The 2023 MDPI Annual Report has
been released!
 
10 pages, 7216 KiB  
Article
Comparison of De-Torque and Failure Load Evaluation of Selective-Laser-Sintered CoCr, CAD-CAM ZrO, and Machined Implant Abutment/Restoration
by Fahim Vohra, Rawan Alsaif, Rawaiz Khan and Ishfaq A. Bukhari
Bioengineering 2024, 11(5), 448; https://doi.org/10.3390/bioengineering11050448 (registering DOI) - 30 Apr 2024
Abstract
Aim: This study aimed to compare the torque loss, fracture load, compressive strength, and failure types of selective-laser-sintered cobalt chromium (SLM-Co-Cr), computer-aided design and computer-aided manufacturing zirconium oxide (CAD-CAM-ZrO), and machined titanium (Ti) implant abutments. Methods: Thirty endosseous dental implants were vertically embedded [...] Read more.
Aim: This study aimed to compare the torque loss, fracture load, compressive strength, and failure types of selective-laser-sintered cobalt chromium (SLM-Co-Cr), computer-aided design and computer-aided manufacturing zirconium oxide (CAD-CAM-ZrO), and machined titanium (Ti) implant abutments. Methods: Thirty endosseous dental implants were vertically embedded with machined Ti (control group), CAD-CAM-ZrO, and SLM-Co-Cr abutments. Abutment fabrication involved CAD-CAM milling and SLM technology. The de-torque assessment included preload reverse torque values (RTVs), cyclic loading, and post-RTVs using a customized protocol. Fracture load assessment employed ISO-14801 standards, and statistical analysis was conducted using ANOVA and Tukey Post hoc tests (p < 0.05). Results: In pre-load RTVs, SLM-Co-Cr showed the lowest mean torque loss (24.30 ± 2.13), followed by machined Ti (27.33 ± 2.74) and CAD-CAM-ZrO (22.07 ± 2.20). Post-load RTVs decreased for all groups. Fracture load and compressive strength were highest for SLM-Co-Cr, with significant differences among groups (p < 0.001). Fracture types included abutment failures in SLM-Co-Cr and machined Ti, while CAD-CAM-ZrO exhibited crown separation with deformation. Conclusion: SLM-Co-Cr-fabricated implant abutments exhibited superior stability and resistance to rotational forces, higher fracture loads, and greater compressive strength compared to CAD-CAM-ZrO and machined Ti. Full article
(This article belongs to the Special Issue Recent Progress in Dental Biomaterials)
Show Figures

Figure 1

19 pages, 8889 KiB  
Article
Glucosamine and Silibinin Alter Cartilage Homeostasis through Glycosylation and Cellular Stresses in Human Chondrocyte Cells
by Yu-Pao Hsu, Tsung-Hsi Huang, Shu-Ting Liu, Shih-Ming Huang, Yi-Chou Chen and Chia-Chun Wu
Int. J. Mol. Sci. 2024, 25(9), 4905; https://doi.org/10.3390/ijms25094905 (registering DOI) - 30 Apr 2024
Abstract
Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk [...] Read more.
Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes. Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue)
Show Figures

Figure 1

17 pages, 4776 KiB  
Article
Revealing the Effect of Typhoons on the Stability of Residual Soil Slope by Wind Tunnel Test
by Zizheng Guo, Yuanbo Liu, Taili Zhang, Juehao Zhang, Haojie Wang, Jun He, Guangming Li and Bixia Tian
Forests 2024, 15(5), 791; https://doi.org/10.3390/f15050791 (registering DOI) - 30 Apr 2024
Abstract
Typhoon-induced slope failure is one of the most important geological hazards in coastal areas. However, the specific influence of typhoons on the stability of residual soil slopes still remains an open issue. In this study, the Feiyunjiang catchment in Zhejiang Province of SE [...] Read more.
Typhoon-induced slope failure is one of the most important geological hazards in coastal areas. However, the specific influence of typhoons on the stability of residual soil slopes still remains an open issue. In this study, the Feiyunjiang catchment in Zhejiang Province of SE China was chosen as the study area, and a downscaling physical model of residual soil slopes in the region was used to carry out the wind tunnel test. Our aim was to answer the question, How does the vegetation on the slope and slope stability respond during a typhoon event? For this purpose, multiple aspects were monitored and observed under four different wind speeds (8.3 m/s, 10.3 m/s, 13.3 m/s, and 17 m/s), including vegetation damage on the slope, macrocracks on the slope surface, wind pressure, wind load, permeability coefficient of the soil layer, and slope stability. The results showed that the plants on the slope could restore to their original states when the wind speeds ranged from 8.3 m/s to 13.3 m/s, but were damaged to the point of toppling when the wind speed increased to 17 m/s. Meanwhile, evident cracks were observed on the ground under this condition, which caused a sharp increase in the soil permeability coefficient, from 1.06 × 10−5 m/s to 6.06 × 10−4 m/s. The monitored wind pressures were larger at the canopy than that at the trunk for most of the trees, and generally larger at the crown of the slope compared with the toe of the slope. Regarding the wind load to the slope ground, the total value increased significantly, from 35.4 N under a wind speed of 8.3 m/s to 166.5 N under a wind speed of 17 m/s. However, the wind load presented different vector directions at different sections of the slope. The quantitative assessment of slope stability considering the wind load effect revealed that the safety factor decreased by 0.123 and 0.1 under the natural state and saturated state, respectively, from no wind to a 17 m/s strong wind. Overall, the present results explained the mechanism of slope failure during typhoon events, which provided theoretical reference for revealing the characteristics of residual soil slope stability under typhoon conditions. Full article
(This article belongs to the Special Issue Impacts of Extreme Climate Events on Forests)
16 pages, 13046 KiB  
Article
Tobacco Smoke Condensate Induces Morphologic Changes in Human Papillomavirus-Positive Cervical Epithelial Cells Consistent with Epithelial to Mesenchymal Transition (EMT) with Activation of Receptor Tyrosine Kinases and Regulation of TGFB
by Zaniya A. Mark, Linda Yu, Lysandra Castro, Xiaohua Gao, Noelle R. Rodriguez, Deloris Sutton, Erica Scappini, Charles J. Tucker, Rob Wine, Yitang Yan, Evangeline Motley and Darlene Dixon
Int. J. Mol. Sci. 2024, 25(9), 4902; https://doi.org/10.3390/ijms25094902 (registering DOI) - 30 Apr 2024
Abstract
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette [...] Read more.
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10−6–100 μg/mL). We found CSC (10−3 or 10 μg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC. Full article
Show Figures

Figure 1

16 pages, 1053 KiB  
Article
Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture
by Zahra S. Al-Kharousi, Zainab Al-Ramadhani, Fatma A. Al-Malki and Nasser Al-Habsi
Foods 2024, 13(9), 1389; https://doi.org/10.3390/foods13091389 (registering DOI) - 30 Apr 2024
Abstract
There is a lack of scientific analysis and control over the production of date vinegar in Oman, despite its growing demand in the worldwide market. Traditional production of date vinegar may lead to elevated amounts of ethanol (≥0.5%) and reduced content of acetic [...] Read more.
There is a lack of scientific analysis and control over the production of date vinegar in Oman, despite its growing demand in the worldwide market. Traditional production of date vinegar may lead to elevated amounts of ethanol (≥0.5%) and reduced content of acetic acid (<4%) compared to the standard acceptable levels. This study aimed to isolate non-Gluconobacter species from date vinegar produced by spontaneous fermentation and formulate starter cultures for quick and efficient production of date vinegar. In spontaneous fermentation date vinegar samples, the highest concentration of acetic acid was 10.42% on day 50. Acetobacter malorum (5 isolates), A. persici (3 isolates), and A. tropicalis (3 isolates) were identified based on 16S rRNA gene sequences for the first time in date vinegar. For date vinegar prepared with a starter culture of Acetobacter and yeast, the highest concentration of acetic acid was 4.67%. In conclusion, spontaneous fermentation resulted in the production of date vinegar with a high concentration of acetic acid, acceptable concentrations of ethanol and methanol, and the first isolation of three Acetobacter species. The formulated starter culture produced acceptable amounts of acetic acid and the time of fermentation was reduced 10 times (from 40 days to 4 days). This can provide the basis for producing a personalized or commercial product that ensures the production of good-quality date vinegar in an easier, faster, safer, and more efficient way from low-quality and surplus dates. Full article
(This article belongs to the Special Issue Research on Microorganism in Fermented Vegetables and Fruits)
29 pages, 3596 KiB  
Review
Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders
by Xutao Sun, Caiyun Mao, Ying Xie, Qing Zhong, Rong Zhang, Deyou Jiang and Yunjia Song
Biomolecules 2024, 14(5), 540; https://doi.org/10.3390/biom14050540 (registering DOI) - 30 Apr 2024
Abstract
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a [...] Read more.
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings. Full article
Show Figures

Figure 1

16 pages, 1175 KiB  
Article
Polymer System Based on Polyethylene Glycol and TFE Telomers for Producing Films with Switchable Wettability
by Evgeniy Belov, Konstantine Nadaraia, Igor Imshinetskiy, Dmitry Mashtalyar, Lidia Ignatieva, Yurii Marchenko, Ivan Osmushko, Maria Gerasimenko, Sergey Sinebruykhov and Sergey Gnedenkov
Int. J. Mol. Sci. 2024, 25(9), 4904; https://doi.org/10.3390/ijms25094904 (registering DOI) - 30 Apr 2024
Abstract
Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper [...] Read more.
Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper presents results of the studies of a new synthesized supramolecular polymer system based on polyethylene glycol and tetrafluoroethylene telomers. The films formed from the polymer substance have the property of switching wettability depending on temperature after heating activation. It has been established that the wettability changes at 60 °C. The contact angle of activated hydrophobic polymer film reaches 143°. Additionally, the system exhibits its properties regardless of the pH of the environment. Based on data obtained by the methods of infrared and x-ray photoelectron spectroscopy, differential thermal analysis and thermal analysis in conjunction with wettability and morphology, a model of the behavior of molecules in a polymer system was built that ensures switching of the hydrophilic/hydrophobic surface state. The resulting polymer system, as well as films based on it, can be used in targeted drug delivery, implantation surgery, as sensors, etc. Full article
32 pages, 2963 KiB  
Article
Understanding the SARS-CoV-2–Human Liver Interactome Using a Comprehensive Analysis of the Individual Virus–Host Interactions
by Giovanni Colonna
Livers 2024, 4(2), 209-240; https://doi.org/10.3390/livers4020016 (registering DOI) - 30 Apr 2024
Abstract
Many metabolic processes at the molecular level support both viral attack strategies and human defenses during COVID-19. This knowledge is of vital importance in the design of antiviral drugs. In this study, we extracted 18 articles (2021–2023) from PubMed reporting the discovery of [...] Read more.
Many metabolic processes at the molecular level support both viral attack strategies and human defenses during COVID-19. This knowledge is of vital importance in the design of antiviral drugs. In this study, we extracted 18 articles (2021–2023) from PubMed reporting the discovery of hub nodes specific for the liver during COVID-19, identifying 142 hub nodes. They are highly connected proteins from which to obtain deep functional information on viral strategies when used as functional seeds. Therefore, we evaluated the functional and structural significance of each of them to endorse their reliable use as seeds. After filtering, the remaining 111 hubs were used to obtain by STRING an enriched interactome of 1111 nodes (13,494 interactions). It shows the viral strategy in the liver is to attack the entire cytoplasmic translational system, including ribosomes, to take control of protein biosynthesis. We used the SARS2-Human Proteome Interaction Database (33,791 interactions), designed by us with BioGRID data to implement a reverse engineering process that identified human proteins actively interacting with viral proteins. The results show 57% of human liver proteins are directly involved in COVID-19, a strong impairment of the ribosome and spliceosome, an antiviral defense mechanism against cellular stress of the p53 system, and, surprisingly, a viral capacity for multiple protein attacks against single human proteins that reveal underlying evolutionary–topological molecular mechanisms. Viral behavior over time suggests different molecular strategies for different organs. Full article
20 pages, 3929 KiB  
Article
Exploration-Based Planning for Multiple-Target Search with Real-Drone Results
by Bilal Yousuf, Zsófia Lendek and Lucian Buşoniu
Sensors 2024, 24(9), 2868; https://doi.org/10.3390/s24092868 (registering DOI) - 30 Apr 2024
Abstract
Consider a drone that aims to find an unknown number of static targets at unknown positions as quickly as possible. A multi-target particle filter uses imperfect measurements of the target positions to update an intensity function that represents the expected number of targets. [...] Read more.
Consider a drone that aims to find an unknown number of static targets at unknown positions as quickly as possible. A multi-target particle filter uses imperfect measurements of the target positions to update an intensity function that represents the expected number of targets. We propose a novel receding-horizon planner that selects the next position of the drone by maximizing an objective that combines exploration and target refinement. Confidently localized targets are saved and removed from consideration along with their future measurements. A controller with an obstacle-avoidance component is used to reach the desired waypoints. We demonstrate the performance of our approach through a series of simulations as well as via a real-robot experiment in which a Parrot Mambo drone searches from a constant altitude for targets located on the floor. Target measurements are obtained on-board the drone using segmentation in the camera image, while planning is done off-board. The sensor model is adapted to the application. Both in the simulations and in the experiments, the novel framework works better than the lawnmower and active-search baselines. Full article
Show Figures

Figure 1

12 pages, 446 KiB  
Article
An Approach to Sustainable Enterprise Resource Planning System Implementation in Small- and Medium-Sized Enterprises
by Raquel Pérez Estébanez
Adm. Sci. 2024, 14(5), 91; https://doi.org/10.3390/admsci14050091 (registering DOI) - 30 Apr 2024
Abstract
The adoption of sustainable enterprise resource planning systems in small and medium-sized enterprises represents a strategic response to the evolving landscape of corporate responsibility and environmental stewardship. This study seeks to identify which factors determine the level of satisfaction when implementing a sustainable [...] Read more.
The adoption of sustainable enterprise resource planning systems in small and medium-sized enterprises represents a strategic response to the evolving landscape of corporate responsibility and environmental stewardship. This study seeks to identify which factors determine the level of satisfaction when implementing a sustainable enterprise resource planning system in small- and medium-sized business. A survey was designed to measure managers’ satisfaction with S-ERP implementation in their companies. A multivariate analysis was run to test the factors affecting the level of satisfaction with the implementation. The general results show that the type of module implemented positively and significantly affects the level of satisfaction with S-ERP. One specific result is that the more accounting modules implemented, the more complex the system is, and the more effort is needed to implement the new technology effectively and use it properly. Another result shows that the sales marketing module has an inverse impact on satisfaction with an S-ERP, possibly because this module is complex and difficult to manage. This study contributes significantly to the emerging body of knowledge on S-ERP implementation by seeking to fill the research gap on the interaction between the S-ERP system and user’s satisfaction, focusing on small businesses. Future research directions should delve into the long-term impact of sustainable ERP adoption on SME performance and resilience. Additionally, investigating the effectiveness of government policies in supporting sustainable ERP adoption, along with exploring the actual environmental impact of ERP systems in SMEs, can contribute to advancing our understanding of this dynamic and evolving field. Full article
(This article belongs to the Special Issue Business Development within the Sustainable Development Goals)
Show Figures

Figure 1

22 pages, 342 KiB  
Article
On the Dimensions of Hermitian Subfield Subcodes from Higher-Degree Places
by Sabira El Khalfaoui and Gábor P. Nagy
Entropy 2024, 26(5), 386; https://doi.org/10.3390/e26050386 (registering DOI) - 30 Apr 2024
Abstract
The focus of our research is the examination of Hermitian curves over finite fields, specifically concentrating on places of degree three and their role in constructing Hermitian codes. We begin by studying the structure of the Riemann–Roch space associated with these degree-three places, [...] Read more.
The focus of our research is the examination of Hermitian curves over finite fields, specifically concentrating on places of degree three and their role in constructing Hermitian codes. We begin by studying the structure of the Riemann–Roch space associated with these degree-three places, aiming to determine essential characteristics such as the basis. The investigation then turns to Hermitian codes, where we analyze both functional and differential codes of degree-three places, focusing on their parameters and automorphisms. In addition, we explore the study of subfield subcodes and trace codes, determining their structure by giving lower bounds for their dimensions. This presents a complex problem in coding theory. Based on numerical experiments, we formulate a conjecture for the dimension of some subfield subcodes of Hermitian codes. Our comprehensive exploration seeks to deepen the understanding of Hermitian codes and their associated subfield subcodes related to degree-three places, thus contributing to the advancement of algebraic coding theory and code-based cryptography. Full article
(This article belongs to the Special Issue Discrete Math in Coding Theory)
24 pages, 1620 KiB  
Review
Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization
by Mateus Pereira Flores Santos, Evaldo Cardozo de Souza Junior, Carolina Villadóniga, Diego Vallés, Susana Castro-Sowinski, Renata Cristina Ferreira Bonomo and Cristiane Martins Veloso
BioTech 2024, 13(2), 13; https://doi.org/10.3390/biotech13020013 (registering DOI) - 30 Apr 2024
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...] Full article
(This article belongs to the Section Industrial Biotechnology)
Show Figures

Graphical abstract

22 pages, 18294 KiB  
Article
Estimation of SOC in Lithium-Iron-Phosphate Batteries Using an Adaptive Sliding Mode Observer with Simplified Hysteresis Model during Electric Vehicle Duty Cycles
by Yujia Chang, Ran Li, Hao Sun and Xiaoyu Zhang
Batteries 2024, 10(5), 154; https://doi.org/10.3390/batteries10050154 (registering DOI) - 30 Apr 2024
Abstract
This paper develops a model for lithium-ion batteries under dynamic stress testing (DST) and federal urban driving schedule (FUDS) conditions that incorporates associated hysteresis characteristics of 18650-format lithium iron-phosphate batteries. Additionally, it introduces the adaptive sliding mode observer algorithm (ASMO) to achieve robust [...] Read more.
This paper develops a model for lithium-ion batteries under dynamic stress testing (DST) and federal urban driving schedule (FUDS) conditions that incorporates associated hysteresis characteristics of 18650-format lithium iron-phosphate batteries. Additionally, it introduces the adaptive sliding mode observer algorithm (ASMO) to achieve robust and swiftly accurate estimation of the state of charge (SOC) of lithium-iron-phosphate batteries during electric vehicle duty cycles. The established simplified hysteresis model in this paper significantly enhances the fitting accuracy during charging and discharging processes, compensating for voltage deviations induced by hysteresis characteristics. The SOC estimation, even in the face of model parameter changes under complex working conditions during electric vehicle duty cycles, maintains high robustness by capitalizing on the easy convergence and parameter insensitivity of ASMO. Lastly, experiments conducted under different temperatures and FUDS and DST conditions validate that the SOC estimation of lithium-iron-phosphate batteries, based on the adaptive sliding-mode observer and the simplified hysteresis model, exhibits enhanced robustness and faster convergence under complex working conditions and temperature variations during electric vehicle duty cycles. Full article
Show Figures

Figure 1

21 pages, 680 KiB  
Article
Decrypting Cryptocurrencies: An Exploration of the Impact on Financial Stability
by Mohamed Nihal Saleem, Yianni Doumenis, Epameinondas Katsikas, Javad Izadi and Dimitrios Koufopoulos
J. Risk Financial Manag. 2024, 17(5), 186; https://doi.org/10.3390/jrfm17050186 (registering DOI) - 30 Apr 2024
Abstract
This study aims to empirically examine the relationship between cryptocurrency and various facets of the financial system. It seeks to provide a comprehensive understanding of how cryptocurrencies interact with, and influence, the stock market, the U.S. dollar’s strength, inflation rates, and traditional banking [...] Read more.
This study aims to empirically examine the relationship between cryptocurrency and various facets of the financial system. It seeks to provide a comprehensive understanding of how cryptocurrencies interact with, and influence, the stock market, the U.S. dollar’s strength, inflation rates, and traditional banking operations. This is carried out using linear regression models, Granger causality tests, case studies, including the collapse of the Futures Exchange (FTX), and the successful integration of Binance. The study unveiled a strong positive correlation between cryptocurrency market capitalization and key financial indicators like the Dow Jones Industrial Average, Consumer Price Index, and traditional banking operations. This indicates the growing significance of cryptocurrencies within the global financial landscape. However, a mild association was found with the U.S. dollar, suggesting a limited influence of cryptocurrencies on traditional fiat currencies currently. Despite certain limitations such as reliance on secondary data, methodological choices, and geographic focus, this research provides valuable insights for policymakers, financial industry stakeholders, and academic researchers, underlining the necessity for continued study into the complex interplay between cryptocurrencies and financial stability. Full article
(This article belongs to the Special Issue Digital Banking and Financial Technology)
Show Figures

Figure 1

20 pages, 311 KiB  
Article
Amortizing Loans under Arbitrary Discount Functions
by Carlo Mari
J. Risk Financial Manag. 2024, 17(5), 185; https://doi.org/10.3390/jrfm17050185 (registering DOI) - 30 Apr 2024
Abstract
A general methodology for loan amortization under arbitrary discount functions is discussed. It is shown that it is always possible to uniquely define a scheme for constructing the loan amortization schedule with an arbitrary assigned discount function. It is also shown that, even [...] Read more.
A general methodology for loan amortization under arbitrary discount functions is discussed. It is shown that it is always possible to uniquely define a scheme for constructing the loan amortization schedule with an arbitrary assigned discount function. It is also shown that, even if the loan amortization is carried out from the sequence of principal payments and the sequence of accrued interest, the underlying discount function can be uniquely determined at the maturities corresponding to the installment payment dates. As a special case of the proposed approach, we derive the amortization method according to the law of simple interest. Full article
(This article belongs to the Section Financial Markets)
14 pages, 2788 KiB  
Article
Candida Non-albicans and Non-auris Causing Invasive Candidiasis in a Fourth-Level Hospital in Colombia: Epidemiology, Antifungal Susceptibility, and Genetic Diversity
by Juan Camilo Hernández-Pabón, Bryan Tabares, Óscar Gil, Carlos Lugo-Sánchez, Aldair Santana, Alfonso Barón and Carolina Firacative
J. Fungi 2024, 10(5), 326; https://doi.org/10.3390/jof10050326 (registering DOI) - 30 Apr 2024
Abstract
Increasingly common and associated with healthcare settings, Candida infections are very important, since some species of this genus can develop antifungal resistance. We contribute data on the epidemiology, antifungal susceptibility, and genetic diversity of Candida non-albicans and non-auris affecting critically ill [...] Read more.
Increasingly common and associated with healthcare settings, Candida infections are very important, since some species of this genus can develop antifungal resistance. We contribute data on the epidemiology, antifungal susceptibility, and genetic diversity of Candida non-albicans and non-auris affecting critically ill patients in a fourth-level hospital in Colombia. Ninety-seven isolates causing invasive infections, identified by conventional methods over 18 months, were studied. Data from patients affected by these yeasts, including sex, age, comorbidities, treatment, and outcome, were analysed. The antifungal susceptibility of the isolates was determined, and the ribosomal DNA was sequenced. Candida parapsilosis, Candida tropicalis, Candida glabrata, Candida dubliniensis, and Candida guilliermondii caused 48.5% of all cases of invasive candidiasis. The species were mainly recovered from blood (50%). Patients were mostly men (53.4%), between 18 days and 93 years old, hospitalized in the ICU (70.7%). Overall mortality was 46.6%, but patients in the ICU, using antibiotics, with diabetes mellitus, or with C. glabrata infections were more likely to die. Resistant isolates were identified in C. parapsilosis, C. tropicalis, and C. glabrata. This study provides epidemiological data for the surveillance of emerging Candida species, highlighting their clinical impact, as well as the emergence of antifungal resistance and clonal dispersal. Full article
(This article belongs to the Special Issue Fungal Infections in Non-neutropenic Patients)
Show Figures

Figure 1

14 pages, 5937 KiB  
Article
Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design
by Jose Carlos Santos Salgado, Paulo Ricardo Heinen, Josana Maria Messias, Lummy Maria Oliveira-Monteiro, Mariana Cereia, Carem Gledes Vargas Rechia, Alexandre Maller, Marina Kimiko Kadowaki, Richard John Ward and Maria de Lourdes Teixeira de Moraes Polizeli
Fermentation 2024, 10(5), 241; https://doi.org/10.3390/fermentation10050241 (registering DOI) - 30 Apr 2024
Abstract
The endo-1,4-β-xylanases (EC 3.2.1.8) are the largest group of hydrolytic enzymes that degrade xylan, the major component of hemicelluloses, by catalyzing the hydrolysis of glycosidic bonds β-1,4 in this polymer, releasing xylooligosaccharides of different sizes. Xylanases have considerable potential in producing bread, animal [...] Read more.
The endo-1,4-β-xylanases (EC 3.2.1.8) are the largest group of hydrolytic enzymes that degrade xylan, the major component of hemicelluloses, by catalyzing the hydrolysis of glycosidic bonds β-1,4 in this polymer, releasing xylooligosaccharides of different sizes. Xylanases have considerable potential in producing bread, animal feed, food, beverages, xylitol, and bioethanol. The fungus Aspergillus tamarii Kita produced xylanases in Adams’ media supplemented with barley bagasse (brewer’s spent grains), a by-product from brewery industries. The culture extract exhibited two xylanase activities in the zymogram, identified by mass spectrometry as glycosyl hydrolase (GH) families 10 and 11 (GH 10 and GH 11). The central composite design (CCD) showed excellent predictive capacity for xylanase production (23.083 U mL−1). Additionally, other enzyme activities took place during the submerged fermentation. Moreover, enzymatic saccharification based on a mixture design (MD) of three different lignocellulosic residues was helpful in the production of fermentable sugars by the A. tamarii Kita crude extract. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

18 pages, 1847 KiB  
Review
Supposed Virulence Factors of Flavobacterium psychrophilum: A Review
by Věra Vaibarová and Alois Čížek
Fishes 2024, 9(5), 163; https://doi.org/10.3390/fishes9050163 (registering DOI) - 30 Apr 2024
Abstract
Flavobacterium psychrophilum is currently one of the most important pathogens in aquaculture worldwide, causing high losses to farmed salmonids particularly during early growth stages with significant economic impact. Despite previous attempts, no effective vaccine has been developed, and protection against introduction into farms [...] Read more.
Flavobacterium psychrophilum is currently one of the most important pathogens in aquaculture worldwide, causing high losses to farmed salmonids particularly during early growth stages with significant economic impact. Despite previous attempts, no effective vaccine has been developed, and protection against introduction into farms is difficult due to the ubiquitous occurrence of the pathogen. A better understanding of the mechanism of disease development is essential for targeted therapeutic and preventive measures in farms. Unfortunately, the pathogenesis of diseases caused by F. psychrophilum has not been elucidated yet. Previously, several putative virulence factors have been identified. Some appear to be essential for disease development, while others are probably dispensable. The importance of some factors has not yet been explored. This review focuses on the supposed virulence factors of F. psychrophilum and the current knowledge about their importance in the pathogenesis of the disease. Full article
(This article belongs to the Special Issue Fish Pathogens: Infection and Biological Control)
Show Figures

Figure 1

13 pages, 247 KiB  
Article
The Influence of Sodium Hexametaphosphate Chain Length on the Physicochemical Properties of High-Milk Protein Dispersions
by Baheeja J. Zaitoun and Jayendra K. Amamcharla
Foods 2024, 13(9), 1383; https://doi.org/10.3390/foods13091383 (registering DOI) - 30 Apr 2024
Abstract
Protein–protein and protein–mineral interactions can result in defects, such as sedimentation and age gelation, during the storage of high-protein beverages. It is well known that age gelation can be delayed by adding cyclic polyphosphates such as sodium hexametaphosphate (SHMP). This study aims to [...] Read more.
Protein–protein and protein–mineral interactions can result in defects, such as sedimentation and age gelation, during the storage of high-protein beverages. It is well known that age gelation can be delayed by adding cyclic polyphosphates such as sodium hexametaphosphate (SHMP). This study aims to assess the influence of different phosphate chain lengths of SHMP on the physicochemical properties of high-protein dispersions. The effect of adding different SHMP concentrations at 0%, 0.15%, and 0.25% (w/w) before and after heating of 6%, 8%, and 10% (w/w) milk protein concentrate dispersions was studied. The phosphate chain lengths of SHMPs used in this study were 16.47, 13.31, and 9.88, and they were classified as long-, medium-, and short-chain SHMPs, respectively. Apparent viscosity, particle size, heat coagulation time (HCT), color, and turbidity were evaluated. It was observed that the addition of SHMP (0.15% and 0.25%) increased the apparent viscosity of MPC dispersions. However, the chain length and the concentration of the added SHMP had no significant (p > 0.05) effect on the apparent viscosity after heating the dispersions. The HCT of a dispersion containing 6%, 8%, and 10% protein with no SHMP added was 15.28, 15.61, and 11.35 min, respectively. The addition of SHMP at both levels (0.15% and 0.25%) significantly increased the HCT. Protein dispersions (6%, 8%, and 10%) containing 0.25% short-chain SHMP had the highest HCT at 19.29, 19.61, and 16.09 min, respectively. Therefore, the chain length and concentration of added SHMP significantly affected the HCT of unheated protein dispersion (p < 0.05). Full article
14 pages, 3784 KiB  
Article
Effect of Different Hydrocolloids on the Qualitative Characteristics of Fermented Gluten-Free Quinoa Dough and Bread
by Tiziana Di Renzo, Maria Carmela Trivisonno, Stefania Nazzaro, Anna Reale and Maria Cristina Messia
Foods 2024, 13(9), 1382; https://doi.org/10.3390/foods13091382 (registering DOI) - 30 Apr 2024
Abstract
The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% [...] Read more.
The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure. Full article
Show Figures

Graphical abstract

14 pages, 1293 KiB  
Article
Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon
by João Pedro Rudrigues de Souza, Jeremie Garnier, Julia Mançano Quintarelli, Myller de Sousa Tonhá, Henrique Llacer Roig, Patrick Seyler and Jurandir Rodrigues de Souza
Toxics 2024, 12(5), 326; https://doi.org/10.3390/toxics12050326 (registering DOI) - 30 Apr 2024
Abstract
Artisanal small-scale gold mining (ASGM), an increasingly prevalent activity in South America, generates mercury-contaminated tailings that are often disposed of in the environment, leading to the introduction of mercury into ecosystems and the food web, where it bioaccumulates. Therefore, studying the geochemical processes [...] Read more.
Artisanal small-scale gold mining (ASGM), an increasingly prevalent activity in South America, generates mercury-contaminated tailings that are often disposed of in the environment, leading to the introduction of mercury into ecosystems and the food web, where it bioaccumulates. Therefore, studying the geochemical processes involved in the desorption and dissolution of mercury in these tailings is essential for critical risk evaluations in the short and long term. For this purpose, sequential extraction procedures (SEPs) can be useful because they help to identify the phases to which Hg is associated, although they also have limitations such as a lack of selectivity and specificity. In this work, we propose a modified four-step SEP: exchangeable mercury (F1), oxidizable mercury (F2), mercury bound to Fe oxides (F3), and strongly bound mercury (F4). To test this adapted sequential extraction method, we evaluated the Hg contamination in mercury-contaminated tailings of the Amazon basin. The results revealed a total mercury concentration of 103 ± 16 mg·kg−1 in the tailings, with a significant portion in F1 (28% of the total), where Hg was bioavailable. The large Hg concentration in F3 (36%) suggested that Fe oxides likely contribute to mercury retention. Together, the SEP results emphasize the urgent need for improved surveillance of gold mining activities and responsible tailings management practices to mitigate environmental contamination and safeguard the health of the Amazon ecosystem. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

10 pages, 711 KiB  
Article
Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography
by Emi Saita, Yoshimi Kishimoto, Reiko Ohmori, Kazuo Kondo and Yukihiko Momiyama
J. Cardiovasc. Dev. Dis. 2024, 11(5), 139; https://doi.org/10.3390/jcdd11050139 (registering DOI) - 30 Apr 2024
Abstract
Atherosclerotic disease, including coronary heart disease (CHD), is one of the chronic inflammatory conditions, and an imbalance between pro-inflammatory and anti-inflammatory cytokines plays a role in the process of atherosclerosis. Interleukin (IL)-27, one of the IL-12 family members, is recognized to play a [...] Read more.
Atherosclerotic disease, including coronary heart disease (CHD), is one of the chronic inflammatory conditions, and an imbalance between pro-inflammatory and anti-inflammatory cytokines plays a role in the process of atherosclerosis. Interleukin (IL)-27, one of the IL-12 family members, is recognized to play a dual role in regulating immune responses with both pro-inflammatory and anti-inflammatory properties. IL-27 is secreted from monocytes, T cells, and endothelial cells, and its expression is upregulated in atherosclerotic plaques. We previously reported that no significant difference was observed in plasma IL-27 levels between patients with stable CHD and those without it. However, the prognostic value of IL-27 levels has not been fully elucidated. We studied the relation of plasma IL-27 levels to cardiovascular events in 402 patients undergoing elective coronary angiography for suspected CHD. We defined cardiovascular events as cardiovascular death, myocardial infarction, unstable angina, stroke, or coronary revascularization. Of the 402 study patients, CHD was present in 209 (52%) patients. Plasma IL-27 levels were not markedly different between patients with CHD and those without it (median 0.23 vs. 0.23 ng/mL). During a follow-up of 7.6 ± 4.5 years, cardiovascular events were observed in 70 patients (17%). In comparison to the 332 patients with no event, the 70 patients who had cardiovascular events showed significantly higher IL-27 levels (median 0.29 vs. 0.22 ng/mL) and more frequently had an IL-27 level of >0.25 ng/mL (59% vs. 40%) (p < 0.01). The Kaplan–Meier analysis demonstrated a lower event-free survival rate in patients with an IL-27 level >0.25 ng/mL than in those with an IL-27 level ≤0.25 ng/mL (p < 0.02). The multivariate Cox proportional hazards regression analysis showed that IL-27 level (>0.25 ng/mL) was a significant predictor for cardiovascular events (hazard ratio: 1.82; 95%CI: 1.13–2.93, p < 0.02), independent of CHD. Thus, high IL-27 levels in plasma were related to an increased risk of further cardiovascular events in patients who underwent elective coronary angiography. Full article
Show Figures

Figure 1

18 pages, 7171 KiB  
Article
Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains
by Li-Hao Wang, Wen-Hui Qu, Ya-Nan Xu, Song-Gang Xia, Qian-Qian Xue, Xiao-Ming Jiang, Hong-Ying Liu, Chang-Hu Xue and Yun-Qi Wen
Foods 2024, 13(9), 1386; https://doi.org/10.3390/foods13091386 (registering DOI) - 30 Apr 2024
Abstract
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji [...] Read more.
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop