The 2023 MDPI Annual Report has
been released!
 
17 pages, 277 KiB  
Article
International Diversification and Stock-Price Crash Risk
by Alireza Askarzadeh, Mostafa Kanaanitorshizi, Maryam Tabarhosseini and Dana Amiri
Int. J. Financial Stud. 2024, 12(2), 47; https://doi.org/10.3390/ijfs12020047 (registering DOI) - 15 May 2024
Abstract
Despite the recent proliferation of research on internationalization, little attention has been paid to understanding the reasons behind the decrease in firm value accompanying international expansion. By delving into the underlying mechanisms and applying the concept of agency theory to a sample of [...] Read more.
Despite the recent proliferation of research on internationalization, little attention has been paid to understanding the reasons behind the decrease in firm value accompanying international expansion. By delving into the underlying mechanisms and applying the concept of agency theory to a sample of US firms spanning from 2000 to 2022, we posit that an increased level of information asymmetry in internationally diversified firms incentivizes managers to prioritize their own interests. To protect their careers, CEOs of internationally diversified firms often suppress bad news. This behavior can lead to the accumulation of negative news and heighten the risk of a stock-price crash. Furthermore, we propose that higher levels of international experience, enhanced monitoring effectiveness, and efficient investment practices will negatively moderate the positive relationship between internationalization and stock-price crash risk. Full article
12 pages, 518 KiB  
Article
Safety and Efficacy of High-Dose Chemotherapy with TreoMel 200 vs. TreoMel 140 in Acute Myeloid Leukemia Patients Undergoing Autologous Stem Cell Transplantation
by Matthias Eggimann, Dilara Akhoundova, Henning Nilius, Michèle Hoffmann, Michael Hayoz, Yolanda Aebi, Carlo R. Largiadèr, Michael Daskalakis, Ulrike Bacher and Thomas Pabst
Cancers 2024, 16(10), 1887; https://doi.org/10.3390/cancers16101887 (registering DOI) - 15 May 2024
Abstract
(1) Background: Treosulfan and melphalan (TreoMel)-based high-dose chemotherapy (HDCT) has shown promising safety and efficacy as a conditioning regimen for acute myeloid leukemia (AML) patients undergoing autologous stem cell transplantation (ASCT). However, despite intensive first-line induction treatment and upfront consolidation with HDCT and [...] Read more.
(1) Background: Treosulfan and melphalan (TreoMel)-based high-dose chemotherapy (HDCT) has shown promising safety and efficacy as a conditioning regimen for acute myeloid leukemia (AML) patients undergoing autologous stem cell transplantation (ASCT). However, despite intensive first-line induction treatment and upfront consolidation with HDCT and ASCT, AML relapse rates are still high, and further efforts are needed to improve patient outcomes. The aim of this study was to compare two melphalan dose schedules in regard to the safety of TreoMel HDCT and patient outcomes. (2) Methods: We retrospectively analyzed the safety and efficacy of two melphalan dose schedules combined with standard-dose treosulfan in AML patients undergoing HDCT and ASCT at the University Hospital of Bern, Switzerland, between August 2019 and August 2023. Patients received treosulfan 42 g/m2 combined with either melphalan 140 mg/m2 (TreoMel 140) or melphalan 200 mg/m2 (TreoMel 200). Co-primary endpoints were progression-free survival (PFS), overall survival (OS), as well as safety profile. (3) Results: We included a total of 51 AML patients: 31 (60.8%) received TreoMel 140 and 20 (39.2%) TreoMel 200. The patients’ basal characteristics were comparable between both cohorts. No significant differences in the duration of hospitalization or the adverse event profile were identified. There were no statistically significant differences in relapse (0.45 vs. 0.30, p = 0.381) and mortality rates (0.42 vs. 0.15, p = 0.064) between the melphalan 140 mg/m2 and 200 mg/m2 cohorts, nor for PFS (HR: 0.81, 95% CI: 0.29–2.28, p = 0.70) or OS (HR: 0.70, 95% CI: 0.19–2.57, p = 0.59) for the TreoMel 140 vs. TreoMel 200 cohort. (4) Conclusions: A higher dose of melphalan (TreoMel 200) was well tolerated overall. No statistically significant differences for patient outcomes could be observed, possibly due to the relatively small patient cohort and the short follow-up. A longer follow-up and prospective randomized studies would be required to confirm the safety profile and clinical benefit. Full article
(This article belongs to the Special Issue 2nd Edition of New Therapeutic Strategies for Acute Myeloid Leukemia)
50 pages, 652 KiB  
Article
Non-Negative Decomposition of Multivariate Information: From Minimum to Blackwell-Specific Information
by Tobias Mages, Elli Anastasiadi and Christian Rohner
Entropy 2024, 26(5), 424; https://doi.org/10.3390/e26050424 (registering DOI) - 15 May 2024
Abstract
Partial information decompositions (PIDs) aim to categorize how a set of source variables provides information about a target variable redundantly, uniquely, or synergetically. The original proposal for such an analysis used a lattice-based approach and gained significant attention. However, finding a suitable underlying [...] Read more.
Partial information decompositions (PIDs) aim to categorize how a set of source variables provides information about a target variable redundantly, uniquely, or synergetically. The original proposal for such an analysis used a lattice-based approach and gained significant attention. However, finding a suitable underlying decomposition measure is still an open research question at an arbitrary number of discrete random variables. This work proposes a solution with a non-negative PID that satisfies an inclusion–exclusion relation for any f-information measure. The decomposition is constructed from a pointwise perspective of the target variable to take advantage of the equivalence between the Blackwell and zonogon order in this setting. Zonogons are the Neyman–Pearson region for an indicator variable of each target state, and f-information is the expected value of quantifying its boundary. We prove that the proposed decomposition satisfies the desired axioms and guarantees non-negative partial information results. Moreover, we demonstrate how the obtained decomposition can be transformed between different decomposition lattices and that it directly provides a non-negative decomposition of Rényi-information at a transformed inclusion–exclusion relation. Finally, we highlight that the decomposition behaves differently depending on the information measure used and how it can be used for tracing partial information flows through Markov chains. Full article
Show Figures

Figure 1

8 pages, 837 KiB  
Communication
Enhanced Copper Bonding Interfaces by Quenching to Form Wrinkled Surfaces
by Tsan-Feng Lu, Yu-Ting Yen, Pei-Wen Wang, Yuan-Fu Cheng, Cheng-Hsiang Chen and YewChung Sermon Wu
Nanomaterials 2024, 14(10), 861; https://doi.org/10.3390/nano14100861 (registering DOI) - 15 May 2024
Abstract
For decades, Moore’s Law has been approaching its limits, posing a huge challenge for further downsizing to nanometer dimensions. A promising avenue to replace Moore’s Law lies in three-dimensional integrated circuits, where Cu–Cu bonding plays a critical role. However, the atomic diffusion rate [...] Read more.
For decades, Moore’s Law has been approaching its limits, posing a huge challenge for further downsizing to nanometer dimensions. A promising avenue to replace Moore’s Law lies in three-dimensional integrated circuits, where Cu–Cu bonding plays a critical role. However, the atomic diffusion rate is notably low at temperatures below 300 °C, resulting in a distinct weak bonding interface, which leads to reliability issues. In this study, a quenching treatment of the Cu film surface was investigated. During the quenching treatment, strain energy was induced due to the variation in thermal expansion coefficients between the Si substrate and the Cu film, resulting in a wrinkled surface morphology on the Cu film. Grain growth was observed at the Cu–Cu bonding interface following bonding at 300 °C for 2 and 4 h. Remarkably, these procedures effectively eliminated the bonding interface. Full article
(This article belongs to the Special Issue Nano Surface Engineering)
13 pages, 955 KiB  
Article
Eminent Antimicrobial Peptide Resistance in Zymomonas mobilis: A Novel Advantage of Intrinsically Uncoupled Energetics
by Reinis Rutkis, Zane Lasa, Marta Rubina, Inese Strazdina and Uldis Kalnenieks
Antibiotics 2024, 13(5), 451; https://doi.org/10.3390/antibiotics13050451 (registering DOI) - 15 May 2024
Abstract
Relative to several model bacteria, the ethanologenic bacterium Zymomonas mobilis is shown here to have elevated resistance to exogenous antimicrobial peptides (AMPs)—with regard to both peptide bulk concentration in the medium and the numbers of peptide molecules per cell. By monitoring the integration [...] Read more.
Relative to several model bacteria, the ethanologenic bacterium Zymomonas mobilis is shown here to have elevated resistance to exogenous antimicrobial peptides (AMPs)—with regard to both peptide bulk concentration in the medium and the numbers of peptide molecules per cell. By monitoring the integration of AMPs in the bacterial cell membrane and observing the resulting effect on membrane energy coupling, it is concluded that the membranotropic effects of the tested AMPs in Z. mobilis and in Escherichia coli are comparable. The advantage of Z. mobilis over E. coli apparently results from its uncoupled mode of energy metabolism that, in contrast to E. coli, does not rely on oxidative phosphorylation, and hence, is less vulnerable to the disruption of its energy-coupling membrane by AMPs. It is concluded that the high resistance to antimicrobial peptides (AMPs) observed in Z. mobilis not only proves crucial for its survival in its natural environment but also offers a promising platform for AMP production and sheds light on potential strategies for novel resistance development in clinical settings. Full article
(This article belongs to the Section Antimicrobial Peptides)
18 pages, 2092 KiB  
Article
Paralytic Shellfish Toxins in Mollusks from Galicia Analyzed by a Fast Refined AOAC 2005.06 Method: Toxicity, Toxin Profile, and Inter-Specific, Spatial, and Seasonal Variations
by Juan Blanco, Juan Pablo Lamas, Fabiola Arévalo, Jorge Correa, Tamara Rodríguez-Cabo and Ángeles Moroño
Toxins 2024, 16(5), 230; https://doi.org/10.3390/toxins16050230 (registering DOI) - 15 May 2024
Abstract
Paralytic shellfish poisoning is an important concern for mollusk fisheries, aquaculture, and public health. In Galicia, NW Iberian Peninsula, such toxicity has been monitored for a long time using mouse bioassay. Therefore, little information exists about the precise toxin analogues and their possible [...] Read more.
Paralytic shellfish poisoning is an important concern for mollusk fisheries, aquaculture, and public health. In Galicia, NW Iberian Peninsula, such toxicity has been monitored for a long time using mouse bioassay. Therefore, little information exists about the precise toxin analogues and their possible transformations in diverse mollusk species and environments. After the change in the European PSP reference method, a refinement of the Lawrence method was developed, achieving a 75% reduction in chromatogram run time. Since the beginning of 2021, when this refinement Lawrence method was accredited under the norm UNE-EN ISO/IEC 17025, it has been used in the area to determine the toxin profiles and to estimate PSP toxicity in more than 4500 samples. In this study, we have summarized three years of monitoring results, including interspecific, seasonal, and geographical variability of PSP toxicity and toxin profile. PSP was detected in more than half of the samples analyzed (55%), but only 4.4% of the determinations were above the EU regulatory limit. GTX1,4 was the pair of STX analogs that produced the highest toxicities, but GTX2,3 was found in most samples, mainly due to the reduction of GTX1,4 but also by the higher sensitivity of the method for this pair of analogs. STX seems to be mainly a product of biotransformation from GTX2,3. The studied species (twelve bivalves and one gastropod) accumulated and transformed PSP toxins to a different extent, with most of them showing similar profiles except for Spisula solida and Haliotis tuberculata. Two seasonal peaks of toxicity were found: one in spring-early summer and another in autumn, with slightly different toxin profiles during outbreaks in relation to the toxicity during valleys. In general, both the total toxicity and toxin profiles of the southernmost locations were different from those in the northern part of the Atlantic coast and the Cantabrian Sea, but this general pattern is modified by the PSP history of some specific locations. Full article
15 pages, 2366 KiB  
Article
Investigating the Spatial Accessibility and Coverage of the Pediatric COVID-19 Vaccine: An Ecologic Study of Regional Health Data
by Amin Bemanian and Jonathan F. Mosser
Vaccines 2024, 12(5), 545; https://doi.org/10.3390/vaccines12050545 (registering DOI) - 15 May 2024
Abstract
The COVID-19 pandemic presented the unique challenge of having to deliver novel vaccines during a public health crisis. For pediatric patients, it was further complicated by the delayed timeline for authorizing the vaccine and the differences in dosing/products depending on the patient’s age. [...] Read more.
The COVID-19 pandemic presented the unique challenge of having to deliver novel vaccines during a public health crisis. For pediatric patients, it was further complicated by the delayed timeline for authorizing the vaccine and the differences in dosing/products depending on the patient’s age. This paper investigates the relationship between the spatial accessibility and uptake of the COVID-19 vaccine in King County, WA, USA. Public data for COVID-19 vaccine sites were used to calculate spatial accessibility using an enhanced two-step floating catchment area (E2SFCA) technique. Spatial regression analyses were performed to look at the relationship between spatial accessibility and ZIP-code-level vaccination rates. The relationships of these data with other socioeconomic and demographic variables were calculated as well. Higher rates of vaccine accessibility and vaccine coverage were found in adolescent (12- to 17-year-old) individuals relative to school-age (5- to 11-year-old) individuals. Vaccine accessibility was positively associated with coverage in both age groups in the univariable analysis. This relationship was affected by neighborhood educational attainment. This paper demonstrates how measures such as E2SFCA can be used to calculate the accessibility of the COVID-19 vaccine in a region and provides insight into some of the ecological factors that affect COVID-19 vaccination rates. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

17 pages, 1665 KiB  
Article
The Biological Impact of Some Phosphonic and Phosphinic Acid Derivatives on Human Osteosarcoma
by Zakzak Khaled, Gheorghe Ilia, Claudia Watz, Ioana Macașoi, George Drăghici, Vasile Simulescu, Petru Eugen Merghes, Narcis Ion Varan, Cristina Adriana Dehelean, Lavinia Vlaia and Laurențiu Sima
Curr. Issues Mol. Biol. 2024, 46(5), 4815-4831; https://doi.org/10.3390/cimb46050290 (registering DOI) - 15 May 2024
Abstract
Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to [...] Read more.
Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to outline its pharmaco-toxicological profile by employing two different in vitro human cell cultures (keratinocytes—HaCaT—and osteosarcoma SAOS-2 cells), employing different techniques (MTT assay, cell morphology assessment, LDH assay, Hoechst staining and RT-PCR). Additionally, the results obtained are compared with three commercially available phosphorus-containing compounds (P1, P2, P3). The results recorded for the newly developed compound (P4) revealed good biocompatibility (cell viability of 77%) when concentrations up to 5 mM were used on HaCaT cells for 24 h. Also, the HaCaT cultures showed no significant morphological alterations or gene modulation, thus achieving a biosafety profile even superior to some of the commercial products tested herein. Moreover, in terms of anti-osteosarcoma activity, 2-carboxyethylphenylphosphinic acid expressed promising activity on SAOS-2 monolayers, the cells showing viability of only 55%, as well as apoptosis features and important gene expression modulation, especially Bid downregulation. Therefore, the newly developed compound should be considered a promising candidate for further in vitro and in vivo research related to osteosarcoma therapy. Full article
18 pages, 1019 KiB  
Article
Evaluation of Alternative Sources of Proteins and Other Nutrients with Potential Applications in Fish Nutrition
by George-Cătălin Muntean, Dorina Simedru, Paul Uiuiu, Claudiu Tanaselia, Oana Cadar, Anca Becze and Aurelia Coroian
Molecules 2024, 29(10), 2332; https://doi.org/10.3390/molecules29102332 (registering DOI) - 15 May 2024
Abstract
The European Union’s (EU) agricultural self-sufficiency is challenged by its reliance on imported plant proteins, particularly soy from the Americas, contributing to deforestation and greenhouse gas emissions. Addressing the EU’s protein deficit, this study evaluates alternative protein sources for aquaculture, focusing on their [...] Read more.
The European Union’s (EU) agricultural self-sufficiency is challenged by its reliance on imported plant proteins, particularly soy from the Americas, contributing to deforestation and greenhouse gas emissions. Addressing the EU’s protein deficit, this study evaluates alternative protein sources for aquaculture, focusing on their nutritional value, elemental content, and polycyclic aromatic hydrocarbons (PAHs). Protein flours from gastropods (Helix pomatia, Arion lusitanicus, Arion vulgaris) and their hepatopancreas, along with plant-based proteins from food industry by-products (oilcakes, coffee grounds, spent brewer’s yeast), were analyzed. Results revealed that snail flour contained the highest protein content at 59.09%, significantly outperforming hepatopancreas flour at 42.26%. Plant-based proteins demonstrated substantial nutritional value, with coffee grounds flour exhibiting a remarkable protein content of 71.8% and spent brewer’s yeast flour at 57.9%. Elemental analysis indicated high levels of essential minerals such as magnesium in hepatopancreas flour (5719.10 mg/kg) and calcium in slug flour (48,640.11 mg/kg). However, cadmium levels in hepatopancreas flour (11.45 mg/kg) necessitate caution due to potential health risks. PAH concentrations were low across all samples, with the highest total PAH content observed in hepatopancreas flour at 0.0353 µg/kg, suggesting minimal risk of PAH-related toxicity. The analysis of plant-based protein sources, particularly oilcakes derived from sunflower, hemp, flax, and pumpkin seeds, revealed that these by-products not only exhibit high protein contents but present a promising avenue for enhancing the nutritional quality of feed. This study underscores the potential of utilizing gastropod and plant-based by-products as sustainable and nutritionally adequate alternatives to conventional feeds in aquaculture, contributing to the EU’s environmental sustainability goals. Full article
Show Figures

Graphical abstract

11 pages, 2358 KiB  
Review
Humidification during Invasive and Non-Invasive Ventilation: A Starting Tool Kit for Correct Setting
by Riccardo Re, Sergio Lassola, Silvia De Rosa and Giacomo Bellani
Med. Sci. 2024, 12(2), 26; https://doi.org/10.3390/medsci12020026 (registering DOI) - 15 May 2024
Abstract
The humidification process of medical gases plays a crucial role in both invasive and non-invasive ventilation, aiming to mitigate the complications arising from bronchial dryness. While passive humidification systems (HME) and active humidification systems are prevalent in routine clinical practice, there is a [...] Read more.
The humidification process of medical gases plays a crucial role in both invasive and non-invasive ventilation, aiming to mitigate the complications arising from bronchial dryness. While passive humidification systems (HME) and active humidification systems are prevalent in routine clinical practice, there is a pressing need for further evaluation of their significance. Additionally, there is often an incomplete understanding of the operational mechanisms of these devices. The current review explores the historical evolution of gas conditioning in clinical practice, from early prototypes to contemporary active and passive humidification systems. It also discusses the physiological principles underlying humidity regulation and provides practical guidance for optimizing humidification parameters in both invasive and non-invasive ventilation modalities. The aim of this review is to elucidate the intricate interplay between temperature, humidity, and patient comfort, emphasizing the importance of individualized approaches to gas conditioning. Full article
(This article belongs to the Section Critical Care Medicine)
Show Figures

Figure 1

18 pages, 1347 KiB  
Article
Design and Test of Automatic Feeding Device for Substrate Filling
by Haibing Pan, Qinchao Xu, Xiulan Bao, Ran Zhou, Jian Zhang, Cheng Shan and Shanjun Li
Appl. Sci. 2024, 14(10), 4206; https://doi.org/10.3390/app14104206 (registering DOI) - 15 May 2024
Abstract
An automatic feeding device for substrate filling was designed to address the challenges of difficult feeding and low efficiency in the citrus seedling pot filling and transferring machine. The device comprises a framework, tracks, overturning frame, drive system, etc. In order to ensure [...] Read more.
An automatic feeding device for substrate filling was designed to address the challenges of difficult feeding and low efficiency in the citrus seedling pot filling and transferring machine. The device comprises a framework, tracks, overturning frame, drive system, etc. In order to ensure optimal performance, the frame’s turning angle was set at a minimum of 110° and the angle between the frame’s horizontal plane and slope was determined to be 120°. Following optimization, the number and intensity of sudden changes in velocity, angular velocity, and thrust were reduced, thereby prolonging the device’s service life. The prototype test demonstrated that the device has an average feeding time of 9.86 s, is capable of raising 0.14 m3 of substrate in a single cycle, and has a handcart turning angle of 111°. Furthermore, no residual substrate remained in the handcart, and the handcart fixing mechanism operated correctly. The torque measurement results of the motor output shaft were found to be consistent with the simulation results in ADAMS, with a maximum force difference of only 298 N. The simulation was found to be accurate, with an error rate of only 3.67%. This model can be utilized as a dependable reference for the optimization of the design of the automatic feeding device. Full article
15 pages, 4331 KiB  
Article
Microstructural Characterization of AlCrCuFeMnNi Complex Concentrated Alloy Prepared by Pressureless Sintering
by Tiago Silva and Augusto Lopes
Materials 2024, 17(10), 2378; https://doi.org/10.3390/ma17102378 (registering DOI) - 15 May 2024
Abstract
A significant and increasing number of studies have been dedicated to complex concentrated alloys (CCAs) due to the improved properties that these metallic materials can exhibit. However, while most of these studies employ melting techniques, only a few explore powder metallurgy and pressureless [...] Read more.
A significant and increasing number of studies have been dedicated to complex concentrated alloys (CCAs) due to the improved properties that these metallic materials can exhibit. However, while most of these studies employ melting techniques, only a few explore powder metallurgy and pressureless sintering as production methods. In this work, a microstructural characterization of AlCrCuFeMnNi CCA samples obtained by powder metallurgy and pressureless sintering using mixtures of powders with different compositions was carried out. One batch of samples (B1) was prepared using commercial powders of Al, Cr, Cu, Fe, Mn, and Ni. Another batch (B2) used mixtures of CrFeMn, AlNi, and Cu powders. A third set of samples (B3) was obtained by adding 1% at. of Mg to the B2 powder. The samples were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy dispersive spectroscopy, density measurements, and hardness tests. Thermodynamic calculations were also used to complement the microstructural characterization. All the obtained samples exhibited high relative density and hardness values. However, B3 samples showed a higher hardness, attributed to the finer distribution of oxide particles, which was promoted by the presence of Mg during sintering. These last samples presented a hardness/density ratio of 62 HV/(g cm−3), surpassing that of some martensitic stainless steels and nickel–titanium alloys. Full article
(This article belongs to the Section Metals and Alloys)
19 pages, 3365 KiB  
Article
Optimization for Offshore Prestressed Concrete–Steel Hybrid Wind Turbine Support Structure with Pile Foundation Using a Parallel Modified Particle Swarm Algorithm
by Zeyu Li, Bin Xu and Guokai Yuan
J. Mar. Sci. Eng. 2024, 12(5), 826; https://doi.org/10.3390/jmse12050826 (registering DOI) - 15 May 2024
Abstract
The prestressed concrete–steel hybrid (PCSH) support structure, which replaces the lower part of the traditional support with a concrete segment, is a prospective support structure solution for ultrahigh wind turbines. Taking a 5.5 MW wind turbine support structure founded on a jacket substructure [...] Read more.
The prestressed concrete–steel hybrid (PCSH) support structure, which replaces the lower part of the traditional support with a concrete segment, is a prospective support structure solution for ultrahigh wind turbines. Taking a 5.5 MW wind turbine support structure founded on a jacket substructure with pile foundation as an example, an optimized design of the corresponding PCSH support structure with pile foundation for offshore wind turbine is conducted considering the soil–structure interaction (SSI) and the effect of water pressure. The construction cost of the proposed structure is treated as the objective function and minimized with a parallel modified particle swarm optimization (PMPSO) algorithm where the physical dimensions of each part of the PCSH wind turbine support structure are treated as optimization variables. Eleven optimization constraints are considered under both the serviceability limit state (SLS) and the ultimate limit state (ULS) according to relevant specifications and industry standards. A penalty function strategy is introduced to make sure that these constraints are fulfilled. The mechanical behavior and the cost of the optimal PCSH support structure with pile foundation are analyzed and are compared with those of the original design with a traditional steel tube tower founded on a jacket substructure. The results show that the cost and levelized cost of energy (LCOE), a comprehensive evaluation, of the optimized PCSH support decrease obviously with the PMPSO algorithm, which can provide advanced mechanic behavior including natural frequency, top deformation, and anti-overturning capacity. Compared with the PSO algorithm, the PMPSO algorithm has better performance in the procedure of PCSH support for offshore wind turbine optimization. Full article
Show Figures

Figure 1

16 pages, 1388 KiB  
Article
Single-Cell Transcriptomic Profiling Unveils Dynamic Immune Cell Responses during Haemonchus contortus Infection
by Wenxuan Wang, Zhe Jin, Mei Kong, Zhuofan Yan, Liangliang Fu and Xiaoyong Du
Cells 2024, 13(10), 842; https://doi.org/10.3390/cells13100842 (registering DOI) - 15 May 2024
Abstract
Background: Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the [...] Read more.
Background: Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. Methods and Results: A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand–receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF–(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. Conclusions: Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection. Full article
25 pages, 14573 KiB  
Article
A Gold Standard-Derived Modular Barcoding Approach to Cancer Transcriptomics
by Yan Zhu, Koleilat Mohamad Karim Ibrahim, Jason Roszik, Man Kam Kwong, Zhonglin Wang, Dipen M. Maru, Scott Kopetz and Lawrence N. Kwong
Cancers 2024, 16(10), 1886; https://doi.org/10.3390/cancers16101886 (registering DOI) - 15 May 2024
Abstract
A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a [...] Read more.
A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a wide variety of uses. Specifically, we propose that modules derived organically from high-quality gold standards such as The Cancer Genome Atlas (TCGA) can accurately capture and describe functionally related genes that are relevant to specific cancer types. We show that such modules can: (1) uncover novel gene relationships and nominate new functional memberships, (2) improve and speed up analysis of smaller or lower-resolution datasets, (3) re-create and expand known cancer subtyping schemes, (4) act as a “decoder” to bridge seemingly disparate established gene signatures, and (5) efficiently apply single-cell RNA sequencing information to other datasets. Moreover, such modules can be used in conjunction with native spreadsheet program commands to create a powerful and rapid approach to hypothesis generation and testing that is readily accessible to non-bioinformaticians. Finally, we provide tools for users to create and interpret their own modules. Overall, the flexible modular nature of the proposed barcoding provides a user-friendly approach to rapidly decoding transcriptome-wide data for research or, potentially, clinical uses. Full article
Show Figures

Figure 1

17 pages, 837 KiB  
Article
Composite Coating of Oleaster Gum Containing Cuminal Keeps Postharvest Quality of Cherry Tomatoes by Reducing Respiration and Potentiating Antioxidant System
by Ruojun Ding, Xishuang Dai, Zhong Zhang, Yang Bi and Dov Prusky
Foods 2024, 13(10), 1542; https://doi.org/10.3390/foods13101542 (registering DOI) - 15 May 2024
Abstract
Exploring the green and affordable protection of perishable cherry tomato fruits during storage, herein, the protective efficacy, and its underpinning mechanisms, of a coating of oleaster gum, alone or incorporated with cuminal, on cherry tomatoes stored at ambient temperature was investigated. The composite [...] Read more.
Exploring the green and affordable protection of perishable cherry tomato fruits during storage, herein, the protective efficacy, and its underpinning mechanisms, of a coating of oleaster gum, alone or incorporated with cuminal, on cherry tomatoes stored at ambient temperature was investigated. The composite coating of oleaster gum with 0.1% cuminal reduced the decay, respiration rate, weight loss, and softening of the fruits and decelerated the decreases in their total soluble solid, titratable acidity, and soluble protein levels, and therefore maintained their marketability. Furthermore, it reduced the accumulation of O•− 2 and H2O2 in the fruits and mitigated cell membrane lipid oxidation and permeabilization, thereby retarding their senescence. Instrumentally, it elevated the activities of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the levels of ascorbic acid and glutathione. This potentiation of the fruits’ antioxidant system makes this composite coating a promising approach to keeping the postharvest quality of perishable fruits. Full article
(This article belongs to the Special Issue Edible Coatings for Fruits and Vegetables)
12 pages, 2656 KiB  
Article
Theoretical Study of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on BiTeBr Monolayer
by Tao Yang and Qiquan Luo
Materials 2024, 17(10), 2377; https://doi.org/10.3390/ma17102377 (registering DOI) - 15 May 2024
Abstract
Developing an inexpensive and efficient catalyst for a hydrogen evolution reaction (HER) is an effective measure to alleviate the energy crisis. Single-atom catalysts (SACs) based on Janus materials demonstrated promising prospects for the HER. Herein, density functional theory calculations were conducted to systematically [...] Read more.
Developing an inexpensive and efficient catalyst for a hydrogen evolution reaction (HER) is an effective measure to alleviate the energy crisis. Single-atom catalysts (SACs) based on Janus materials demonstrated promising prospects for the HER. Herein, density functional theory calculations were conducted to systematically investigate the performance of SACs based on the BiTeBr monolayer. Among the one hundred and forty models that were constructed, fourteen SACs with potential HER activity were selected. Significantly, the SAC, in which a single Ru atom is anchored on a BiTeBr monolayer with a Bi vacancy (RuS2/VBi-BiTeBr), exhibits excellent HER activity with an ultra-low |ΔGH*| value. A further investigation revealed that RuS2/VBi-BiTeBr tends to react through the Volmer–Heyrovsky mechanism. An electronic structure analysis provided deeper insights into this phenomenon. This is because the Tafel pathway requires overcoming steric hindrance and disrupting stable electron filling states, making it challenging to proceed. This study finally employed constant potential calculations, which approximate experimental situations. The results indicated that the ΔGH* value at pH = 0 is 0.056 eV for RuS2/VBi-BiTeBr, validating the rationality of the traditional Computational Hydrogen Electrode (CHE) method for performance evaluation in this system. This work provides a reference for the research of new HER catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

22 pages, 1552 KiB  
Article
Optimization Decomposition of Monthly Contracts for Integrated Energy Service Provider Considering Spot Market Bidding Equilibria
by Chen Wu, Zhinong Wei, Xiangchen Jiang, Yizhen Huang and Donglou Fan
Electronics 2024, 13(10), 1945; https://doi.org/10.3390/electronics13101945 (registering DOI) - 15 May 2024
Abstract
Under the current power trading model, especially in the context of the large-scale penetration of renewable energy and the rapid integration of renewable energy into the power system, reasonable medium- and long-term decomposition can reduce the fluctuation in the energy price when the [...] Read more.
Under the current power trading model, especially in the context of the large-scale penetration of renewable energy and the rapid integration of renewable energy into the power system, reasonable medium- and long-term decomposition can reduce the fluctuation in the energy price when the integrated energy service provider (IESP) participates in the spot market. It helps to avoid the price risk of the spot market. Additionally, it promotes the optimization of the operation of the regional energy day-ahead scheduling. At the present stage, most of the medium- and long-term contract decomposition methods focus on the decomposition of a single power and take less consideration of the bidding space in the spot market. This limitation makes it challenging to achieve efficient interaction and interconnection among multi-energy resources and smooth integration between the medium- and long-term market and the spot market. To address these issues, this paper proposes an optimal monthly contract decomposition method for IESPs that takes into account the equilibrium of spot bidding. First, the linking process and rolling framework of multi-energy transactions between the medium- and long-term market and the spot market are designed. Second, an optimal decomposition model for monthly contracts is constructed, and a daily decomposition method for monthly medium- and long-term contracts that accounts for the spot bidding equilibrium is proposed. Then, the daily preliminary decomposition result of medium- and long-term multi-energy contracts is used as the boundary condition of the day-ahead scheduling model, and the coupling characteristics of the multi-energy networks of electricity, gas, and heat are taken into account, as well as the operational characteristics. Then, considering the coupling characteristics and operating characteristics of electricity, gas, and heat networks, the optimal scheduling model of a multi-energy network is constructed to minimize the sum of cumulative daily operating costs, and the monthly final contract decomposition value and daily spot bidding space are derived. Finally, examples are calculated to verify the validity of the decomposition model, and the examples show that the proposed method can reduce the variance in spot energy purchase by about 4.64%, and, at the same time, reduce the cost of contract decomposition by about USD 0.33 million. Full article
11 pages, 1034 KiB  
Article
Cholesterol Oxime Olesoxime Assessed as a Potential Ligand of Human Cholinesterases
by Dora Kolić, Goran Šinko, Ludovic Jean, Mourad Chioua, José Dias, José Marco-Contelles and Zrinka Kovarik
Biomolecules 2024, 14(5), 588; https://doi.org/10.3390/biom14050588 (registering DOI) - 15 May 2024
Abstract
Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood–brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase [...] Read more.
Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood–brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10–30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes. Full article
14 pages, 1128 KiB  
Article
Genetic Alternatives for Experimental Adaptation to Colistin in Three Pseudomonas aeruginosa Lineages
by Igor Chebotar, Tatiana Savinova, Julia Bocharova, Dmitriy Korostin, Peter Evseev and Nikolay Mayanskiy
Antibiotics 2024, 13(5), 452; https://doi.org/10.3390/antibiotics13050452 (registering DOI) - 15 May 2024
Abstract
Pseudomonas aeruginosa is characterized by a high adaptive potential, developing resistance in response to antimicrobial pressure. We employed a spatiotemporal evolution model to disclose the pathways of adaptation to colistin, a last-resort polymyxin antimicrobial, among three unrelated P. aeruginosa lineages. The P. aeruginosa [...] Read more.
Pseudomonas aeruginosa is characterized by a high adaptive potential, developing resistance in response to antimicrobial pressure. We employed a spatiotemporal evolution model to disclose the pathways of adaptation to colistin, a last-resort polymyxin antimicrobial, among three unrelated P. aeruginosa lineages. The P. aeruginosa ATCC-27833 reference strain (Pa_ATCC), an environmental P. aeruginosa isolate (Pa_Environment), and a clinical isolate with multiple drug resistance (Pa_MDR) were grown over an increasing 5-step colistin concentration gradient from 0 to 400 mg/L. Pa_Environment demonstrated the highest growth pace, achieving the 400 mg/L band in 15 days, whereas it took 37 and 60 days for Pa_MDR and Pa_ATCC, respectively. To identify the genome changes that occurred during adaptation to colistin, the isolates selected during the growth of the bacteria (n = 185) were subjected to whole genome sequencing. In total, 17 mutation variants in eight lipopolysaccharide-synthesis-associated genes were detected. phoQ and lpxL/PA0011 were affected in all three lineages, whereas changes in pmrB were found in Pa_Environment and Pa_MDR but not in Pa_ATCC. In addition, mutations were detected in 34 general metabolism genes, and each lineage developed mutations in a unique set of such genes. Thus, the three examined distinct P. aeruginosa strains demonstrated different capabilities and genetic pathways of colistin adaptation. Full article
18 pages, 1331 KiB  
Article
Use of Ordered Beta Regression Unveils Cognitive Flexibility Index and Longitudinal Cognitive Training Signatures in Normal and Alzheimer’s Disease Pathological Aging
by Daniel Alveal-Mellado and Lydia Giménez-Llort
Brain Sci. 2024, 14(5), 501; https://doi.org/10.3390/brainsci14050501 (registering DOI) - 15 May 2024
Abstract
Generalized linear mixed models (GLMMs) are a cornerstone data analysis strategy in behavioral research because of their robustness in handling non-normally distributed variables. Recently, their integration with ordered beta regression (OBR), a novel statistical tool for managing percentage data, has opened new avenues [...] Read more.
Generalized linear mixed models (GLMMs) are a cornerstone data analysis strategy in behavioral research because of their robustness in handling non-normally distributed variables. Recently, their integration with ordered beta regression (OBR), a novel statistical tool for managing percentage data, has opened new avenues for analyzing continuous response data. Here, we applied this combined approach to investigate nuanced differences between the 3xTg-AD model of Alzheimer’s disease (AD) and their C57BL/6 non-transgenic (NTg) counterparts with normal aging in a 5-day Morris Water Maze (MWM) test protocol. Our longitudinal study included 22 3xTg-AD mice and 15 NTg mice (both male and female) assessed at 12 and 16 months of age. By identifying and analyzing multiple swimming strategies during three different paradigms (cue, place task, and removal), we uncovered genotypic differences in all paradigms. Thus, the NTg group exhibited a higher percentage of direct search behaviors, while an association between circling episodes and 3xTg-AD animals was found. Furthermore, we also propose a novel metric—the “Cognitive Flexibility Index”—which proved sensitive in detecting sex-related differences. Overall, our integrated GLMMs-OBR approach provides a comprehensive insight into mouse behavior in the MWM test, shedding light on the effects of aging and AD pathology. Full article
(This article belongs to the Special Issue Animal Models of Neurological Disorders)
32 pages, 16677 KiB  
Article
Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data
by Erhui Huang, Benqing Chen, Kai Luo and Shuhan Chen
Remote Sens. 2024, 16(10), 1759; https://doi.org/10.3390/rs16101759 (registering DOI) - 15 May 2024
Abstract
In shallow water, Sentinel-2 multispectral imagery has only four visible bands and limited quantization levels, which easily leads to the occurrence of the same spectral profile but different depth (SSPBDD) phenomenon, resulting in a one-to-many relationship between water depth and spectral profile. Investigating [...] Read more.
In shallow water, Sentinel-2 multispectral imagery has only four visible bands and limited quantization levels, which easily leads to the occurrence of the same spectral profile but different depth (SSPBDD) phenomenon, resulting in a one-to-many relationship between water depth and spectral profile. Investigating the impact of this relationship on water depth inversion models is the main objective of this paper. The Stumpf model and three machine learning models (Random Forest, Support Vector Machine, and Mixture Density Network) are employed, and the performance of these models is analysed based on the spatial distribution of the training dataset and the input information composition of these models. The results show that the root mean square errors (RMSEs) of the depth inversion of Random Forest and Support Vector Machine are significantly affected by the spatial distribution of the training dataset, while minimal effects are observed for the Stumpf model and the Mixture Density Network model. The SSPBDD phenomenon is widespread in Sentinel-2 images at all depths, particularly between 5 m and 15 m, with most of the depth maximum difference of the SSPBDD pixels ranging from 0 to 5 m. The SSPBDDs phenomenon can significantly reduce the inversion accuracy of any model. The number and the depth maximum difference of the SSPBDDs pixels are the main influencing factors. However, by increasing the visible spectral information and the spatial neighbourhood information in the input layer of machine learning models, the inversion accuracy and stability of the models can be improved to a certain extent. Among the models, the Mixture Density Network achieves the best inversion accuracy and stability. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation II)
Show Figures

Figure 1

17 pages, 4493 KiB  
Article
Field Data Analysis of Pavement Marking Retroreflectivity and Its Relationship with Paint and Glass Bead Characteristics
by Laura N. Mazzoni, Kamilla Vasconcelos, Orlando Albarracín, Liedi Bernucci and Guilherme Linhares
Appl. Sci. 2024, 14(10), 4205; https://doi.org/10.3390/app14104205 (registering DOI) - 15 May 2024
Abstract
Pavement marking retroreflectivity, a critical factor for safe driving, depends on the characteristics of both the paint and the embedded glass beads. However, traditional methods for predicting pavement marking service life often overlook these materials properties. This study investigates the influence of paint [...] Read more.
Pavement marking retroreflectivity, a critical factor for safe driving, depends on the characteristics of both the paint and the embedded glass beads. However, traditional methods for predicting pavement marking service life often overlook these materials properties. This study investigates the influence of paint and glass bead characteristics on pavement marking retroreflectivity performance and addresses the characterization of glass bead size distribution by the coefficient of uniformity and curvature. Three field test sites on a Brazilian highway with various paint and glass bead combinations were evaluated. A statistical model, GAMLSS (Generalized Additive Model for Location, Scale, and Shape), was adjusted to evaluate the performance of the markings’ retroreflectivity as a function of paint and glass bead characteristics. The model revealed that well-graded glass beads increased retroreflectivity by around 10%, while paints with a higher volume of solids improved service life around 65%. Therefore, the results show that acrylic water-based paints with higher volumes of solids and well-graded glass beads with better shape characteristics should be preferred to improve pavement markings’ retroreflectivity and service life. The statistical model identified the key characteristics with the greatest impact on pavement marking retroreflectivity, offering valuable insights for real-world applications, which will assist pavement marking practitioners and road authorities in selecting appropriate materials to achieve enhanced durability. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop