The 2023 MDPI Annual Report has
been released!
 
27 pages, 2009 KiB  
Review
A Comprehensive Summary of the Application of Machine Learning Techniques for CO2-Enhanced Oil Recovery Projects
by Xuejia Du, Sameer Salasakar and Ganesh Thakur
Mach. Learn. Knowl. Extr. 2024, 6(2), 917-943; https://doi.org/10.3390/make6020043 (registering DOI) - 29 Apr 2024
Abstract
This paper focuses on the current application of machine learning (ML) in enhanced oil recovery (EOR) through CO2 injection, which exhibits promising economic and environmental benefits for climate-change mitigation strategies. Our comprehensive review explores the diverse use cases of ML techniques in [...] Read more.
This paper focuses on the current application of machine learning (ML) in enhanced oil recovery (EOR) through CO2 injection, which exhibits promising economic and environmental benefits for climate-change mitigation strategies. Our comprehensive review explores the diverse use cases of ML techniques in CO2-EOR, including aspects such as minimum miscible pressure (MMP) prediction, well location optimization, oil production and recovery factor prediction, multi-objective optimization, Pressure–Volume–Temperature (PVT) property estimation, Water Alternating Gas (WAG) analysis, and CO2-foam EOR, from 101 reviewed papers. We catalog relative information, including the input parameters, objectives, data sources, train/test/validate information, results, evaluation, and rating score for each area based on criteria such as data quality, ML-building process, and the analysis of results. We also briefly summarized the benefits and limitations of ML methods in petroleum industry applications. Our detailed and extensive study could serve as an invaluable reference for employing ML techniques in the petroleum industry. Based on the review, we found that ML techniques offer great potential in solving problems in the majority of CO2-EOR areas involving prediction and regression. With the generation of massive amounts of data in the everyday oil and gas industry, machine learning techniques can provide efficient and reliable preliminary results for the industry. Full article
Show Figures

Figure 1

16 pages, 969 KiB  
Article
Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil
by Marta Siol, Agnieszka Dudek, Joanna Bryś, Diana Mańko-Jurkowska, Eliza Gruczyńska-Sękowska, Sina Makouie, Bharani Kumar Palani, Marko Obranović and Piotr Koczoń
Foods 2024, 13(9), 1370; https://doi.org/10.3390/foods13091370 - 29 Apr 2024
Abstract
The current investigations were aimed at the determination of the hydrolytic and oxidative stability of commercial pomegranate seed oils provided by four different producers, and to assess the oils’ primary quality parameters. During storage, many changes occur in oils that can significantly affect [...] Read more.
The current investigations were aimed at the determination of the hydrolytic and oxidative stability of commercial pomegranate seed oils provided by four different producers, and to assess the oils’ primary quality parameters. During storage, many changes occur in oils that can significantly affect their quality. The oils were tested for acid and peroxide values, fatty acid profile, and their distribution between the sn-1,3 and sn-2 positions of triacylglycerols. The oxidative stability was also determined, and melting curves were plotted for the oils. The analyzed oils were stored for one month in a dark place at refrigerator temperature. Based on the obtained results, it was found that the acid values for most oils did not exceed the permissible level determined by the Codex Alimentarius. However, in all oils, the peroxide value exceeded the permissible level set by the standard EN ISO 3960:2017-03 and the Codex Alimentarius after the one-month storage period. The examined pomegranate seed oils were found to be valuable sources of polyunsaturated fatty acids, especially punicic acid, which was the most abundant fatty acid present in these oils. In all analyzed oils, linoleic acid predominated in the sn-2 position of the triacylglycerols. Pomegranate seed oils did not exhibit good oxidative stability, as the oxidation induction times for all tested oils were very short. The storage period significantly affected the content of the primary oxidation products and oxidative stability of the oils. Full article
(This article belongs to the Special Issue Food Lipids — Chemistry, Nutrition and Biotechnology)
Show Figures

Figure 1

24 pages, 4454 KiB  
Article
A Review and Thermal Conductivity Experimental Program of Mattress Waste Material as Insulation in Building and Construction Systems
by Robert Haigh
Constr. Mater. 2024, 4(2), 401-424; https://doi.org/10.3390/constrmater4020022 (registering DOI) - 29 Apr 2024
Abstract
The building and construction industry consumes a significant amount of natural resources alongside contributing to the generation of waste materials. Addressing the dual challenge of waste management and recycling in this sector is imperative. This study begins with a bibliometric assessment to identify [...] Read more.
The building and construction industry consumes a significant amount of natural resources alongside contributing to the generation of waste materials. Addressing the dual challenge of waste management and recycling in this sector is imperative. This study begins with a bibliometric assessment to identify waste materials used as insulation in building and construction systems. The assessment of 2627 publications revealed mattress waste materials were seldom considered. The aim of this research focuses on exploring alternative methods for repurposing mattress materials in construction, aiming to mitigate waste generation. While various materials are being recycled for building applications, this research emphasises the potential of incorporating recycled polyurethane foam (PUF) from mattresses as insulation products. A transient plane source (TPS) was employed to determine the thermal conductivity of waste mattress PUF obtained from a recycling plant in Victoria, Australia. The results exhibited promising thermal resistance, with a mean value of 0.053 Wm/K. However, optimal thermal performance was observed with increased thickness, suggesting that a thickness of 215mm aligns with industry standards for building fabric systems. Further research is required to comprehensively analyse moisture resistance and fire retardation of waste mattress materials. This paper presents key findings of current trends, limitations, and future research directions to the use of waste mattress PUF as an insulation material. Full article
Show Figures

Figure 1

19 pages, 4938 KiB  
Article
Anti-Melanogenic Effects of Takifugu flavidus Muscle Hydrolysate in B16F10 Melanoma Cells and Zebrafish
by Jinjin Hu, Bei Chen, Shuaijie Qu, Shuji Liu, Xiaoyu Yang, Kun Qiao, Yongchang Su, Zhihui Liu, Xiaoe Chen, Zhiyu Liu and Qin Wang
Mar. Drugs 2024, 22(5), 206; https://doi.org/10.3390/md22050206 (registering DOI) - 29 Apr 2024
Abstract
Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided [...] Read more.
Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 μg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 μmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 μmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Fish)
Show Figures

Graphical abstract

26 pages, 2150 KiB  
Review
An Update on Zika Virus Vaccine Development and New Research Approaches
by Angie Lizeth Buitrago-Pabón, Salvador Ruiz-Sáenz, Alicia Jiménez-Alberto, Gerardo Aparicio-Ozores, Juan Arturo Castelán-Vega and Rosa María Ribas-Aparicio
Microbiol. Res. 2024, 15(2), 667-692; https://doi.org/10.3390/microbiolres15020044 (registering DOI) - 29 Apr 2024
Abstract
Zika virus (ZIKV) is an emerging flavivirus that represents significant public health challenges, particularly in the Americas, and is a substantial risk to other parts of the world due to its rapid expansion and its established association with neurological disorders, including Guillain–Barré syndrome [...] Read more.
Zika virus (ZIKV) is an emerging flavivirus that represents significant public health challenges, particularly in the Americas, and is a substantial risk to other parts of the world due to its rapid expansion and its established association with neurological disorders, including Guillain–Barré syndrome and an intrauterine fetal infection that can cause microcephaly, blindness, and other congenital neurological complications. To date, no vaccine to prevent ZIKV infections has been approved. Therefore, developing a safe and effective vaccine against this virus is a global health priority. This review analyzes the ZIKV outbreaks, as well as associated neurological complications, its genome, and immunological responses. The current vaccines in development have reported results from preclinical and clinical trials about novel approaches to obtain safer and more effective vaccines and the challenges faced by ZIKV vaccine development. Full article
Show Figures

Figure 1

17 pages, 7046 KiB  
Technical Note
Single-Stage Posterior Vomerine Ostectomy, Premaxillary Setback, Bilateral Gingivoperiosteoplasties and Primary Bilateral Cheiloplasty in Patients with Protuberant Premaxilla
by Usama S. Hamdan, Jose A. Garcia Garcia, Mario S. Haddad, Robert A. Younan, Antonio M. Melhem, Rami S. Kantar and Wassim W. Najjar
J. Clin. Med. 2024, 13(9), 2609; https://doi.org/10.3390/jcm13092609 (registering DOI) - 29 Apr 2024
Abstract
Various patients with complete bilateral cleft lip and palate present with a protruded premaxilla. Several techniques have been described for correctional repair of the projection with a plethora of unsatisfactory outcomes. This poses a challenge not only for the cleft team providing care [...] Read more.
Various patients with complete bilateral cleft lip and palate present with a protruded premaxilla. Several techniques have been described for correctional repair of the projection with a plethora of unsatisfactory outcomes. This poses a challenge not only for the cleft team providing care but also for the patients and their respective families. Multiple patients suffer from residual deformities after inadequate primary repair, which increase surgical, financial, and psychological burden. Premaxillary setback with posterior vomerine ostectomy and complete bilateral cleft lip repair can promote alignment of the premaxilla with the maxillary prominences. To effectively address this challenging deformity, we describe a single-stage surgical technique that includes vomerine ostectomy posterior to the vomero–premaxillary suture, bilateral gingivoperiosteoplasties with complete bilateral cleft lip repair, and primary cleft rhinoplasty. Careful surgical planning is essential for adequate matching between the length of the protruded premaxilla and the extent of ostectomy. The described technique offers several advantages for the management of complete bilateral cleft lip with a projected premaxilla. It can be applied anywhere around the world and is most beneficial in underprivileged areas where patients suffer from restricted access to healthcare, absence of presurgical orthodontics and lack of sufficient resources. Full article
(This article belongs to the Special Issue Cleft Lip and Palate: Current Treatment and Future Options)
Show Figures

Figure 1

11 pages, 348 KiB  
Article
Category Level Object Pose Estimation via Global High-Order Pooling
by Changhong Jiang, Xiaoqiao Mu, Bingbing Zhang, Mujun Xie and Chao Liang
Electronics 2024, 13(9), 1720; https://doi.org/10.3390/electronics13091720 (registering DOI) - 29 Apr 2024
Abstract
Category level 6D object pose estimation aims to predict the rotation, translation and size of object instances in any scene. In current research methods, global average pooling (first-order) is usually used to explore geometric features, which can only capture the first-order statistical information [...] Read more.
Category level 6D object pose estimation aims to predict the rotation, translation and size of object instances in any scene. In current research methods, global average pooling (first-order) is usually used to explore geometric features, which can only capture the first-order statistical information of the features and do not fully utilize the potential of the network. In this work, we propose a new high-order pose estimation network (HoPENet), which enhances feature representation by collecting high-order statistics to model high-order geometric features at each stage of the network. HoPENet introduces a global high-order enhancement module and utilizes global high-order pooling operations to capture the correlation between features and fuse global information. In addition, this module can capture long-term statistical correlations and make full use of contextual information. The entire network finally obtains a more discriminative feature representation. Experiments on two benchmarks, the virtual dataset CAMERA25 and the real dataset REAL275, demonstrate the effectiveness of HoPENet, achieving state-of-the-art (SOTA) pose estimation performance. Full article
Show Figures

Figure 1

17 pages, 4796 KiB  
Article
Experimental Study of Electroosmosis in Rock Cores Based on the Dual Pressure Sensor Method
by Chenggang Yin, Wei Guan and Hengshan Hu
Sensors 2024, 24(9), 2832; https://doi.org/10.3390/s24092832 (registering DOI) - 29 Apr 2024
Abstract
Electroosmotic experiments obtain the electroosmotic pressure coefficient of a rock sample by measuring the excitation voltage at both ends of the sample and the pressure difference caused by the excitation voltage. The electroosmotic pressure is very weak and buried in the background noise, [...] Read more.
Electroosmotic experiments obtain the electroosmotic pressure coefficient of a rock sample by measuring the excitation voltage at both ends of the sample and the pressure difference caused by the excitation voltage. The electroosmotic pressure is very weak and buried in the background noise, which is the most difficult signal to measure in the dynamic-electric coupling experiment, so it is necessary to improve its signal-to-noise ratio. In this paper, for the low signal-to-noise ratio of electroosmotic pressure, the dual pressure sensor method is proposed, i.e., two pressure sensors of the same type are used to measure electroosmotic pressure. Two different data extraction methods, Fast Fourier Transform and Locked Amplification, are utilized to compare the dual pressure sensor method of this paper with the existing single pressure sensor method. The relationship between the electroosmotic pressure coefficient and the excitation frequency, mineralization, permeability, and porosity is analyzed and discussed. Full article
(This article belongs to the Special Issue Sensors and Geophysical Electromagnetics)
Show Figures

Figure 1

16 pages, 1310 KiB  
Article
Ontology-Driven Architecture for Managing Environmental, Social, and Governance Metrics
by Mingqin Yu, Fethi A. Rabhi and Madhushi Bandara
Electronics 2024, 13(9), 1719; https://doi.org/10.3390/electronics13091719 (registering DOI) - 29 Apr 2024
Abstract
The burgeoning significance of environmental, social, and governance (ESG) metrics in realms such as investment decision making, corporate reporting, and risk management underscores the imperative for a robust, comprehensive solution capable of effectively capturing, representing, and analysing the multifaceted and intricate ESG data [...] Read more.
The burgeoning significance of environmental, social, and governance (ESG) metrics in realms such as investment decision making, corporate reporting, and risk management underscores the imperative for a robust, comprehensive solution capable of effectively capturing, representing, and analysing the multifaceted and intricate ESG data landscape. Facing the challenge of aligning with diverse standards and utilising complex datasets, organisations require robust systems for the integration of ESG metrics with traditional financial reporting. Amidst this, the evolving regulatory landscape and the demand for transparency and stakeholder engagement present significant challenges, given the lack of standardized ESG metrics in certain areas. Recently, the use of ontology-driven architectures has gained attention for their ability to encapsulate domain knowledge and facilitate integration with decision-support systems. This paper proposes a knowledge graph in the ESG metric domain to assist corporations in cataloguing and navigating ESG reporting requirements, standards, and associated data. Employing a design science methodology, we developed an ontology that serves as both a conceptual foundation and a semantic layer, fostering the creation of an interoperable ESG Metrics Knowledge Graph (ESGMKG) and its integration within operational layers. This ontology-driven approach promises seamless integration with diverse ESG data sources and reporting frameworks, while addressing the critical challenges of metric selection, alignment, and data verification, supporting the dynamic nature of ESG metrics. The utility and effectiveness of the proposed ontology were demonstrated through a case study centred on the International Financial Reporting Standards (IFRS) framework that is widely used within the banking industry. Full article
(This article belongs to the Special Issue Ontology-Driven Architectures and Applications of the Semantic Web)
Show Figures

Figure 1

22 pages, 4989 KiB  
Article
Electro-Hydraulic Servo-Pumped Active Disturbance Rejection Control in Wind Turbines for Enhanced Safety and Accuracy
by Tiangui Zhang, Haohui Yu, Bo Yu, Chao Ai, Xiaoxiang Lou, Pengjie Xiang, Ruilin Li and Jianchen Li
Processes 2024, 12(5), 908; https://doi.org/10.3390/pr12050908 (registering DOI) - 29 Apr 2024
Abstract
Aiming at the high accuracy and high robustness position control of servo pump control in the pitch system of a wind turbine generator, this paper proposes an active disturbance rejection controller (ADRC). The ADRC considers pitch angular velocity and acceleration limits. According to [...] Read more.
Aiming at the high accuracy and high robustness position control of servo pump control in the pitch system of a wind turbine generator, this paper proposes an active disturbance rejection controller (ADRC). The ADRC considers pitch angular velocity and acceleration limits. According to the kinematics principle of the pump-controlled pitch system, the relationship between the pitch angular velocity and acceleration limit and the displacement of the hydraulic cylinder is established. Through the method of theoretical analysis, the nonlinear relationship expression between pitch angle and hydraulic cylinder displacement is obtained, and the linearization of pitch angular velocity control is realized; the formula for b0 (the estimated value of the input gain of the system) of the pump-controlled pitch system is obtained by the method of modeling and analysis, b0 is the key parameter for the design of the ADRC; the stability of the controller parameters is proved through the stability analysis and simulation analysis, and the design of the self-immobilizing controller with pitch angular velocity and acceleration limitation is the completed ADRC design. Finally, a joint simulation platform of AMESim and MATLAB as well as a physical experiment platform of electro-hydraulic servo pump-controlled pitch control is constructed, and the effectiveness of the proposed control method is verified through simulation and experiment. The results show that compared with the unrestricted ADRC and PID, the velocity-acceleration-limited ADRC can effectively improve the control effect of the angular velocity and acceleration of the paddle, smooth the startup process, improve the safety of the system, and have better position control accuracy and anti-jamming ability. Full article
Show Figures

Figure 1

18 pages, 2899 KiB  
Review
Green and Low-Cost Modified Pisha Sandstone Geopolymer Gel Materials for Ecological Restoration: A Phase Review
by Changming Li, Yubing Fu, Haifeng Cheng, Yaozong Wang, Dongyang Jia and Hui Liu
Gels 2024, 10(5), 302; https://doi.org/10.3390/gels10050302 (registering DOI) - 29 Apr 2024
Abstract
Pisha sandstone (PS) is a special interbedded rock in the middle reaches of the Yellow River that experiences severe weathering and is loose and broken. Due to severe multiple erosion events, the Pisha sandstone region is called “the most severe water loss and [...] Read more.
Pisha sandstone (PS) is a special interbedded rock in the middle reaches of the Yellow River that experiences severe weathering and is loose and broken. Due to severe multiple erosion events, the Pisha sandstone region is called “the most severe water loss and soil erosion in the world” and “the ecological cancer of the earth”. As a special pozzolanic mineral, PS has the potential to be used as precursors for the synthesis of green and low-carbon geopolymer gel materials and applied in ecological restoration. This paper aims to undertake a phase review of the precursors for geopolymer gel materials. The genesis and distribution, physical and chemical characterization, erosion characteristics, and advances in the ecological restoration of PS are all summarized. Furthermore, current advances in the use of PS for the synthesis of geopolymer gel materials in terms of mechanical properties and durability are discussed. The production of Pisha sandstone geopolymer gels through the binder jetting technique and 3D printing techniques is prospected. Meanwhile, the prospects for the resource application of PS in mine rehabilitation and sustainable ecology are discussed. In the future, multifactor-driven comprehensive measures should be further investigated in order to achieve ecological restoration of the Pisha sandstone region and promote high-quality development of the Yellow River Basin. Full article
Show Figures

Figure 1

14 pages, 4839 KiB  
Article
Pulse Compression Shape-Based ADC/DAC Chain Synchronization Measurement Algorithm with Sub-Sampling Resolution
by Xiangyu Hao, Hongji Fang, Wei Luo and Bo Zhang
Sensors 2024, 24(9), 2831; https://doi.org/10.3390/s24092831 (registering DOI) - 29 Apr 2024
Abstract
In this article, we address the problem of synchronizing multiple analog-to-digital converter (ADC) and digital-to-analog converter (DAC) chains in a multi-channel system, which is constrained by the sampling frequency and inconsistencies among the components during system integration. To evaluate and compensate for the [...] Read more.
In this article, we address the problem of synchronizing multiple analog-to-digital converter (ADC) and digital-to-analog converter (DAC) chains in a multi-channel system, which is constrained by the sampling frequency and inconsistencies among the components during system integration. To evaluate and compensate for the synchronization differences, we propose a pulse compression shape-based algorithm to measure the entire delay parameter of the ADC/DAC chain, which achieves sub-sampling resolution by mapping the shape of the discrete pulse compression peak to the signal propagation delay. Moreover, owing to the matched filtering in the pulse compression process, the algorithm exhibits good noise performance and is suitable for wireless scenarios. Experiments verified that the algorithm can achieve precise measurements with sub-sampling resolution in scenarios where the signal-to-noise ratio (SNR) is greater than −10 dB. Full article
(This article belongs to the Special Issue Radar Receiver Design and Application)
Show Figures

Figure 1

30 pages, 14644 KiB  
Article
Integrating Artificial Intelligence and UAV-Acquired Multispectral Imagery for the Mapping of Invasive Plant Species in Complex Natural Environments
by Narmilan Amarasingam, Fernando Vanegas, Melissa Hele, Angus Warfield and Felipe Gonzalez
Remote Sens. 2024, 16(9), 1582; https://doi.org/10.3390/rs16091582 (registering DOI) - 29 Apr 2024
Abstract
The proliferation of invasive plant species poses a significant ecological threat, necessitating effective mapping strategies for control and conservation efforts. Existing studies employing unmanned aerial vehicles (UAVs) and multispectral (MS) sensors in complex natural environments have predominantly relied on classical machine learning (ML) [...] Read more.
The proliferation of invasive plant species poses a significant ecological threat, necessitating effective mapping strategies for control and conservation efforts. Existing studies employing unmanned aerial vehicles (UAVs) and multispectral (MS) sensors in complex natural environments have predominantly relied on classical machine learning (ML) models for mapping plant species in natural environments. However, a critical gap exists in the literature regarding the use of deep learning (DL) techniques that integrate MS data and vegetation indices (VIs) with different feature extraction techniques to map invasive species in complex natural environments. This research addresses this gap by focusing on mapping the distribution of the Broad-leaved pepper (BLP) along the coastal strip in the Sunshine Coast region of Southern Queensland in Australia. The methodology employs a dual approach, utilising classical ML models including Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM) in conjunction with the U-Net DL model. This comparative analysis allows for an in-depth evaluation of the performance and effectiveness of both classical ML and advanced DL techniques in mapping the distribution of BLP along the coastal strip. Results indicate that the DL U-Net model outperforms classical ML models, achieving a precision of 83%, recall of 81%, and F1–score of 82% for BLP classification during training and validation. The DL U-Net model attains a precision of 86%, recall of 76%, and F1–score of 81% for BLP classification, along with an Intersection over Union (IoU) of 68% on the separate test dataset not used for training. These findings contribute valuable insights to environmental conservation efforts, emphasising the significance of integrating MS data with DL techniques for the accurate mapping of invasive plant species. Full article
(This article belongs to the Special Issue Remote Sensing for Management of Invasive Species)
Show Figures

Figure 1

37 pages, 6817 KiB  
Article
A Multidisciplinary Hyper-Modeling Scheme in Personalized In Silico Oncology: Coupling Cell Kinetics with Metabolism, Signaling Networks, and Biomechanics as Plug-in Component Models of a Cancer Digital Twin
by Eleni Kolokotroni, Daniel Abler, Alokendra Ghosh, Eleftheria Tzamali, James Grogan, Eleni Georgiadi, Philippe Büchler, Ravi Radhakrishnan, Helen Byrne, Vangelis Sakkalis, Katerina Nikiforaki, Ioannis Karatzanis, Nigel J. B. McFarlane, Djibril Kaba, Feng Dong, Rainer M. Bohle, Eckart Meese, Norbert Graf, Georgios Stamatakos and on behalf of the CHIC Project Consortium
J. Pers. Med. 2024, 14(5), 475; https://doi.org/10.3390/jpm14050475 (registering DOI) - 29 Apr 2024
Abstract
The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine [...] Read more.
The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary. Full article
(This article belongs to the Special Issue Mathematical Models of Personalized Medicine)
Show Figures

Figure 1

14 pages, 1362 KiB  
Article
High Serum Levels of CCL20 Are Associated with Recurrence and Unfavorable Overall Survival in Advanced Melanoma Patients Receiving Immunotherapy
by Julian Kött, Inka Lilott Hoehne, Isabel Heidrich, Noah Zimmermann, Kim-Lea Reese, Tim Zell, Glenn Geidel, Alessandra Rünger, Stefan W. Schneider, Klaus Pantel, Daniel J. Smit and Christoffer Gebhardt
Cancers 2024, 16(9), 1737; https://doi.org/10.3390/cancers16091737 (registering DOI) - 29 Apr 2024
Abstract
Background: Immune checkpoint inhibition has revolutionized melanoma therapy, but many patients show primary or secondary resistance. Biomarkers are, therefore, urgently required to predict response prior to the initiation of therapy and to monitor disease progression. Methods: In this prospective study, we analyzed the [...] Read more.
Background: Immune checkpoint inhibition has revolutionized melanoma therapy, but many patients show primary or secondary resistance. Biomarkers are, therefore, urgently required to predict response prior to the initiation of therapy and to monitor disease progression. Methods: In this prospective study, we analyzed the serum C-C motif chemokine ligand 20 (CCL20) concentration using an enzyme-linked immunosorbent assay. Blood was obtained at baseline before the initiation of immunotherapy with anti-PD-1 monotherapy or Nivolumab and Ipilimumab in advanced melanoma patients (stages III and IV) enrolled at the University Medical Center Hamburg-Eppendorf. The CCL20 levels were correlated with clinico-pathological parameters and disease-related outcomes. Results: An increased C-C motif chemokine ligand 20 (CCL20) concentration (≥0.34 pg/mL) at baseline was associated with a significantly impaired progression-free survival (PFS) in the high-CCL20 group (3 months (95% CI: 2–6 months) vs. 11 months (95% CI: 6–26 months)) (p = 0.0033) and could be identified as an independent negative prognostic factor for PFS in univariate (Hazard Ratio (HR): 1.98, 95% CI 1.25–3.12, p = 0.004) and multivariate (HR: 1.99, 95% CI 1.21–3.29, p = 0.007) Cox regression analysis, which was associated with a higher risk than S100 (HR: 1.74). Moreover, high CCL20 levels were associated with impaired overall survival (median OS not reached for low-CCL20 group, p = 0.042) with an HR of 1.85 (95% CI 1.02–3.37, p = 0.043) in univariate analysis similar to the established prognostic marker S100 (HR: 1.99, 95% CI: 1.02–3.88, p = 0.043). Conclusions: CCL20 may represent a novel blood-based biomarker for the prediction of resistance to immunotherapy that can be used in combination with established strong clinical predictors (e.g., ECOG performance score) and laboratory markers (e.g., S100) in advanced melanoma patients. Future prospective randomized trials are needed to establish CCL20 as a liquid biopsy-based biomarker in advanced melanoma. Full article
(This article belongs to the Special Issue Novel Developments on Skin Cancer Diagnostics and Treatment)
Show Figures

Figure 1

28 pages, 1373 KiB  
Article
Optimizing Cryptocurrency Returns: A Quantitative Study on Factor-Based Investing
by Phumudzo Lloyd Seabe, Claude Rodrigue Bambe Moutsinga and Edson Pindza
Mathematics 2024, 12(9), 1351; https://doi.org/10.3390/math12091351 (registering DOI) - 29 Apr 2024
Abstract
This study explores cryptocurrency investment strategies by adapting the robust framework of factor investing, traditionally applied in equity markets, to the distinctive landscape of cryptocurrency assets. It conducts an in-depth examination of 31 prominent cryptocurrencies from December 2017 to December 2023, employing the [...] Read more.
This study explores cryptocurrency investment strategies by adapting the robust framework of factor investing, traditionally applied in equity markets, to the distinctive landscape of cryptocurrency assets. It conducts an in-depth examination of 31 prominent cryptocurrencies from December 2017 to December 2023, employing the Fama–MacBeth regression method and portfolio regressions to assess the predictive capabilities of market, size, value, and momentum factors, adjusted for the unique characteristics of the cryptocurrency market. These characteristics include high volatility and continuous trading, which differ markedly from those of traditional financial markets. To address the challenges posed by the perpetual operation of cryptocurrency trading, this study introduces an innovative rebalancing strategy that involves weekly adjustments to accommodate the market’s constant fluctuations. Additionally, to mitigate issues like autocorrelation and heteroskedasticity in financial time series data, this research applies the Newey–West standard error approach, enhancing the robustness of regression analyses. The empirical results highlight the significant predictive power of momentum and value factors in forecasting cryptocurrency returns, underscoring the importance of tailoring conventional investment frameworks to the cryptocurrency context. This study not only investigates the applicability of factor investing in the rapidly evolving cryptocurrency market, but also enriches the financial literature by demonstrating the effectiveness of combining Fama–MacBeth cross-sectional analysis with portfolio regressions, supported by Newey–West standard errors, in mastering the complexities of digital asset investments. Full article
(This article belongs to the Special Issue Applications of Quantitative Analysis in Financial Markets)
Show Figures

Figure 1

19 pages, 4201 KiB  
Article
Denitrification Performance and Microbiological Mechanisms Using Polyglycolic Acid as a Carbon Source
by Zhichao Wang, Chenxi Li, Wenhuan Yang, Yuxia Wei and Weiping Li
Water 2024, 16(9), 1277; https://doi.org/10.3390/w16091277 (registering DOI) - 29 Apr 2024
Abstract
When treating municipal wastewater, nitrogen removal is often limited due to low C/N, which needs to be compensated for by additional carbon source injections. This study investigated the feasibility of using industrial-waste polyglycolic acid (PGA) as a carbon source for denitrification in an [...] Read more.
When treating municipal wastewater, nitrogen removal is often limited due to low C/N, which needs to be compensated for by additional carbon source injections. This study investigated the feasibility of using industrial-waste polyglycolic acid (PGA) as a carbon source for denitrification in an SBR to obtain an economical carbon source. The results revealed that an optimal denitrification performance in a methanol-fed activated sludge system was achieved with a PGA dosage of 1.2 mL/L, a pH of 7–8, and a dissolved-oxygen (DO) concentration of 3 ± 0.5 mg/L. Under these conditions, all quality parameters for effluent water met the required criteria [COD < 50 mg/L; TN < 15 mg/L; NH4+-N < 5(8) mg/L]. PGA enhanced the variety and richness of microbial communities, thereby markedly increasing the relative abundance of major phyla such as Proteobacteria and Bacteroidota and major genera such as Paracoccus and Dechloromonas. Furthermore, PGA upregulated the expression of nitrogen-metabolism-related genera, including amo, hao, nar, and nor, which improved the denitrification performance of the system. This study provides a reference for applying PGA as a carbon source for low-C/N-wastewater treatment and solid-waste utilization. Full article
(This article belongs to the Special Issue Biological Wastewater Treatment Process and Nutrient Recovery)
Show Figures

Figure 1

15 pages, 602 KiB  
Article
Phytochemical Analysis and Antioxidant Effects of Prunella vulgaris in Experimental Acute Inflammation
by Camelia-Manuela Mîrza, Tudor-Valentin Mîrza, Antonia Cristina Maria Odagiu, Ana Uifălean, Anca Elena But, Alina Elena Pârvu and Adriana-Elena Bulboacă
Int. J. Mol. Sci. 2024, 25(9), 4843; https://doi.org/10.3390/ijms25094843 (registering DOI) - 29 Apr 2024
Abstract
Prunella vulgaris (PV) is one of the most commonly used nutraceuticals as it has been proven to have anti-inflammatory and antioxidant properties. The aim of this study was to evaluate the phytochemical composition of PV and its in vivo antioxidant properties. A phytochemical [...] Read more.
Prunella vulgaris (PV) is one of the most commonly used nutraceuticals as it has been proven to have anti-inflammatory and antioxidant properties. The aim of this study was to evaluate the phytochemical composition of PV and its in vivo antioxidant properties. A phytochemical analysis measuring the total phenolic content (TPC), the identification of phenolic compounds by HPLC-DAD-ESI, and the evaluation of the in vitro antioxidant activity by the DPPH assay of the extract were performed. The antioxidant effects on inflammation induced by turpentine oil were experimentally tested in rats. Seven groups with six animals each were used: a control group, the experimental inflammation treatment group, the experimental inflammation and diclofenac sodium (DS) treatment group, and four groups with their inflammation treated using different dilutions of the extract. Serum redox balance was assessed based on total oxidative status (TOS), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), total thiols, and an oxidative stress index (OSI) contents. The TPC was 0.28 mg gallic acid equivalents (GAE)/mL extract, while specific representatives were represented by caffeic acid, p-coumaric acid, dihydroxybenzoic acid, gentisic acid, protocatechuic acid, rosmarinic acid, vanillic acid, apigenin–glucuronide, hesperidin, kaempferol–glucuronide. The highest amount (370.45 μg/mL) was reported for hesperidin, which is a phenolic compound belonging to the flavanone subclass. The antioxidant activity of the extracts, determined using the DPPH assay, was 27.52 mmol Trolox/mL extract. The PV treatment reduced the oxidative stress by lowering the TOS, OSI, NO, and MDA and by increasing the TAC and thiols. In acute inflammation, treatment with the PV extract reduced oxidative stress, with lower concentrations being more efficient and having a better effect than DS. Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
Show Figures

Figure 1

21 pages, 16843 KiB  
Article
Coplanar Waveguide (CPW) Loaded with Symmetric Circular and Polygonal Split-Ring Resonator (SRR) Shapes
by Supakorn Harnsoongnoen, Saksun Srisai and Pongsathorn Kongkeaw
Symmetry 2024, 16(5), 534; https://doi.org/10.3390/sym16050534 (registering DOI) - 29 Apr 2024
Abstract
This paper investigates the performance of coplanar waveguide (CPW) structures loaded with symmetric circular and polygonal split-ring resonators (SRRs) for microwave and RF applications, leveraging their unique electromagnetic properties. These properties make them suitable for metamaterials, sensors, filters, resonators, antennas, and communication systems. [...] Read more.
This paper investigates the performance of coplanar waveguide (CPW) structures loaded with symmetric circular and polygonal split-ring resonators (SRRs) for microwave and RF applications, leveraging their unique electromagnetic properties. These properties make them suitable for metamaterials, sensors, filters, resonators, antennas, and communication systems. The objectives of this study are to analyze the impact of different SRR shapes on the transmission characteristics of CPWs and to explore their potential for realizing compact and efficient microwave components. The CPW-SRR structures are fabricated on a dielectric substrate, and their transmission properties and spectrogram are experimentally characterized in the frequency range of 4 GHz to 10 GHz with the rotation angles of the SRR gap. The simulation results demonstrate that the resonant frequencies and magnitude of the transmission coefficient of the CPW-SRR structures are influenced by the geometry of the SRR shapes and the rotation angles of the SRR gap, with certain shapes exhibiting enhanced performance characteristics compared to others. Moreover, the symmetric circular and polygonal SRRs offer design flexibility and enable the realization of miniaturized microwave components with improved performance metrics. Overall, this study provides valuable insights into the design and optimization of CPW-based microwave circuits utilizing symmetric SRR shapes, paving the way for advancements in the miniaturization and integration of RF systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 3344 KiB  
Article
Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures
by Gui Hou, Yanhua Xue, Zhe Li and Weiwei Lu
Materials 2024, 17(9), 2090; https://doi.org/10.3390/ma17092090 (registering DOI) - 29 Apr 2024
Abstract
The objective of this research is to enhance the high-temperature antirutting and antiaging characteristics of bioasphalt. In this study, silica fume (SF) was selected to modify bioasphalt. The dosage of bio-oil in bioasphalt was 5%, and the dosage of SF was 2%, 4%, [...] Read more.
The objective of this research is to enhance the high-temperature antirutting and antiaging characteristics of bioasphalt. In this study, silica fume (SF) was selected to modify bioasphalt. The dosage of bio-oil in bioasphalt was 5%, and the dosage of SF was 2%, 4%, 6%, 8%, and 10% of bioasphalt. The high- and low-temperature characteristics, aging resistance, and temperature sensitivity of Bio + SF were evaluated by temperature sweep (TS), the multiple stress creep recovery (MSCR) test, the bending beam rheology (BBR) test, and the viscosity test. Meanwhile, the road behavior of the Bio + SF mixture was evaluated using the rutting test, low-temperature bending beam test, freeze–thaw splitting test, and fatigue test. The experimental results showed that the dosage of SF could enhance the high-temperature rutting resistance, aging resistance, and temperature stability of bioasphalt. The higher the dosage of SF, the more significant the enhancement effect. However, incorporating SF weakened bioasphalt’s low-temperature cracking resistance properties. When the SF dosage was less than 8%, the low-temperature cracking resistance of Bio + SF was still superior to that of matrix asphalt. Compared with matrix asphalt mixtures, the dynamic stability, destructive strain, freeze–thaw splitting strength ratio, and fatigue life of 5%Bio + 8%SF mixtures increased by 38.4%, 49.1%, 5.9%, and 68.9%, respectively. This study demonstrates that the development of SF-modified bioasphalt could meet the technical requirements of highway engineering. Using SF and bio-oil could decrease the consumption of natural resources and positively reduce environmental pollution. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials II)
Show Figures

Figure 1

10 pages, 444 KiB  
Article
Hemoglobin, Ferritin, and Lactate Dehydrogenase as Predictive Markers for Neonatal Sepsis
by Nicoleta Lungu, Daniela-Eugenia Popescu, Aniko Maria Manea, Ana Maria Cristina Jura, Florina Marinela Doandes, Zoran Laurentiu Popa, Florin Gorun, Cosmin Citu, Denis Gruber, Sebastian Ciurescu and Marioara Boia
J. Pers. Med. 2024, 14(5), 476; https://doi.org/10.3390/jpm14050476 (registering DOI) - 29 Apr 2024
Abstract
(1) Background: This study evaluates the predictive effectiveness of biomarkers in diagnosing newborn sepsis. (2) Methods: This was a case–control study conducted on neonates hospitalized at the Clinical Hospital “Louis Turcanu”, Timisoara, Romania, from October 2018 to July 2023. Using a vacutainer collection [...] Read more.
(1) Background: This study evaluates the predictive effectiveness of biomarkers in diagnosing newborn sepsis. (2) Methods: This was a case–control study conducted on neonates hospitalized at the Clinical Hospital “Louis Turcanu”, Timisoara, Romania, from October 2018 to July 2023. Using a vacutainer collection device, venous blood was collected at admission for complete blood tests, including ferritin, hemoglobin, LDH, and blood culture analysis. Neonates were divided into two groups: sepsis-positive and sepsis-negative. The outcome of interest was a diagnosis of sepsis. (3) Results: Data from 86 neonates, 51 of whom had been confirmed to have sepsis, were analyzed. This study found no significant difference in gestational age, infant weight, fetal growth restriction, or APGAR score between neonates with and without sepsis. However, there was a higher incidence of sepsis among neonates delivered via cesarean section. Neonatal patients with sepsis showed significantly higher levels of neonatal serum ferritin and LDH compared to those without sepsis. Ferritin and LDH biomarkers demonstrated excellent discriminatory capabilities in diagnosing neonatal sepsis. Logistic regression analysis revealed a significant association between elevated ferritin and LDH levels and the likelihood of neonatal sepsis, while anemia did not show a significant association. (4) Conclusions: LDH and ferritin concentrations are found to be predictive biomarkers for neonatal sepsis, indicating a potential role in detecting susceptible neonates and implementing prompt interventions to improve patient outcomes. Full article
(This article belongs to the Special Issue Personalized Maternal-Fetal-Neonatal Infections: Overall Management)
Show Figures

Figure 1

19 pages, 6982 KiB  
Article
Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells
by Marta Klak, Michał Rachalewski, Anna Filip, Tomasz Dobrzański, Andrzej Berman and Michał Wszoła
Bioengineering 2024, 11(5), 439; https://doi.org/10.3390/bioengineering11050439 (registering DOI) - 29 Apr 2024
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While [...] Read more.
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched—the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts. Full article
(This article belongs to the Special Issue 3D Bioprinting Advanced Vascularized Tissues and Organs)
Show Figures

Figure 1

21 pages, 10537 KiB  
Article
Thermal Stability and Non-Linear Optical and Dielectric Properties of Lead-Free K0.5Bi0.5TiO3 Ceramics
by Piotr Czaja, Elżbieta Szostak, Joanna Hetmańczyk, Piotr Zachariasz, Dorota Majda, Jan Suchanicz, Małgorzata Karolus, Dariusz Bochenek, Katarzyna Osińska, Jarosław Jędryka, Andriy Kityk and Michał Piasecki
Materials 2024, 17(9), 2089; https://doi.org/10.3390/ma17092089 (registering DOI) - 29 Apr 2024
Abstract
Lead-free K0.5Bi0.5TiO3 (KBT) ceramics with high density (~5.36 g/cm3, 90% of X-ray density) and compositional purity (up to 90%) were synthesized using a solid-state reaction method. Strongly condensed KBT ceramics revealed homogenous local microstructures. TG/DSC (Thermogravimetry-differential [...] Read more.
Lead-free K0.5Bi0.5TiO3 (KBT) ceramics with high density (~5.36 g/cm3, 90% of X-ray density) and compositional purity (up to 90%) were synthesized using a solid-state reaction method. Strongly condensed KBT ceramics revealed homogenous local microstructures. TG/DSC (Thermogravimetry-differential scanning calorimetry) techniques characterized the thermal and structural stability of KBT. High mass stability (>0.4%) has proven no KBT thermal decomposition or other phase precipitation up to 1000 °C except for the co-existing K2Ti6O13 impurity. A strong influence of crystallites size and sintering conditions on improved dielectric and non-linear optical properties was reported. A significant increase (more than twice) in dielectric permittivity (εR), substantial for potential applications, was found in the KBT-24h specimen with extensive milling time. Moreover, it was observed that the second harmonic generation (λSHG = 532 nm) was activated at remarkably low fundamental beam intensity. Finally, spectroscopic experiments (Fourier transform Raman and far-infrared spectroscopy (FT-IR)) were supported by DFT (Density functional theory) calculations with a 2 × 2 × 2 supercell (P42mc symmetry and C4v point group). Moreover, the energy band gap was calculated (Eg = 2.46 eV), and a strong hybridization of the O-2p and Ti-3d orbitals at Eg explained the nature of band-gap transition (Γ → Γ). Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop