium-ion battery datasets from NASA and CALCE were used to verify the effectiveness of the proposed method. The results show that the proposed method achieves higher prediction accuracy, demonstrates stronger generalization capabilities, and effectively reduces prediction errors compared to other methods. Full article
Show Figures

Figure 1

15 pages, 2825 KiB  
Article
Application of the Surface Regression Technique for Enhancing the Input Factors and Responses for Processing Coconut Oil under Vertical Compression
by Abraham Kabutey, Oldřich Dajbych, Aleš Sedláček, Čestmír Mizera and David Herák
Foods 2024, 13(9), 1384; https://doi.org/10.3390/foods13091384 (registering DOI) - 30 Apr 2024
Abstract
This study optimized the input processing factors, namely compression force, pressing speed, heating temperature, and heating time, for extracting oil from desiccated coconut medium using a vertical compression process by applying a maximum load of 100 kN. The samples’ pressing height of 100 [...] Read more.
This study optimized the input processing factors, namely compression force, pressing speed, heating temperature, and heating time, for extracting oil from desiccated coconut medium using a vertical compression process by applying a maximum load of 100 kN. The samples’ pressing height of 100 mm was measured using a vessel chamber of diameter 60 mm with a plunger. The Box–Behnken design was used to generate the factors’ combinations of 27 experimental runs with each input factor set at three levels. The response surface regression technique was used to determine the optimum input factors of the calculated responses: oil yield (%), oil expression efficiency (%), and energy (J). The optimum factors’ levels were the compression force 65 kN, pressing speed 5 mm min−1, heating temperature 80 °C, and heating time 52.5 min. The predicted values of the responses were 48.48%, 78.35%, and 749.58 J. These values were validated based on additional experiments producing 48.18 ± 0.45%, 77.86 ± 0.72%, and 731.36 ± 8.04 J. The percentage error values between the experimental and the predicted values ranged from 0.82 ± 0.65 to 2.43 ± 1.07%, confirming the suitability of the established regression models for estimating the responses. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

13 pages, 4486 KiB  
Article
New Surface Modification of Hydrophilic Polyvinyl Alcohol via Predrying and Electrospinning of Hydrophobic Polycaprolactone Nanofibers
by Kihyeon Ahn, Kitae Park, Kambiz Sadeghi and Jongchul Seo
Foods 2024, 13(9), 1385; https://doi.org/10.3390/foods13091385 (registering DOI) - 30 Apr 2024
Abstract
Despite the excellent oxygen barrier and biodegradability of polyvinyl alcohol (PVA), its poor physical properties owing to its inherent hydrophilicity limit its application. In this paper, we report a novel surface modification technique for PVA films, involving the control of the predrying conditions [...] Read more.
Despite the excellent oxygen barrier and biodegradability of polyvinyl alcohol (PVA), its poor physical properties owing to its inherent hydrophilicity limit its application. In this paper, we report a novel surface modification technique for PVA films, involving the control of the predrying conditions (i.e., amount of residual solvent) of the coated PVA film and adjusting the electrospinning process of hydrophobic polycaprolactone (PCL) nanofibers onto the PVA films. The residual solvent of the coated PVA film was varied by changing the predrying time. A shorter predrying time increased the residual solvent content significantly (p < 0.05) and the flexibility of the coated PVA film. Moreover, scanning electron microscopy depicted the improved physical binding of hydrophobic PCL nanofibers to the hydrophilic PVA surface with increased penetration depth to the PVA film with shorter drying times. The PVA/PCL composite films with different predrying times and electrospun PCL nanofibers exhibited an apparent increase in the contact angle from 8.3° to 95.1°. The tensile strength of the pure PVA film increased significantly (p < 0.05) from 7.5 MPa to 77.4 MPa and its oxygen permeability decreased from 5.5 to 1.9 cc/m2·day. Therefore, our newly developed technique is cost-effective for modifying the surface and physical properties of hydrophilic polymers, broadening their industrial applications. Full article
(This article belongs to the Special Issue Advances in the Development of Sustainable Food Packaging)
Show Figures

Figure 1

25 pages, 8678 KiB  
Article
Cananga odorata (Ylang-Ylang) Essential Oil Containing Nanoemulgel for the Topical Treatment of Scalp Psoriasis and Dandruff
by Perwez Alam, Mohd Imran, Asad Ali and Haya Majid
Gels 2024, 10(5), 303; https://doi.org/10.3390/gels10050303 (registering DOI) - 30 Apr 2024
Abstract
This research aimed to evaluate the efficacy of a nanoemulgel (NE) containing Cananga odorata (Ylang-Ylang) oil for managing scalp psoriasis and dandruff through various assessments. The study involved phytochemical screening, characterization, stability testing, in vivo performance evaluation, dermatokinetic analysis, central composite rotatable design [...] Read more.
This research aimed to evaluate the efficacy of a nanoemulgel (NE) containing Cananga odorata (Ylang-Ylang) oil for managing scalp psoriasis and dandruff through various assessments. The study involved phytochemical screening, characterization, stability testing, in vivo performance evaluation, dermatokinetic analysis, central composite rotatable design (CCRD) optimization, in vitro release profiling, and antioxidant and antimicrobial activity assessment of the NE. The NE exhibited excellent stability and maintained physical parameters over a three-month period. In vivo studies showed no skin irritation, maintenance of skin pH (4.55 to 5.08), and improvement in skin hydration (18.09 to 41.28 AU) and sebum content (26.75 to 5.67 mg/cm2). Dermatokinetic analysis revealed higher skin retention of C. odorata in the NE (epidermis: 71.266 µg/cm2, dermis: 60.179 µg/cm2) compared to conventional formulations. CCRD optimization yielded NE formulations with the desired particle size (195.64 nm), entrapment efficiency (85.51%), and zeta potential (−20.59 mV). In vitro release studies indicated sustained release behavior, and antioxidant and antimicrobial properties were observed. This study demonstrates the stability, skin-friendliness, therapeutic benefits, and controlled release properties of the NE. The NE presents a promising option for various topical applications in treating bacterial and fungal diseases, potentially enhancing drug delivery and treatment outcomes in pharmaceuticals and cosmetics. Full article
Show Figures

Figure 1

12 pages, 2768 KiB  
Article
Study on a Strong Polymer Gel by the Addition of Micron Graphite Oxide Powder and Its Plugging of Fracture
by Bin Shi, Guangming Zhang, Lei Zhang, Chengjun Wang, Zhonghui Li and Fangping Chen
Gels 2024, 10(5), 304; https://doi.org/10.3390/gels10050304 (registering DOI) - 30 Apr 2024
Abstract
It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties [...] Read more.
It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties of the acrylamide polymer gel, which can improve the plugging effect of fracture water channeling. The chemical principle of this process is that the hydroxyl and carboxyl groups of the layered micron graphite powder can undergo physicochemical interactions with the amide groups of the polyacrylamide molecule chain. As a rigid structure, the graphite powder can support the flexible skeleton of the original polyacrylamide molecule chain. Through the synergy of the rigid and flexible structures, the viscoelasticity, thermal stability, tensile performance, and plugging ability of the new-type gel can be significantly enhanced. Compared with a single acrylamide gel, after adding 3000 mg/L of micrometer-sized graphite powder, the elastic modulus, the viscous modulus, the phase transition temperature, the breakthrough pressure gradient, the elongation at break, and the tensile stress of the acrylamide gel are all greatly improved. After adding the graphite powder to the polyacrylamide gel, the fracture water channeling can be effectively plugged. The characteristics of the networked water flow channel are obvious during the injected water break through the gel in the fracture. The breakthrough pressure of water flooding is high. The experimental results are an attempt to develop a new gel material for the water plugging of a fractured low-permeability reservoir. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

12 pages, 1503 KiB  
Article
Gel Properties and Protein Structures of Minced Pork Prepared with κ-Carrageenan and Non-Meat Proteins
by Yang Ye, Fei Chen, Meimei Shi, Yang Wang, Xia Xiao and Chunmei Wu
Gels 2024, 10(5), 305; https://doi.org/10.3390/gels10050305 (registering DOI) - 30 Apr 2024
Abstract
Problems with minced pork include water release and low gel strength. This study aimed to investigate the effect of treatments with κ-carrageenan (κ-CAR), egg white powder (EWP), wheat gluten (WG), soy isolate protein (SPI), and a combination of these treatments on the gel [...] Read more.
Problems with minced pork include water release and low gel strength. This study aimed to investigate the effect of treatments with κ-carrageenan (κ-CAR), egg white powder (EWP), wheat gluten (WG), soy isolate protein (SPI), and a combination of these treatments on the gel properties and protein structures of minced pork. The cooking loss and trapped water within minced pork increased when additives were incorporated; in particular, the SPI group reached 1.31 ± 0.01% and 91.42 ± 0.20%. The hardness and chewiness of minced pork reached their maximum values (38.91 ± 0.80 N, 14.73 ± 0.41 N) when the WG was added. The κ-CAR/WG-minced pork gel network structure was the densest and most stable, characterized by increased hydrophobic interactions, disulfide bonds in the mince gel, and enthalpy value. The α-helix content with κ-CAR/WG treatment decreased from 27% to 7.8%, transforming into other secondary structures. This suggests that the addition of κ-CAR/WG can be a more effective combination for improving the quality of minced pork. Full article
(This article belongs to the Special Issue Advanced Gels in Food Technology)
Show Figures

Graphical abstract

13 pages, 814 KiB  
Article
Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Taphrina deformans
by Charikleia K. Kavroumatzi, Paschalina Matziarli, Michael Chatzidimopoulos, Anastasia Boutsika, Dimitrios I. Tsitsigiannis, Epaminondas Paplomatas and Antonios Zambounis
J. Fungi 2024, 10(5), 325; https://doi.org/10.3390/jof10050325 (registering DOI) - 30 Apr 2024
Abstract
Taphrina deformans is the causal agent of leaf curl, a serious peach disease which causes significant losses in peach production worldwide. Nowadays, in order to control plant diseases, it is necessary to adopt novel and low-cost alternatives to conventional chemical fungicides. These promising [...] Read more.
Taphrina deformans is the causal agent of leaf curl, a serious peach disease which causes significant losses in peach production worldwide. Nowadays, in order to control plant diseases, it is necessary to adopt novel and low-cost alternatives to conventional chemical fungicides. These promising strategies are targeted at eliciting host defense mechanisms via priming the host through the consecutive application of plant immunity inducers prior to pathogen challenge. In this study, we investigated whether chitosan or yeast cell wall extracts could provide enhanced tolerance against leaf curl in two-season field trials. Furthermore, we addressed the possible molecular mechanisms involved beyond the priming of immune responses by monitoring the induction of key defense-related genes. The efficacy of spraying treatments against peach leaf curl with both inducers was significantly higher compared to the untreated control, showing efficacy in reducing disease severity of up to 62.6% and 73.9% for chitosan and yeast cell wall extracts, respectively. The application of chitosan in combination with copper hydroxide was more efficient in reducing disease incidence and severity, showing efficacy values in the range of 79.5–93.18%. Peach plantlets were also spray-treated with immunity inducers three times prior to leaf inoculation with T. deformans blastospores in their yeast phase. The relative expression levels of nine key defense and priming genes, including those encoding members of pathogenesis-related (PR) proteins and hub genes associated with hormone biosynthesis, were monitored by RT-qPCR across three days after inoculation (dai). The results indicate that pre-treatments with these plant immunity inducers activated the induction of genes involved in salicylic acid (SA) and jasmonate (JA) defense signaling pathways that may offer systemic resistance, coupled with the upregulation of genes conferring direct antimicrobial effects. Our experiments suggest that these two plant immunity inducers could constitute useful components towards the effective control of T. deformans in peach crops. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases)
Show Figures

Figure 1

15 pages, 5567 KiB  
Article
Profiling the Gut Microbiota in Obese Children with Formula Feeding in Early Life and Selecting Strains against Obesity
by Cong Liang and Lan-Wei Zhang
Foods 2024, 13(9), 1379; https://doi.org/10.3390/foods13091379 (registering DOI) - 30 Apr 2024
Abstract
Formula feeding, obesity and the gut microbiota are closely related. The present investigation explored the profiles of the intestinal microbiota in obese children over 5 years old with formula feeding in early life. We identified functional bacteria with anti-obesity potential through in vitro [...] Read more.
Formula feeding, obesity and the gut microbiota are closely related. The present investigation explored the profiles of the intestinal microbiota in obese children over 5 years old with formula feeding in early life. We identified functional bacteria with anti-obesity potential through in vitro and in vivo experiments, elucidating their mechanisms. The results indicated that, in the group of children over 5 years old who were fed formula in early life, obese children exhibited distinct gut microbiota, which were characterized by diminished species diversity and reduced Bifidobacterium levels compared to normal-weight children. As a result, Lactobacillus acidophilus H-68 (H-68) was isolated from the feces of the N-FF group and recognized as a promising candidate. H-68 demonstrated the ability to stimulate cholecystokinin (CCK) secretion in STC-1 cells and produce bile salt hydrolase. In vivo, H-68 promoted CCK secretion, suppressing food intake, and regulated bile acid enterohepatic circulation, leading to increased deoxycholic acid and lithocholic acid levels in the ileum and liver. This regulation effectively inhibited the diet-induced body weight and body fat gain, along with the liver fat deposition. In conclusion, H-68 was recognized for its prospective anti-obesity impact, signifying an auspicious pathway for forthcoming interventions targeted at averting pediatric obesity in formula-fed children. Full article
(This article belongs to the Special Issue Health Benefits of Probiotics and Prebiotics in Functional Foods)
Show Figures

Figure 1

17 pages, 603 KiB  
Article
Manufacture of Low-Na White Soft Brined Cheese: Effect of NaCl Substitution with a Combination of Na-K Salts on Proximate Composition, Mineral Content, Microstructure, and Sensory Acceptance
by Vladimir S. Kurćubić, Steva Lević, Vlada Pavlović, Ružica Mihailović, Aleksandra Nikolić, Mirjana Lukić, Jelena Jovanović, Bojana Danilović, Mira Milinković, Fatih Oz, Volker Heinz and Igor Tomasevic
Foods 2024, 13(9), 1381; https://doi.org/10.3390/foods13091381 (registering DOI) - 30 Apr 2024
Abstract
All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the “number one killer”, leading to increased [...] Read more.
All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the “number one killer”, leading to increased blood pressure. Therefore, the food industry is faced with a need to reduce Na in human nutrition in an effort to raise public health protection to a higher level. In this study, a commercially available combination of Na/K salts (COMB) at different concentrations was used as a NaCl substitute in the production of a modified, healthier, Na-reduced cheese. Samples of the modified low-Na white soft-brined cheese (WSBC) were produced by adding four different concentrations of COMB to production lots PL-1 to PL-4, and the control (CON) samples were prepared by salting with the usual, non-reduced concentration of NaCl. The effects of NaCl replacement on the physical–chemical parameters, major- and micro-elements, and microstructural and sensory properties of the WSBC were investigated. The obtained results indicated that there was no significant influence on the ash content, pH, and aw. The Na and K levels differed among treatments (p < 0.001). The lowest Na level in this study was recorded in PL-4 (only COMB was added) and was 334.80 ± 24.60 mg/100 g. According to the Na content, WSBC PL4 can be labeled with the nutrient claim “reduced amount of Na”. A significant difference (p < 0.05) was noticed in overall acceptance between the CON and PL-4, with no statistically significant difference found amongst other WSBC production lots. The replacement of NaCl resulted in a slightly greater firmness of the WSBC. The results confirm the possibility of producing low-Na WSBC when optimal amounts of a suitable mineral salt are used as a substitute for NaCl, thus reducing the risk of high Na intake in the human body through the consumption of evaluated cheese. Full article
(This article belongs to the Special Issue Salt Reducing Strategies in Food Production)
Show Figures

Figure 1

18 pages, 834 KiB  
Article
A Multi-Agent Reinforcement Learning-Based Grant-Free Random Access Protocol for mMTC Massive MIMO Networks
by Felipe Augusto Dutra Bueno, Alessandro Goedtel, Taufik Abrão and José Carlos Marinello
J. Sens. Actuator Netw. 2024, 13(3), 30; https://doi.org/10.3390/jsan13030030 (registering DOI) - 30 Apr 2024
Abstract
The expected huge number of connected devices in Internet of Things (IoT) applications characterizes the massive machine-type communication (mMTC) scenario, one prominent use case of beyond fifth-generation (B5G) systems. To meet mMTC connectivity requirements, grant-free (GF) random access (RA) protocols are seen as [...] Read more.
The expected huge number of connected devices in Internet of Things (IoT) applications characterizes the massive machine-type communication (mMTC) scenario, one prominent use case of beyond fifth-generation (B5G) systems. To meet mMTC connectivity requirements, grant-free (GF) random access (RA) protocols are seen as a promising solution due to the small amount of data that MTC devices usually transmit. In this paper, we propose a GF RA protocol based on a multi-agent reinforcement learning approach, applied to aid IoT devices in selecting the least congested RA pilots. The rewards obtained by the devices in collision cases resemble the congestion level of the chosen pilot. To enable the operation of the proposed method in a realistic B5G network scenario and aiming to reduce signaling overheads and centralized processing, the rewards in our proposed method are computed by the devices taking advantage of a large number of base station antennas. Numerical results demonstrate the superior performance of the proposed method in terms of latency, network throughput, and per-device throughput compared with other protocols. Full article
Show Figures

Figure 1

22 pages, 4968 KiB  
Article
Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency
by Hengjia Zhang, Tao Chen, Shouchao Yu, Chenli Zhou, Anguo Teng, Lian Lei and Fuqiang Li
Plants 2024, 13(9), 1241; https://doi.org/10.3390/plants13091241 (registering DOI) - 30 Apr 2024
Abstract
Residual film pollution and excessive nitrogen fertilizer have become limiting factors for agricultural development. To investigate the feasibility of replacing conventional plastic film with biodegradable plastic film in cold and arid environments under nitrogen application conditions, field experiments were conducted from 2021 to [...] Read more.
Residual film pollution and excessive nitrogen fertilizer have become limiting factors for agricultural development. To investigate the feasibility of replacing conventional plastic film with biodegradable plastic film in cold and arid environments under nitrogen application conditions, field experiments were conducted from 2021 to 2022 with plastic film covering (including degradable plastic film (D) and ordinary plastic film (P)) combined with nitrogen fertilizer 0 (N0), 160 (N1), 320 (N2), and 480 (N3) kg·ha−1. The results showed no significant difference (p > 0.05) in dry matter accumulation, photosynthetic gas exchange parameters, soil enzyme activity, or yield of spring maize under degradable plastic film cover compared to ordinary plastic film cover. Nitrogen fertilizer is the main factor limiting the growth of spring maize. The above-ground and root biomass showed a trend of increasing and then decreasing with the increase in nitrogen application level. Increasing nitrogen fertilizer can also improve the photosynthetic gas exchange parameters of leaves, maintain soil enzyme activity, and reduce soil pH. Under the nitrogen application level of N2, the yield of degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50% and 2.05~40.02%, respectively. At the same time, it can also improve water use efficiency and irrigation water use efficiency, but it will reduce nitrogen fertilizer partial productivity and nitrogen fertilizer agronomic use efficiency. Using multiple indicators to evaluate the effect of plastic film mulching combined with nitrogen fertilizer on the comprehensive growth of spring maize, it was found that the DN2 treatment had the best complete growth of maize, which was the best model for achieving stable yield and income increase and green development of spring maize in cold and cool irrigation areas. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop