The 2023 MDPI Annual Report has
been released!
 
16 pages, 1744 KiB  
Article
Quasi-Isotropy Structure and Characteristics of the Ultrasonic-Assisted WAAM High-Toughness Al Alloy
by Wei Luo, Peng Xu, Ming Zhang and Jiangshan Li
Coatings 2024, 14(5), 551; https://doi.org/10.3390/coatings14050551 (registering DOI) - 28 Apr 2024
Abstract
Wire Arc Additive Manufacturing (WAAM) has emerged as a highly promising method for the production of large-scale metallic structures; nonetheless, the presence of microstructural inhomogeneities, anisotropic properties, and porosity defects within WAAM Al alloys has substantially hindered their broader application. To surmount these [...] Read more.
Wire Arc Additive Manufacturing (WAAM) has emerged as a highly promising method for the production of large-scale metallic structures; nonetheless, the presence of microstructural inhomogeneities, anisotropic properties, and porosity defects within WAAM Al alloys has substantially hindered their broader application. To surmount these obstacles, ultrasonic-assisted WAAM was applied in the fabrication of thin-wall structures utilizing 7075 Al alloy. This study investigates the effects of ultrasonic-assisted Wire Arc Additive Manufacturing (WAAM) on the structural and mechanical properties of 7075 Al alloy specimens. Microstructural analysis showed a significant refinement in grain distribution, with the average grain size notably reduced, enhancing the material’s homogeneity. Porosity across the specimens was quantified, showing a decrease in values from the upper (0.02151) to the middle (0.01347) and lower sections (0.01785), correlating with the rapid cooling effects of WAAM. Mechanical testing revealed that ultrasonic application contributes to a consistent hardness pattern, with measurements averaging 70.71 HV0.1 horizontally and 71.23 HV0.1 vertically, and significantly impacts tensile strength; the horizontally oriented specimen exhibited a tensile strength of 236.03 MPa, a yield strength of 90.29 MPa, and an elongation of 31.10% compared to the vertically oriented specimen which showed reduced mechanical properties due to the presence of defects such as porosity and cracks. The fracture morphology analysis confirmed a predominantly ductile fracture mode, supported by the widespread distribution of dimples on the fracture surface. The integration of ultrasonic vibrations not only refined the grain structure but also modified the secondary phase distribution, enhancing the quasi-isotropic properties of the alloy. These results underline the potential of ultrasonic-assisted WAAM in improving the performance of the 7075 Al alloy for critical applications in the aerospace and automotive industries, suggesting a promising direction for future research and technological advancement in additive manufacturing processes. Full article
19 pages, 1646 KiB  
Article
Preparation and High-Temperature Resistance Properties of Phenolic Resin/Phosphate Hybrid Coatings
by Qinzhe Li, Yu Zhang, Lizhen Zhou, Peng Lei, Jiangyan Liu, Fuli Wang, Xueyun Xiang, Hang Wu, Wen Wang and Fuhui Wang
Materials 2024, 17(9), 2081; https://doi.org/10.3390/ma17092081 (registering DOI) - 28 Apr 2024
Abstract
In this study, a novel fabrication method was used to synthesize phenolic resin/phosphate hybrid coatings using aluminum dihydrogen phosphate (Al(H2PO4)3, hereafter denoted as Al), SC101 silica sol (Si) as the primary film-forming agent, and phenolic resin (PF) [...] Read more.
In this study, a novel fabrication method was used to synthesize phenolic resin/phosphate hybrid coatings using aluminum dihydrogen phosphate (Al(H2PO4)3, hereafter denoted as Al), SC101 silica sol (Si) as the primary film-forming agent, and phenolic resin (PF) as the organic matrix. This approach culminated in the formation of Al+Si+PF organo–inorganic hybrid coatings. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results confirmed the successful integration of hybrid structures within these coatings. The crystalline structure of the coatings post-cured at various temperatures was elucidated using X-ray diffraction (XRD). Additionally, the surface and cross-sectional morphologies were meticulously analyzed using scanning electron microscopy (SEM), offering insights into the microstructural properties of the coatings. The coatings’ porosities under diverse thermal and temporal regimes were quantitatively evaluated using advanced image processing techniques, revealing a significant reduction in porosity to a minimum of 5.88% following a thermal oxidation process at 600 °C for 10 h. The antioxidant efficacy of the phosphate coatings was rigorously assessed through cyclic oxidation tests, which revealed their outstanding performance. Specifically, at 300 °C across 300 h of cyclic oxidation, the weight losses recorded for phosphate varnish and the phenolic resin-infused phosphate coatings were 0.15 mg·cm−2 and 0.09 mg·cm−2, respectively. Furthermore, at 600 °C and over an identical period, the weight reduction was noted as 0.21 mg·cm−2 for phosphate varnish and 0.085 mg·cm−2 for the hybrid coatings, thereby substantiating the superior antioxidation capabilities of the phenolic resin hybrid coatings in comparison to the pure phosphate varnish. Full article
15 pages, 3128 KiB  
Article
Galf-Specific Neolectins: Towards Promising Diagnostic Tools
by Mateja Seničar, Benoît Roubinet, Pierre Lafite, Laurent Legentil, Vincent Ferrières, Ludovic Landemarre and Richard Daniellou
Int. J. Mol. Sci. 2024, 25(9), 4826; https://doi.org/10.3390/ijms25094826 (registering DOI) - 28 Apr 2024
Abstract
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually [...] Read more.
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications. Full article
(This article belongs to the Special Issue New Advances in Glycobiotechnology)
Show Figures

Figure 1

17 pages, 706 KiB  
Article
Verification Agencies on TikTok: The Case of MediaWise and Politifact
by Antonio Díaz-Lucena and Pablo Hidalgo-Cobo
Societies 2024, 14(5), 59; https://doi.org/10.3390/soc14050059 (registering DOI) - 28 Apr 2024
Abstract
This research aims to analyse the work of two international information verification agencies on TikTok ─MediaWise and Politifact—according to their evolution, approach, content, and format. To this end, a quantitative approach has been used with an inductive content analysis with nominal [...] Read more.
This research aims to analyse the work of two international information verification agencies on TikTok ─MediaWise and Politifact—according to their evolution, approach, content, and format. To this end, a quantitative approach has been used with an inductive content analysis with nominal variables, which offers specific nuances adapted to the unit of analysis. In a first phase, an empirical analysis was carried out, focusing on the measurement and quantification of the number of publications and interactions of the audience, from the time Fthey started operating on this platform until 31 December 2023. The total number of posts extracted was N > 704, which generated N > 4,166,387 user responses. In a second phase, an in-depth content analysis of all the posts published by these two agencies in four months (October and November 2021 and October and November 2023) was carried out, allowing us to analyse their evolution, but also to compare the two agencies in terms of approach, themes, and style. The most important findings show that both agencies adapt the style and narratives to this social network through the use of dynamic resources, a casual and informal tone, and elements of humour. In addition, both contribute to public reason through different strategies: MediaWise focuses on media literacy and Politifact on verification, using resources, effects and content in line with that purpose. Finally, we observe a downward evolution in terms of reach and impact on the audience, as well as a lower dynamism in 2023 than in 2021, which opens the door to future lines of explanatory research that delve deeper into possible causes. Full article
(This article belongs to the Special Issue Democracy, Social Networks and Mediatization)
27 pages, 9157 KiB  
Article
PRKDC-Mediated NHEJ May Play a Crucial Role in Aneuploidy of Chromosome 8-Driven Progression of Ovarian Cancer
by Wenqing Luan, Hongyan Cheng, Haoling Xie, Huiping Liu, Yicheng Wang, Shang Wang, Xue Ye, Honglan Zhu, Fuchou Tang, Yi Li and Xiaohong Chang
Int. J. Mol. Sci. 2024, 25(9), 4825; https://doi.org/10.3390/ijms25094825 (registering DOI) - 28 Apr 2024
Abstract
High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features [...] Read more.
High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein–protein interaction (PPI), and hub–gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC. Full article
18 pages, 2191 KiB  
Article
Online Estimation of Three-Phase Induction Motor Parameters Using an Extended Kalman Filter for Energy Saving
by Sasiya Udomsuk, Kongpol Areerak, Tidarut Areerak and Kongpan Areerak
Energies 2024, 17(9), 2115; https://doi.org/10.3390/en17092115 (registering DOI) - 28 Apr 2024
Abstract
In this paper, the online estimation of three-phase induction motor parameters using an extended Kalman filter for energy saving is proposed. The optimal value of the stator current on the d-axis is calculated to obtain the minimum power loss. Accurate motor parameters [...] Read more.
In this paper, the online estimation of three-phase induction motor parameters using an extended Kalman filter for energy saving is proposed. The optimal value of the stator current on the d-axis is calculated to obtain the minimum power loss. Accurate motor parameters are required to calculate the optimal stator current value for energy saving. Hence, to estimate motor parameters in real time, an online estimator known as the extended Kalman filter is applied. The energy consumption results for the motor using the proposed approach (estimated parameters with extended Kalman filter) are compared with those obtained using the conventional approach and energy saving (fixed parameters without parameter estimation) approach. As revealed by the comparison results from implementation in a laboratory, the proposed approach can provide minimum power losses for the three-phase induction motor drive, and the maximum energy-saving percentage is 60.18% compared with using the conventional drive approach. Full article
(This article belongs to the Section F: Electrical Engineering)
14 pages, 398 KiB  
Article
Effect of Nucleic Acid Analog Administration on Fluctuations in the Albumin-to-Globulin Ratio in Cats with Feline Infectious Peritonitis
by Masato Katayama, Yukina Uemura and Daichi Katori
Animals 2024, 14(9), 1322; https://doi.org/10.3390/ani14091322 (registering DOI) - 28 Apr 2024
Abstract
Background: feline infectious peritonitis (FIP) is a fatal disease in cats classified as either effusive (‘wet’), non-effusive (‘dry’), or a mixture of both forms (‘mixed’). The anti-FIP therapeutic effects of Mutian and molnupiravir, two drugs with a nucleic acid analog as an active [...] Read more.
Background: feline infectious peritonitis (FIP) is a fatal disease in cats classified as either effusive (‘wet’), non-effusive (‘dry’), or a mixture of both forms (‘mixed’). The anti-FIP therapeutic effects of Mutian and molnupiravir, two drugs with a nucleic acid analog as an active ingredient, have been confirmed recently. Methods: Of the cats with FIP, we observed a total of 122 and 56 cases that achieved remission after the administration of Mutian and molnupiravir as routine treatments, respectively. Changes in clinical indicators suggested to be correlated with FIP remission (weight, hematocrit, and albumin-to-globulin ratio) before and after the administration of each drug and during follow-up observation were statistically compared for each FIP type. Results: In all three FIP types, the administration of either Mutian or molnupiravir resulted in statistically significant increases in these indicators. Furthermore, the effect of Mutian on improving the albumin-to-globulin ratio was not observed at all in wet FIP, as compared with that of molnupiravir, but statistically significant in mixed and dry (p < 0.02 and p < 0.003, respectively). The differences in albumin-to-globulin ratio were all due to those of circulating globulin levels. Conclusions: These results indicate that slight inflammatory responses might be elicited continuously by a residual virus that persisted through molnupiravir treatments. Full article
(This article belongs to the Section Veterinary Clinical Studies)
16 pages, 4145 KiB  
Technical Note
Annual and Seasonal Variations in Aerosol Optical Characteristics in the Huai River Basin, China from 2007 to 2021
by Xu Deng, Chenbo Xie, Dong Liu and Yingjian Wang
Remote Sens. 2024, 16(9), 1571; https://doi.org/10.3390/rs16091571 (registering DOI) - 28 Apr 2024
Abstract
Over the past three decades, China has seen aerosol levels substantially surpass the global average, significantly impacting regional climate. This study investigates the long-term and seasonal variations of aerosols in the Huai River Basin (HRB) using MODIS, CALIOP observations from 2007 to 2021, [...] Read more.
Over the past three decades, China has seen aerosol levels substantially surpass the global average, significantly impacting regional climate. This study investigates the long-term and seasonal variations of aerosols in the Huai River Basin (HRB) using MODIS, CALIOP observations from 2007 to 2021, and ground-based measurements. A notable finding is a significant decline in the annual mean Aerosol Optical Depth (AOD) across the HRB, with MODIS showing a decrease of approximately 0.023 to 0.027 per year, while CALIOP, which misses thin aerosol layers, recorded a decrease of about 0.016 per year. This downward trend is corroborated by improvements in air quality, as evidenced by PM2.5 measurements and visibility-based aerosol extinction coefficients. Aerosol decreases occurred at all heights, but for aerosols below 800 m, with an annual AOD decrease of 0.011. The study also quantifies the long-term trends of five major aerosol types, identifying Polluted Dust (PD) as the predominant frequency type (46%), which has significantly decreased, contributing to about 68% of the total AOD reduction observed by CALIOP (0.011 per year). Despite this, Dust and Polluted Continental (PC) aerosols persist, with PC showing no clear trend of decrease. Seasonal analysis reveals aerosol peaks in summer, contrary to surface measurements, attributed to variations in the Boundary Layer (BL) depth, affecting aerosol distribution and extinction. Furthermore, the study explores the influence of seasonal wind patterns on aerosol type variation, noting that shifts in wind direction contribute to the observed changes in aerosol types, particularly affecting Dust and PD occurrences. The integration of satellite and ground measurements provides a comprehensive view of regional aerosol properties, highlighting the effectiveness of China’s environmental policies in aerosol reduction. Nonetheless, the persistence of high PD and PC levels underscores the need for continued efforts to reduce both primary and secondary aerosol production to further enhance regional air quality. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
22 pages, 16858 KiB  
Article
Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny
by Tengfei Zhang, Jinhao Zhou, Wei Liu, Rencai Yue, Mengjiao Yao, Jiawei Shi and Jianping Hu
Agronomy 2024, 14(5), 931; https://doi.org/10.3390/agronomy14050931 (registering DOI) - 28 Apr 2024
Abstract
The rapid and accurate detection of broccoli seedling planting quality is crucial for the implementation of robotic intelligent field management. However, existing algorithms often face issues of false detections and missed detections when identifying the categories of broccoli planting quality. For instance, the [...] Read more.
The rapid and accurate detection of broccoli seedling planting quality is crucial for the implementation of robotic intelligent field management. However, existing algorithms often face issues of false detections and missed detections when identifying the categories of broccoli planting quality. For instance, the similarity between the features of broccoli root balls and soil, along with the potential for being obscured by leaves, leads to false detections of “exposed seedlings”. Additionally, features left by the end effector resemble the background, making the detection of the “missed hills” category challenging. Moreover, existing algorithms require substantial computational resources and memory. To address these challenges, we developed Seedling-YOLO, a deep-learning model dedicated to the visual detection of broccoli planting quality. Initially, we designed a new module, the Efficient Layer Aggregation Networks-Pconv (ELAN_P), utilizing partial convolution (Pconv). This module serves as the backbone feature extraction network, effectively reducing redundant calculations. Furthermore, the model incorporates the Content-aware ReAssembly of Features (CARAFE) and Coordinate Attention (CA), enhancing its focus on the long-range spatial information of challenging-to-detect samples. Experimental results demonstrate that our Seedling-YOLO model outperforms YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, and YOLOv7 in terms of speed and precision, particularly in detecting ‘exposed seedlings’ and ‘missed hills’-key categories impacting yield, with Average Precision (AP) values of 94.2% and 92.2%, respectively. The model achieved a mean Average Precision of 0.5 ([email protected]) of 94.3% and a frame rate of 29.7 frames per second (FPS). In field tests conducted with double-row vegetable ridges at a plant spacing of 0.4 m and robot speed of 0.6 m/s, Seedling-YOLO exhibited optimal efficiency and precision. It achieved an actual detection precision of 93% and a detection efficiency of 180 plants/min, meeting the requirements for real-time and precise detection. This model can be deployed on seedling replenishment robots, providing a visual solution for robots, thereby enhancing vegetable yield. Full article
19 pages, 405 KiB  
Article
An Investigation into the Impact of Teachers’ Emotional Intelligence on Students’ Satisfaction of Their Academic Achievement
by Ameena Taleb Al Jaberi, Khadeegha Alzouebi and Othman Abu Khurma
Soc. Sci. 2024, 13(5), 244; https://doi.org/10.3390/socsci13050244 (registering DOI) - 28 Apr 2024
Abstract
This paper explores the correlation between teachers’ emotional intelligence (EI) and students’ academic achievement. Utilizing the Daniel Goleman questionnaire, the study delves into the multifaceted aspects of EI that extend beyond traditional leadership qualities. Goleman contends that, while attributes such as determination, intelligence, [...] Read more.
This paper explores the correlation between teachers’ emotional intelligence (EI) and students’ academic achievement. Utilizing the Daniel Goleman questionnaire, the study delves into the multifaceted aspects of EI that extend beyond traditional leadership qualities. Goleman contends that, while attributes such as determination, intelligence, and vision are essential, they alone do not encapsulate effective leadership. Emotional intelligence introduces a spectrum of qualities crucial for leadership success, including self-awareness, managing emotions, motivating oneself, empathy, and social skills. The study employed a questionnaire developed by the researcher, employing a statement-based approach. Participants, predominantly students, were tasked with selecting statements that best resonated with their experiences. The questionnaire aimed to assess various dimensions of emotional intelligence, including self-awareness, emotional management, self-motivation, empathy, and social adeptness. Through statistical analysis of the collected data, the paper examines the relationship between teachers’ EI levels and students’ academic achievement. Findings revealed the significance of teachers’ ability to comprehend and regulate emotions, as well as their capacity for empathy and effective social interaction. Furthermore, the study sheds light on how these facets of emotional intelligence contribute to creating conducive learning environments and fostering student engagement and achievement. This research underscores the pivotal role of emotional intelligence in educational settings and provides insights into how enhancing teachers’ EI can positively impact students’ learning outcomes. The implications of these findings extend to educational policies and practices, advocating for the incorporation of EI training and development programs for educators to cultivate conducive learning environments and facilitate students’ academic success. Full article
14 pages, 3276 KiB  
Article
Mineralogical Characterization of Raw Clay from Rujište (Serbia) Used in Traditional Pottery Manufacture
by Maja Milošević, Predrag Dabić, Jelena Gulicovski, Vladimir Dodevski and Milena Rosić
Minerals 2024, 14(5), 469; https://doi.org/10.3390/min14050469 (registering DOI) - 28 Apr 2024
Abstract
The pottery produced from the Rujište deposit in Serbia has been protected under the guidance of UNESCO and the Sector for Intangible Cultural Heritage of Serbia since 2019. A study was conducted to evaluate the mineralogical characteristics of the raw clay from this [...] Read more.
The pottery produced from the Rujište deposit in Serbia has been protected under the guidance of UNESCO and the Sector for Intangible Cultural Heritage of Serbia since 2019. A study was conducted to evaluate the mineralogical characteristics of the raw clay from this deposit. This study used various techniques, such as X-ray diffraction (XRD), infrared (IR) spectroscopy, X-ray fluorescence (XRF), and differential thermal analysis (DTA) to characterize the clay. This study found that the clay contained mostly clay minerals (56.3%–41.9%), with illite, smectite, and chlorite as the predominant phases. Other phases identified were quartz, feldspars, carbonates, and iron-bearing minerals (43.8%–58.1%). The chemical analyses revealed a high abundance of silica (>52 wt.%) and alumina (~16 wt.%), with Fe2O3 (~6 wt.%), K2O (~2.8 wt.%), and a similar content of MgO as the main constituents. The physical features that were investigated included the granulometry (clay: ~31%–44%, silt: ~ 26%–23%, and sand: ~ 42%–32%), specific surface area (97 to 107 m2 g−1), cation exchange capacity (12.5–13.7 mmol 100 g−1), and color (yellowish to moderate brown). The preliminary results suggest that most of the raw clay from the Rujište deposit might be suitable for use in traditional pottery manufacture. Full article
Show Figures

Figure 1

64 pages, 2305 KiB  
Review
Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion
by Ankita Mitra, Anoop Kumar, Nitin P. Amdare and Rajiv Pathak
Biology 2024, 13(5), 307; https://doi.org/10.3390/biology13050307 (registering DOI) - 28 Apr 2024
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, [...] Read more.
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body’s immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies. Full article
(This article belongs to the Special Issue Progression of the Immune Escape Mechanism in Tumors)
Show Figures

Figure 1

14 pages, 353 KiB  
Article
Isobutyramide and Slow-Release Urea as Substitutes for Soybean Meal in the Finishing Diet of Beef Cattle
by Chen Wei, Haiying Tao, Guifen Liu and Kechuan Tian
Animals 2024, 14(9), 1321; https://doi.org/10.3390/ani14091321 (registering DOI) - 28 Apr 2024
Abstract
Two experiments were conducted to investigate the effects of isobutyramide (IBA) and slow-release urea (SRU) as substitutes for soybean meal (SBM) in the finishing diet of beef cattle. The completely randomized design in vitro experiment with five treatments, i.e., control, 0.9% SRU group, [...] Read more.
Two experiments were conducted to investigate the effects of isobutyramide (IBA) and slow-release urea (SRU) as substitutes for soybean meal (SBM) in the finishing diet of beef cattle. The completely randomized design in vitro experiment with five treatments, i.e., control, 0.9% SRU group, 0.6% SRU + 0.3% IBA group (SRU-I), 0.3% SRU + 0.6% IBA group (IBA-S), 0.9% IBA group was conducted. The results showed that the IBA-S and IBA increased (p ≤ 0.05) substrate disappearance of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), total gas, and total volatile fatty acids (TVFA). The SRU group had the highest (p < 0.01) crude protein disappearance and ammonia nitrogen concentration, but the IBA contrarily decreased (p < 0.01) them compared with the control. Inclusion of IBA increased isobutyrate concentrations (p = 0.01) with the highest value for the IBA group. Then, an 84-day replicate 4 × 4 Latin square design with 8 Angus steers and four treatments, i.e., control, SRU, SRU-I, IBA-S was performed. The results showed that the treatments did not affect DM intake (p > 0.05) but tended (p = 0.09) to increase average daily gain. The inclusion of IBA increased (p < 0.05) the apparent digestibility of DM, organic matter, NDF, ADF, TVFA, and microbial crude protein with the highest values for the IBA-S group. The IBA-contained groups also increased (p ≤ 0.01) isobutyrate concentration, activities of carboxymethyl cellulase and xylanase, and the relative abundance of Butyrivibrio fibrisolvens with the highest values for the IBA-S group. The SRU had no effect on animal growth and nutrient apparent digestibility. In conclusion, IBA was developed as a new substitute for SBM in the finishing diet of beef cattle, and the optimal strategy was the isonitrogenous substitution of SBM with 0.3% SRU and 0.6% IBA of the diet. Full article
(This article belongs to the Section Cattle)
11 pages, 637 KiB  
Communication
Microbiological Risks of Traditional Raw Cow’s Milk Cheese (Koryciński Cheeses)
by Aleksandra Antoszewska, Elżbieta Maćkiw, Joanna Kowalska, Małgorzata Patoleta, Maja Ławrynowicz-Paciorek and Jacek Postupolski
Foods 2024, 13(9), 1364; https://doi.org/10.3390/foods13091364 (registering DOI) - 28 Apr 2024
Abstract
Traditional and regional foods have been increasing in popularity among consumers in Poland for many years. The observed trend of searching for natural and authentic taste encourages many producers to craft products from raw milk, including Koryciński cheeses. The aim of this study [...] Read more.
Traditional and regional foods have been increasing in popularity among consumers in Poland for many years. The observed trend of searching for natural and authentic taste encourages many producers to craft products from raw milk, including Koryciński cheeses. The aim of this study was to assess the microbiological hazards resulting from the presence of pathogenic bacteria in Koryciński cheeses available in retail trade. The tests were carried out using accredited methods, including the detection of the presence of Salmonella spp., the enumeration of Listeria monocytogenes, the enumeration of coagulase-positive staphylococci, and the detection of staphylococcal enterotoxins in food when the number of coagulase-positive staphylococci in the sample exceeded the limit of 105 cfu/g. The research material consisted of 45 Koryciński cheeses. The tests conducted revealed that Salmonella spp. was not detected in any of the examined cheeses. However, coagulase-positive staphylococci were present in 68.9% of the samples. In as many as 15 tested cheeses, the level of S. aureus contamination was above 105 cfu/g; therefore, these samples were tested for the presence of staphylococcal enterotoxins. The presence of staphylococcal enterotoxins was found in one Koryciński cheese. In four cheeses, the number of L. monocytogenes exceeded the level of 102 cfu/g, the limit specified in Regulation 2073/2005 on microbiological criteria for foodstuffs. The obtained research results confirm the validity of monitoring the microbiological quality of Koryciński cheeses and the need to increase awareness of ensuring proper hygienic conditions of production, including the increased risk associated with unpasteurized milk products. Full article
(This article belongs to the Section Dairy)
4 pages, 178 KiB  
Editorial
Dietary Strategies in Postmenopausal Women with Chronic and Metabolic Diseases
by Tiffany M. Cortes and Monica C. Serra
Nutrients 2024, 16(9), 1329; https://doi.org/10.3390/nu16091329 (registering DOI) - 28 Apr 2024
Abstract
As women age, their nutritional needs change, governed by changes in hormones, level of physical activity, and dietary intake [...] Full article
16 pages, 11252 KiB  
Article
Flexible Force Sensor Based on a PVA/AgNWs Nanocomposite and Cellulose Acetate
by Dulce Natalia Castillo-López, Luz del Carmen Gómez-Pavón, Alfredo Gutíerrez-Nava, Placido Zaca-Morán, Cesar Augusto Arriaga-Arriaga, Jesús Manuel Muñoz-Pacheco and Arnulfo Luis-Ramos
Sensors 2024, 24(9), 2819; https://doi.org/10.3390/s24092819 (registering DOI) - 28 Apr 2024
Abstract
Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially [...] Read more.
Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints. Full article
Show Figures

Graphical abstract

18 pages, 6837 KiB  
Article
Research on the Ablation Resistance of TiC Particle-Reinforced Aluminium-Based Composite Coatings on Armature Surface
by Chenlu Fan, Li Zhang, Nurbek Nurullougli Kurbonov, Ikromjon Usmonovich Rakhmonov and Guan Wang
Coatings 2024, 14(5), 549; https://doi.org/10.3390/coatings14050549 (registering DOI) - 28 Apr 2024
Abstract
The work aims to enhance and modify the armature surface in electromagnetic rail launch systems and improve its anti-ablation performance to better resist the impact ablation effects of high-temperature and high-speed arcs during the electromagnetic rail launch process and improve launch reliability. TiC [...] Read more.
The work aims to enhance and modify the armature surface in electromagnetic rail launch systems and improve its anti-ablation performance to better resist the impact ablation effects of high-temperature and high-speed arcs during the electromagnetic rail launch process and improve launch reliability. TiC particles are widely selected as metal material reinforcements, with advantages such as high melting points and high hardness. In this paper, the arc impact model of pure aluminum alloy and the arc impact model of TiC particle-reinforced aluminum-matrix composite coating–pure aluminum alloy were constructed based on molecular dynamics simulation. The ablation resistance of the material was evaluated by analyzing the depth of arc impact, the mass loss of the model, the number of gasification atoms, and the surface temperature of the material. The protection mechanism of the modified layer on the substrate was revealed by analyzing the damage degree of the surface and subsurface of the material after arc impact. The results showed that the strengthening mechanism of TiC particle-reinforced aluminum-matrix composites included fine grain strengthening, dispersion strengthening, dislocation strengthening, and so on. Covering TiC particle-reinforced aluminum-matrix composite coating on the surface of aluminum alloy armature is helpful in improving its ablation resistance. The research results can provide a theoretical basis and technical support for the modification design and performance control of electromagnetic rail armature. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

13 pages, 3834 KiB  
Article
Energy Utilization and Greenhouse Gas (GHG) Emissions of Tillage Operation in Wetland Rice Cultivation
by Suha Elsoragaby, A. F. Kheiralla, Elkamil Tola, Azmi Yahya, Modather Mairghany, Mojahid Ahmed, Wael M. Elamin and Bahaaddein K. M. Mahgoub
Land 2024, 13(5), 587; https://doi.org/10.3390/land13050587 (registering DOI) - 28 Apr 2024
Abstract
In Malaysia, wetland rice is cultivated over two cropping seasons: the main season, from June to November, and the off-season, from January to June. The aim of this study was to investigate tillage operations in rice production in relation to actual field operations [...] Read more.
In Malaysia, wetland rice is cultivated over two cropping seasons: the main season, from June to November, and the off-season, from January to June. The aim of this study was to investigate tillage operations in rice production in relation to actual field operations and under real field conditions for two rice cultivation seasons. The results showed that 80.7%, 17%, and 2.3% of the total time was spent on the actual operation, turning time, and reversing time, respectively. The results also showed that the mean effective field capacity, field efficiency, and fuel consumption were 1.2 ha/h, 80%, and 7.6 L/ha, respectively. The distribution of energy used in the first, second, and third tillage passes amounted to 37%, 33%, and 30% of the total energy, respectively. Fuel, machinery, and total GHG emissions were 62.4, 7.6, and 70 kg CO2eq/ha, respectively. Fuel represented the highest contributor of energy expenditure and GHG emissions. The distributions of GHG emissions in the first, second, and third tillage passes were 37%, 32%, and 31% of the total GHG emissions. The results reveal that carrying out minimum-tillage operations led to a reduction in environmental impacts. Full article
(This article belongs to the Special Issue Land Use Sustainability from the Viewpoint of Carbon Emission)
Show Figures

Figure 1

14 pages, 2658 KiB  
Article
Low-Cost Recognition of Plastic Waste Using Deep Learning and a Multi-Spectral Near-Infrared Sensor
by Uriel Martinez-Hernandez, Gregory West and Tareq Assaf
Sensors 2024, 24(9), 2821; https://doi.org/10.3390/s24092821 (registering DOI) - 28 Apr 2024
Abstract
This work presents an approach for the recognition of plastics using a low-cost spectroscopy sensor module together with a set of machine learning methods. The sensor is a multi-spectral module capable of measuring 18 wavelengths from the visible to the near-infrared. Data processing [...] Read more.
This work presents an approach for the recognition of plastics using a low-cost spectroscopy sensor module together with a set of machine learning methods. The sensor is a multi-spectral module capable of measuring 18 wavelengths from the visible to the near-infrared. Data processing and analysis are performed using a set of ten machine learning methods (Random Forest, Support Vector Machines, Multi-Layer Perceptron, Convolutional Neural Networks, Decision Trees, Logistic Regression, Naive Bayes, k-Nearest Neighbour, AdaBoost, Linear Discriminant Analysis). An experimental setup is designed for systematic data collection from six plastic types including PET, HDPE, PVC, LDPE, PP and PS household waste. The set of computational methods is implemented in a generalised pipeline for the validation of the proposed approach for the recognition of plastics. The results show that Convolutional Neural Networks and Multi-Layer Perceptron can recognise plastics with a mean accuracy of 72.50% and 70.25%, respectively, with the largest accuracy of 83.5% for PS plastic and the smallest accuracy of 66% for PET plastic. The results demonstrate that this low-cost near-infrared sensor with machine learning methods can recognise plastics effectively, making it an affordable and portable approach that contributes to the development of sustainable systems with potential for applications in other fields such as agriculture, e-waste recycling, healthcare and manufacturing. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning)
Show Figures

Figure 1

14 pages, 5741 KiB  
Article
Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force–Tempo Variations
by Subing Huang, Xiaoyu Guo, Jodie J. Xie, Kelvin Y. S. Lau, Richard Liu, Arthur D. P. Mak, Vincent C. K. Cheung and Rosa H. M. Chan
Sensors 2024, 24(9), 2820; https://doi.org/10.3390/s24092820 (registering DOI) - 28 Apr 2024
Abstract
Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate [...] Read more.
Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system’s adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo–force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks. Full article
19 pages, 2445 KiB  
Article
AFMUNet: Attention Feature Fusion Network Based on a U-Shaped Structure for Cloud and Cloud Shadow Detection
by Wenjie Du, Zhiyong Fan, Ying Yan, Rui Yu and Jiazheng Liu
Remote Sens. 2024, 16(9), 1574; https://doi.org/10.3390/rs16091574 (registering DOI) - 28 Apr 2024
Abstract
Cloud detection technology is crucial in remote sensing image processing. While cloud detection is a mature research field, challenges persist in detecting clouds on reflective surfaces like ice, snow, and sand. Particularly, the detection of cloud shadows remains a significant area of concern [...] Read more.
Cloud detection technology is crucial in remote sensing image processing. While cloud detection is a mature research field, challenges persist in detecting clouds on reflective surfaces like ice, snow, and sand. Particularly, the detection of cloud shadows remains a significant area of concern within cloud detection technology. To address the above problems, a convolutional self-attention mechanism feature fusion network model based on a U-shaped structure is proposed. The model employs an encoder–decoder structure based on UNet. The encoder performs down-sampling to extract deep features, while the decoder uses up-sampling to reconstruct the feature map. To capture the key features of the image, Channel Spatial Attention Module (CSAM) is introduced in this work. This module incorporates an attention mechanism for adaptive field-of-view adjustments. In the up-sampling process, different channels are selected to obtain rich information. Contextual information is integrated to improve the extraction of edge details. Feature fusion at the same layer between up-sampling and down-sampling is carried out. The Feature Fusion Module (FFM) facilitates the positional distribution of the image on a pixel-by-pixel basis. A clear boundary is distinguished using an innovative loss function. Finally, the experimental results on the dataset GF1_WHU show that the segmentation results of this method are better than the existing methods. Hence, our model is of great significance for practical cloud shadow segmentation. Full article
(This article belongs to the Special Issue Remote Sensing Image Classification and Semantic Segmentation)
13 pages, 4532 KiB  
Article
Enhancing Hardness and Wear Resistance of MgAl2O4/Fe-Based Laser Cladding Coatings by the Addition of CeO2
by Liangxun Li, Shaobai Sang, Tianbin Zhu, Yawei Li and Heng Wang
Coatings 2024, 14(5), 550; https://doi.org/10.3390/coatings14050550 (registering DOI) - 28 Apr 2024
Abstract
Laser cladding has unique advantages in improving the wear resistance of materials or workpiece surfaces. CeO2 could play a role in promoting the flow of the molten pool and grain refinement during the laser cladding process, which is likely to further improve [...] Read more.
Laser cladding has unique advantages in improving the wear resistance of materials or workpiece surfaces. CeO2 could play a role in promoting the flow of the molten pool and grain refinement during the laser cladding process, which is likely to further improve the wear resistance of the coating. In this work, CeO2 was introduced into the MgAl2O4/Fe-based laser cladding coating on the surface of GCr15 steel. The effects of the CeO2 content on the phase composition, microstructure, hardness, and wear resistance of the coatings were also systematically investigated. The results showed that the addition of CeO2 enhanced the continuity of the coating and reduced the size of the MgAl2O4 particles, which was associated with the addition of CeO2’s intensification of the melt pool flow. The metal grain size reduced and then increased as the CeO2 content increased, whereas the hardness and wear resistance of the MgAl2O4/Fe-based coatings increased and then decreased. Compared with the MgAl2O4/Fe-based coating without CeO2, the hardness of the MgAl2O4/Fe-based coating with 1.0 wt% CeO2 increased by 10% and the wear rate decreased by 40%, which was attributed to the metal grain refinement and particle dispersion strengthening. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
14 pages, 3545 KiB  
Article
Microstructure and Mechanical Properties of a New TWIP Steel under Different Heat Treatments
by Jiaruiming Zhang, Yu Bai, Wenxue Fan, Guanghe Zhang, Wenhui Zhang, Yang Yang and Hai Hao
Materials 2024, 17(9), 2080; https://doi.org/10.3390/ma17092080 (registering DOI) - 28 Apr 2024
Abstract
The effects of solution treatment and annealing temperature on the microstructure and mechanical properties of a new TWIP steel that was alloyed from aluminum (Al), silicon (Si), vanadium (V), and molybdenum (Mo) elements were investigated by a variety of techniques such as microstructural [...] Read more.
The effects of solution treatment and annealing temperature on the microstructure and mechanical properties of a new TWIP steel that was alloyed from aluminum (Al), silicon (Si), vanadium (V), and molybdenum (Mo) elements were investigated by a variety of techniques such as microstructural characterization and room tensile testing. The austenite grain size grew slowly with the increase in annealing temperature. The relatively weak effect of the solution treatment and annealing temperature on the austenite grain size was attributed to the precipitation of MC and M2C, which hindered the growth of the austenite grain. The plasticity of the TWIP steel in cold rolling and annealing after solution treatment was obviously higher than that in cold rolling and annealing without solution treatment. This was because the large-size precipitates redissolved in the matrix after solution treatment, which were not retained in the subsequently annealed structure. Through cold rolling and annealing at 800 °C after solution treatment, the prepared steel exhibited excellent strength and plasticity simultaneously, with a yield strength of 877 MPa, a tensile strength of 1457 MPa, and an elongation of 46.1%. The strength improvement of the designed TWIP steel was mainly attributed to the grain refinement and precipitation strengthening. Full article
(This article belongs to the Special Issue Heat Treatments and Performance of Alloy and Metal)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop