The 2023 MDPI Annual Report has
been released!
 
11 pages, 1118 KiB  
Article
Prospective Analysis of Squamous Cell Carcinoma Antigen-1 and -2 for Diagnosing Sinonasal Inverted Papilloma
by Hitoshi Hirakawa, Taro Ikegami, Masatomo Toyama, Yurika Ooshiro, Tomoyo Higa, Hidetoshi Kinjyo, Shunsuke Kondo, Norimoto Kise, Yukashi Yamashita and Mikio Suzuki
J. Clin. Med. 2024, 13(9), 2721; https://doi.org/10.3390/jcm13092721 (registering DOI) - 06 May 2024
Abstract
Background: The goal of this research was to confirm whether preoperative serum squamous cell carcinoma antigen (SCCA)-1 and -2 levels are useful diagnostic markers for sinonasal inverted papilloma (IP) in a prospective study. Methods: Participants were 102 patients who underwent consecutive [...] Read more.
Background: The goal of this research was to confirm whether preoperative serum squamous cell carcinoma antigen (SCCA)-1 and -2 levels are useful diagnostic markers for sinonasal inverted papilloma (IP) in a prospective study. Methods: Participants were 102 patients who underwent consecutive endoscopic sinus surgery: 18 with IP, two with other types of papilloma, 77 with chronic rhinosinusitis, four with sinonasal cancer, and one with hemangioma. SCCA-1 and SCCA-2 were measured preoperatively by an automatic chemiluminescence immunoassay and an enzyme-linked immunosorbent assay, respectively. Results: SCCA-1 and SCCA-2 values were significantly correlated (r = 0.603, p < 0.001). Receiver operating characteristic analysis for differentiating papilloma (IP and other types of papilloma) from other diseases yielded an area under the curve of 0.860, with a Youden index of 1.75. Combined with SCCA-2 analysis, the detection system had a sensitivity and specificity of 0.65 and 0.98, respectively. While our study did not find a strong link between SCCA levels and skin or lung diseases, smoking status may influence SCCA levels in IP patients (p = 0.035). We recommend a cutoff value of 1.8 ng/mL for SCCA-1 in IP diagnosis. Conclusions: SCCA-1 and SCCA-2 when combined with imaging and pathology hold promise for enhancing the preoperative detection of IP, which would be a valuable contribution to clinical practice. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

20 pages, 4634 KiB  
Article
Spatial Spillover Effects of Urbanization on Ecosystem Services under Altitude Gradient
by Xueliang Yang, Kaiping Wang and Yunlu Zhang
Land 2024, 13(5), 622; https://doi.org/10.3390/land13050622 (registering DOI) - 06 May 2024
Abstract
Rapid urbanization has made mountain development an important means to alleviate the shortages of construction land on plains, which has significantly affected regional ecosystem services. In-depth research on the impact of urbanization on ecosystem services under altitude gradients is of great significance to [...] Read more.
Rapid urbanization has made mountain development an important means to alleviate the shortages of construction land on plains, which has significantly affected regional ecosystem services. In-depth research on the impact of urbanization on ecosystem services under altitude gradients is of great significance to clarify the relationship between the two. Based on data from 2000, 2010 and 2020, the urbanization level and ecosystem services of the study area were evaluated. The spatial correlation of ecosystem services was analyzed by Moran’s I. A spatial Durbin model (SDM) was selected to fit the regression. The results show that (1) from 2000 to 2020, the ecosystem services in the study area displayed obvious regional characteristics and aggregation characteristics; (2) in plain areas, the indirect effects of economic, population and land urbanization have a greater negative impact, and compared with shallow mountain areas, deep mountain areas are more negatively affected by economic urbanization and land urbanization; and (3) the significant difference in regression results reflects the rationality of using the spatial Durbin model, as in this paper, and proves the scientific nature of regional coordinated development. The research results provide a reference for the future coordinated development of regional economies and environments. Full article
16 pages, 5880 KiB  
Article
Rust Prevention Property of a New Organic Inhibitor under Different Conditions
by Xingxing Guo, Chengsheng Wang, Hua Fu, Li Tian and Hua Song
Materials 2024, 17(9), 2168; https://doi.org/10.3390/ma17092168 (registering DOI) - 06 May 2024
Abstract
The corrosion resistance properties of a new type of environmentally-friendly organic inhibitor containing amino ketone molecules are presented in this paper. To evaluate the prevention effect of the inhibitor on corrosion of reinforcement, the electrochemical characteristics of steels in the simulated concrete pore [...] Read more.
The corrosion resistance properties of a new type of environmentally-friendly organic inhibitor containing amino ketone molecules are presented in this paper. To evaluate the prevention effect of the inhibitor on corrosion of reinforcement, the electrochemical characteristics of steels in the simulated concrete pore solution (SPS) were investigated under varied conditions of the relevant parameters, including concentrations of the inhibitor and NaCl, pH value, and temperature. The inhibition efficiency of the material was characterized through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and the weight loss of steels. The results reveal a significant improvement in the corrosion resistance of steels with the inhibitor. A maximum resistance value of 89.07% was achieved at an inhibitor concentration of 4%. Moreover, the new organic inhibitor exhibited good corrosion protection capability for steels under different NaCl concentrations. Its inhibition efficiency was determined to be 65.62, 80.06, and 66.30% at NaCl concentrations of 2, 3.5 and 5%, respectively. On the other hand, it was found that an alkaline environment was favorable for an enhanced corrosion prevention effect, and an optimal pH value of 11.3 was observed in this work. Besides, the inhibition efficiencies at different temperatures showed a trend of 25 > 35 > 40 > 20 > 30 °C, with a maximum value of 81.32% at 25 °C. The above results suggest that the new organic material has high potential to be used as an eco-friendly and long-term durable inhibitor for steel corrosion prevention under complex conditions. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

15 pages, 4413 KiB  
Article
Preparation of Hydrophilic and Fire-Resistant Phytic Acid/Chitosan/Polydopamine-Coated Expanded Polystyrene Particles by Using Coating Method
by Wenjie Tang, Dajian Huang, Xiaohu Qiang and Wang Liu
Coatings 2024, 14(5), 574; https://doi.org/10.3390/coatings14050574 (registering DOI) - 06 May 2024
Abstract
Expanded polystyrene (EPS) particles are commonly used for thermal insulation in lightweight building materials due to their low density, low thermal conductivity, and affordability. However, shortcomings such as hydrophobicity and poor fire safety limit the application of EPS. Bio-based flame retardants have been [...] Read more.
Expanded polystyrene (EPS) particles are commonly used for thermal insulation in lightweight building materials due to their low density, low thermal conductivity, and affordability. However, shortcomings such as hydrophobicity and poor fire safety limit the application of EPS. Bio-based flame retardants have been developed for use in polymer composites due to their renewable, environmentally friendly, and non-toxic properties. In this study, to improve the hydrophilicity and fire resistance of EPS particles, phytic acid (PA)/chitosan (CS)–polydopamine (PDA)@EPS particles (PA/CS-PDA@EPS) with a bio-based coating were prepared by using a simple coating method based on PDA@EPS particles using PDA as an adhesive and PA and CS as bio-based flame retardants. The results showed that the modified EPS particles had good hydrophilicity, the residual carbon yield of the 10PA/3CS-PDA@EPS samples was increased to 24 wt%, and the maximum loss rate was reduced by 69% compared with unmodified EPS. In flammability tests, the 10PA/3CS-PDA@EPS samples also demonstrated low flame spread and some fire resistance. Furthermore, the modified EPS particles exhibited fire resistance even after multiple washings. The hydrophilic and fire-resistant modified EPS particles are anticipated to offer a novel approach to the advancement of EPS-based lightweight building materials. Full article
(This article belongs to the Special Issue Surface Modification and Coating Techniques for Polymers)
Show Figures

Figure 1

14 pages, 2922 KiB  
Article
A Study on the Materials Used in Ancient Wooden Architectural Paintings at DaZhong Gate in Confucius Temple, Qufu, Shandong, China
by Kuiju Li, Kezhu Han, Gele Teri, Yuxiao Tian, Menglei Cui, Yunpeng Qi and Yuhu Li
Materials 2024, 17(9), 2170; https://doi.org/10.3390/ma17092170 (registering DOI) - 06 May 2024
Abstract
This study analyzes the pigments and binders used in the painted wooden structure of DaZhong Gate in the Confucius Temple in Qufu, Shandong Province, China. Five samples were collected from the building and analyzed using techniques such as polarized light microscopy (PLM), energy-dispersive [...] Read more.
This study analyzes the pigments and binders used in the painted wooden structure of DaZhong Gate in the Confucius Temple in Qufu, Shandong Province, China. Five samples were collected from the building and analyzed using techniques such as polarized light microscopy (PLM), energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy (m-RS), and Fourier-transform infrared spectroscopy (FT-IR). The findings reveal that the red, yellow, green, and blue pigments are identified as lead red, lead chromate yellow, emerald green, and ultramarine, respectively. The white pigment is determined to be a combination of chalk and lead white or anglesite. Considering the production period of the yellow and green pigments, it is inferred that architectural paintings underwent restoration or repainting during the late Qing Dynasty. The analysis of the binder in the pigment using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) reveals that the binder employed is a protein-based glue. Additionally, the detected presence of Heat-bodied tung oil suggests a potential connection to traditional Chinese painting techniques on wooden surfaces. This discovery not only contributes to the historical research of the Confucius Temple but also provides crucial data for the conservation and restoration efforts of this culturally significant heritage site. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 2nd Volume)
Show Figures

Figure 1

18 pages, 2487 KiB  
Review
Electron Transfer in the Biogeochemical Sulfur Cycle
by Xuliang Zhuang, Shijie Wang and Shanghua Wu
Life 2024, 14(5), 591; https://doi.org/10.3390/life14050591 (registering DOI) - 06 May 2024
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing [...] Read more.
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies. Full article
(This article belongs to the Special Issue Advances in the Structure and Function of Microbial Communities)
Show Figures

Figure 1

18 pages, 1293 KiB  
Review
Sacral Bioneuromodulation: The Role of Bone Marrow Aspirate in Spinal Cord Injuries
by José Fábio Lana, Annu Navani, Madhan Jeyaraman, Napoliane Santos, Luyddy Pires, Gabriel Silva Santos, Izair Jefthé Rodrigues, Douglas Santos, Tomas Mosaner, Gabriel Azzini, Lucas Furtado da Fonseca, Alex Pontes de Macedo, Stephany Cares Huber, Daniel de Moraes Ferreira Jorge and Joseph Purita
Bioengineering 2024, 11(5), 461; https://doi.org/10.3390/bioengineering11050461 (registering DOI) - 06 May 2024
Abstract
Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and [...] Read more.
Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and resultant disabilities. Emerging research in the field of regenerative medicine has introduced innovative approaches such as autologous orthobiologic therapies, with bone marrow aspirate (BMA) being particularly notable for its regenerative and anti-inflammatory properties. This review focuses on the potential of BMA to modulate inflammatory pathways, enhance tissue regeneration, and restore neurological function disrupted by SCI. We hypothesize that BMA’s bioactive components may stimulate reparative processes at the cellular level, particularly when applied at strategic sites like the sacral hiatus to influence lumbar centers and higher neurological structures. By exploring the mechanisms through which BMA influences spinal repair, this review aims to establish a foundation for its application in clinical settings, potentially offering a transformative approach to SCI management that extends beyond symptomatic relief to promoting functional recovery. Full article
(This article belongs to the Special Issue Innovations in Nerve Regeneration)
Show Figures

Figure 1

18 pages, 999 KiB  
Systematic Review
A Systematic Review of the Effects of Interactive Telerehabilitation with Remote Monitoring and Guidance on Balance and Gait Performance in Older Adults and Individuals with Neurological Conditions
by Catherine Park and Beom-Chan Lee
Bioengineering 2024, 11(5), 460; https://doi.org/10.3390/bioengineering11050460 (registering DOI) - 06 May 2024
Abstract
Recognizing the growing interests and benefits of technology-assisted interactive telerehabilitation in various populations, the aim of this review is to systematically review the effects of interactive telerehabilitation with remote monitoring and guidance for improving balance and gait performance in older adults and individuals [...] Read more.
Recognizing the growing interests and benefits of technology-assisted interactive telerehabilitation in various populations, the aim of this review is to systematically review the effects of interactive telerehabilitation with remote monitoring and guidance for improving balance and gait performance in older adults and individuals with neurological conditions. The study protocol for this systematic review was registered with the international prospective register of systematic reviews (PROSPERO) with the unique identifier CRD42024509646. Studies written in English published from January 2014 to February 2024 in Web of Science, Pubmed, Scopus, and Google Scholar were examined. Of the 247 identified, 17 were selected after initial and eligibility screening, and their methodological quality was assessed with the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-sectional Studies. All 17 studies demonstrated balance and gait performance improvement in older adults and in individuals with stroke, Parkinson’s disease, and multiple sclerosis following 4 or more weeks of interactive telerehabilitation via virtual reality, smartphone or tablet apps, or videoconferencing. The findings of this systematic review can inform the future design and implementation of interactive telerehabilitation technology and improve balance and gait training exercise regimens for older adults and individuals with neurological conditions. Full article
Show Figures

Figure 1

20 pages, 12511 KiB  
Article
Integration of Smart City Technologies with Advanced Predictive Analytics for Geotechnical Investigations
by Yuxin Cong and Shinya Inazumi
Smart Cities 2024, 7(3), 1089-1108; https://doi.org/10.3390/smartcities7030046 (registering DOI) - 06 May 2024
Abstract
This paper addresses challenges and solutions in urban development and infrastructure resilience, particularly in the context of Japan’s rapidly urbanizing landscape. It explores the integration of smart city concepts to combat land subsidence and liquefaction, phenomena highlighted by the 2011 Great East Japan [...] Read more.
This paper addresses challenges and solutions in urban development and infrastructure resilience, particularly in the context of Japan’s rapidly urbanizing landscape. It explores the integration of smart city concepts to combat land subsidence and liquefaction, phenomena highlighted by the 2011 Great East Japan Earthquake. Additionally, it examines the current situation and lack of geoinformation and communication technology in the concept of smart cities in Japan. Consequently, this study employs advanced technologies, including smart sensing and predictive analytics through kriging and ensemble learning, with the objective of enhancing the precision of geotechnical investigations and urban planning. By analyzing data in Setagaya, Tokyo, it develops predictive models to accurately determine the depth of bearing layers that are critical to urban infrastructure. The results demonstrate the superiority of ensemble learning in predicting the depth of bearing layers. Two methods have been developed to predict undetected geographic data and prepare ground reality and digital smart maps for the construction industry to build smart cities. This study is useful for real-time analysis of existing data, for the government to make new urban plans, for construction companies to conduct risk assessments before doing their jobs, and for individuals to obtain real-time geographic data and hazard warnings through mobile phones and other means in the future. To the best of our knowledge, this is the first instance of predictive analysis of geographic information being conducted through geographic information, big data technology, machine learning, integrated learning, and artificial intelligence. Full article
(This article belongs to the Section Smart Urban Infrastructures)
Show Figures

Figure 1

20 pages, 7000 KiB  
Article
An Improved Initial Alignment Method Based on SE2(3)/EKF for SINS/GNSS Integrated Navigation System with Large Misalignment Angles
by Jin Sun, Yuxin Chen and Bingbo Cui
Sensors 2024, 24(9), 2945; https://doi.org/10.3390/s24092945 (registering DOI) - 06 May 2024
Abstract
This paper proposes an improved initial alignment method for a strap-down inertial navigation system/global navigation satellite system (SINS/GNSS) integrated navigation system with large misalignment angles. Its methodology is based on the three-dimensional special Euclidean group and extended Kalman filter (SE2(3)/EKF) and [...] Read more.
This paper proposes an improved initial alignment method for a strap-down inertial navigation system/global navigation satellite system (SINS/GNSS) integrated navigation system with large misalignment angles. Its methodology is based on the three-dimensional special Euclidean group and extended Kalman filter (SE2(3)/EKF) and aims to overcome the challenges of achieving fast alignment under large misalignment angles using traditional methods. To accurately characterize the state errors of attitude, velocity, and position, these elements are constructed as elements of a Lie group. The nonlinear error on the Lie group can then be well quantified. Additionally, a group vector mixed error model is developed, taking into account the zero bias errors of gyroscopes and accelerometers. Using this new error definition, a GNSS-assisted SINS dynamic initial alignment algorithm is derived, which is based on the invariance of velocity and position measurements. Simulation experiments demonstrate that the alignment method based on SE2(3)/EKF can achieve a higher accuracy in various scenarios with large misalignment angles, while the attitude error can be rapidly reduced to a lower level. Full article
(This article belongs to the Special Issue GNSS Signals and Precise Point Positioning)
Show Figures

Figure 1

15 pages, 1056 KiB  
Article
Microplastic Has No Effect on Rice Yield and Gaseous N Emission from an Infertile Soil with High Inorganic N Inputs
by Si Wu, Haiying Lu, Zhenghua Yi, Gui Chen and Haijun Sun
Plants 2024, 13(9), 1279; https://doi.org/10.3390/plants13091279 (registering DOI) - 06 May 2024
Abstract
Microplastic might affect the crop yield, nitrogen (N) use efficiency and reactive N losses from agricultural soil systems. However, evaluation of these effects in infertile soil planted with different rice cultivars is lacking. We conducted a soil column experiment to determine the influence [...] Read more.
Microplastic might affect the crop yield, nitrogen (N) use efficiency and reactive N losses from agricultural soil systems. However, evaluation of these effects in infertile soil planted with different rice cultivars is lacking. We conducted a soil column experiment to determine the influence of a typical microplastic polyethylene (PE) input into an infertile soil with 270 kg N ha−1 and planted with two rice cultivars, i.e., a common rice Nangeng 5055 (NG) and a hybrid rice Jiafengyou 6 (JFY). The results showed that JFY produced a significantly (p < 0.05) greater grain yield than NG (61.6–66.2 vs. 48.2–52.5 g pot−1) but was not influenced by PE. Overall, PE hardly changed the N use efficiency of NG and JFY. Unexpectedly, PE significantly (p < 0.05) increased the total amino acid content of NG. Compared with JFY, NG volatilized significantly (p < 0.05) more ammonia (NH3) (0.84–0.92 vs. 0.64–0.67 g N pot−1) but emitted equal nitrous oxide (N2O). PE exerted no effect on either NH3 volatilization or the N2O emission flux pattern and cumulative losses of the rice growth cycle, whether with NG or JFY. Some properties of tested soils changed after planting with different rice cultivars and incorporating with microplastic. In conclusion, the rice production, N use efficiency, NH3 volatilization and N2O emission from the N-fertilized infertile soil were pronouncedly influenced by the rice cultivar, but not the PE. However, PE influenced the grain quality of common rice and some properties of tested soils with both rice cultivars. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

44 pages, 10192 KiB  
Review
Metal–Perovskite Interfacial Engineering to Boost Activity in Heterogeneous Catalysis
by Christoph Malleier and Simon Penner
Surfaces 2024, 7(2), 296-339; https://doi.org/10.3390/surfaces7020020 (registering DOI) - 06 May 2024
Abstract
In this review, we have assessed the possibility of metal–perovskite interfacial engineering to enhance the catalytic activity and selectivity in a range of heterogeneous catalytic reactions. We embarked on a literature screening of different perovskite material classes and reactions to show the versatility [...] Read more.
In this review, we have assessed the possibility of metal–perovskite interfacial engineering to enhance the catalytic activity and selectivity in a range of heterogeneous catalytic reactions. We embarked on a literature screening of different perovskite material classes and reactions to show the versatility of the perovskite structures to induce the formation of such hetero-interfaces and the widespread nature of the phenomenon in catalytic research. There is almost no limitation on the chemical composition of the used perovskites and the nature of the catalyzed reaction, be it under reduction or oxidation conditions. We attempted to classify the perovskite materials, discuss the different strategies leading to the hetero-interfaces, and detail the synergistic action of the components of the respective interfaces. We also provide a critical assessment of the large body of data that is available in terms of a knowledge-based approach to the comparison of differently prepared interfaces with varying interfacial extent to gain a deeper understanding of the bi-functional operation of the interfaces and the urgent necessity to study and characterize such interfaces under realistic operation conditions. Full article
(This article belongs to the Special Issue In Situ and Operando Catalyst Characterization)
Show Figures

Figure 1

18 pages, 2749 KiB  
Article
Human Papillomavirus Carcinogenicity and the Need of New Perspectives: Thoughts from a Retrospective Analysis on Human Papillomavirus Outcomes Conducted at the Hospital University of Bari, Apulia, Italy, between 2011 and 2022
by Raffaele Del Prete, Daniela Nesta, Francesco Triggiano, Mara Lorusso, Stefania Garzone, Lorenzo Vitulano, Sofia Denicolò, Francesca Indraccolo, Michele Mastria, Luigi Ronga, Francesco Inchingolo, Sergey K. Aityan, Kieu C. D. Nguyen, Toai Cong Tran, Ciro Gargiulo Isacco and Luigi Santacroce
Diagnostics 2024, 14(9), 968; https://doi.org/10.3390/diagnostics14090968 (registering DOI) - 06 May 2024
Abstract
Background: The current manuscript’s aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed [...] Read more.
Background: The current manuscript’s aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV’s molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. Methods: We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. Results: The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41–50 and 51–60 years old, and finally, 44% of subjects were >60 years old. Conclusions: Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

12 pages, 2297 KiB  
Article
Migration Activity of Spodoptera litura (Lepidoptera: Noctuidae) between China and the South-Southeast Asian Region
by Yifei Song, Xinzhu Cang, Wei He, Haowen Zhang and Kongming Wu
Insects 2024, 15(5), 335; https://doi.org/10.3390/insects15050335 (registering DOI) - 06 May 2024
Abstract
The common cutworm, Spodoptera litura (F.), feeds on a wide variety of food and cash crops and is one of the most widespread and destructive agricultural pests worldwide. Migration is the biological basis of its regional population outbreaks but the seasonal movement of [...] Read more.
The common cutworm, Spodoptera litura (F.), feeds on a wide variety of food and cash crops and is one of the most widespread and destructive agricultural pests worldwide. Migration is the biological basis of its regional population outbreaks but the seasonal movement of this pest between east and south Asia regions remains unknown. In this study, searchlight traps were used to monitor the seasonal migration of S. litura from 2019 to 2023 in Ruili City (Yunnan, China), located along the insect migratory route between China and the south Asia region. The results showed that migratory activity could occur throughout the year, with the main periods found in spring (April–May) and autumn (October–December). The ovarian development and mating status of the trapped females indicated that most individuals were in the middle or late stages of migration and that Ruili City was located in the transit area of the long-distance migration of the pest. In the migration trajectory simulation, populations of S. litura moved from northeast India, Bangladesh, and northern Myanmar to southwestern China along the southern margin of the Himalayas in spring and returned to the south Asia region in autumn. Our findings clarify the seasonal migration patterns of S. litura in China and South Asia and facilitate the development of regional cross-border monitoring and management systems for this pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

21 pages, 2816 KiB  
Article
Reinforcement Learning-Based Resource Allocation and Energy Efficiency Optimization for a Space–Air–Ground-Integrated Network
by Zhiyu Chen, Hongxi Zhou, Siyuan Du, Jiayan Liu, Luyang Zhang and Qi Liu
Electronics 2024, 13(9), 1792; https://doi.org/10.3390/electronics13091792 (registering DOI) - 06 May 2024
Abstract
With the construction and development of the smart grid, the power business puts higher requirements on the communication capability of the network. In order to improve the energy efficiency of the space–air–ground-integrated power three-dimensional fusion communication network, we establish an optimization problem for [...] Read more.
With the construction and development of the smart grid, the power business puts higher requirements on the communication capability of the network. In order to improve the energy efficiency of the space–air–ground-integrated power three-dimensional fusion communication network, we establish an optimization problem for joint air platform (AP) flight path selection, ground power facility (GPF) association, and power control. In solving the problem, we decompose the problem into two subproblems, one is the AP flight path selection subproblem and the other is the GPF association and power control subproblem. Firstly, based on the GPF distribution and throughput weights, we model the AP flight path selection subproblem as a Markov Decision Process (MDP) and propose a multi-agent iterative optimization algorithm based on the comprehensive judgment of GPF positions and workload. Secondly, we model the GPF association and power control subproblem as a multi-agent, time-varying K-armed bandit model and propose an algorithm based on multi-agent Temporal Difference (TD) learning. Then, by alternately iterating between the two subproblems, we propose a reinforcement learning (RL)-based joint optimization algorithm. Finally, the simulation results indicate that compared to the three baseline algorithms (random path, average transmit power, and random device association), the proposed algorithm improves an overall energy efficiency of the system of 16.23%, 86.29%, and 5.11% under various conditions (including different noise power levels, GPF bandwidth, and GPF quantities), respectively. Full article
(This article belongs to the Special Issue 5G and 6G Wireless Systems: Challenges, Insights, and Opportunities)
Show Figures

Figure 1

25 pages, 1563 KiB  
Systematic Review
Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis
by Halil İbrahim Ceylan, Ana Filipa Silva, Rodrigo Ramirez-Campillo and Eugenia Murawska-Ciałowicz
Biology 2024, 13(5), 323; https://doi.org/10.3390/biology13050323 (registering DOI) - 06 May 2024
Abstract
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower [...] Read more.
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise offers health benefits, including improved circulating BDNF levels and cognitive function, but the specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear. Understanding this can guide interventions to enhance brain health and counter potential cognitive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and regular physical exercise on circulating BDNF in individuals with obesity. The target population comprised individuals classified as overweight or obese, encompassing both acute and chronic protocols involving all training methods. A comprehensive search was conducted across computerized databases, including PubMed, Academic Search Complete, and Web of Science, in August 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95% CI = −0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and type when studying neurobiological responses in obesity and exercise research. The study’s results have implications for exercise prescription in obesity management and highlight the need for tailored interventions to optimize neurotrophic responses. Future research should focus on elucidating the adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise in this population. However, further research is needed considering limitations such as the potential age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact circulating BDNF. Full article
Show Figures

Figure 1

13 pages, 3287 KiB  
Article
Comparing the Structure of Fish Assemblage among Natural and Artificial Shallow Rocky Habitats
by Laura García-Salines and Pablo Sanchez-Jerez
Oceans 2024, 5(2), 244-256; https://doi.org/10.3390/oceans5020015 (registering DOI) - 06 May 2024
Abstract
Artificial coastal structures, such as seawalls, breakwaters, and groins, can exert various impacts on the fish communities in the nearby regions. This study focuses on assessing the ecological effects of coastal infrastructure on marine environments, by comparing, at different seasons, the habitat complexity [...] Read more.
Artificial coastal structures, such as seawalls, breakwaters, and groins, can exert various impacts on the fish communities in the nearby regions. This study focuses on assessing the ecological effects of coastal infrastructure on marine environments, by comparing, at different seasons, the habitat complexity and heterogeneity, as well as their effects on fish assemblages, between the artificial habitat created with the intention of constructing a marina (Puerto Amor) and the natural habitats surrounding the Cabo de la Huerta area in Alicante (Spain). Employing an asymmetric design and examining two temporal and spatial scales, we utilized visual censuses in snorkeling to gauge the abundance and size of fish species, alongside various parameters related to habitat complexity and heterogeneity. The overarching hypothesis is that fish populations associated with artificial habitats will differ in terms of abundance, biomass, species richness, and diversity compared to fish populations associated with natural habitats, due to changes in complexity and heterogeneity. The findings indicate a shift in fish assemblages; for example, the family Labridae showed differences between the two habitat types for several species. These changes were due to the influences of the Posidonia oceanica meadow and algae like Jania rubens; being influenced by biological variables such as Ellisolandia elongata, Oculina patagonica, and Sarcotragus spinosulus; as well as physical variables such as stones, gravel, and blocks. While there is evidence of alteration in fish assemblages due to changes in habitat structure, there is also an increase in richness (9 species/m2) and total abundance and biomass (1000 ind./m2 and 1700 g/m2, respectively) in the artificial habitat. Multivariate analyses reveal that the fish community in Puerto Amor is less homogeneous than the one in the natural habitat. However, these analyses also indicate an overlap between the communities of both habitats, suggesting substantial similarity despite the noted differences. Consequently, although the habitat alteration has impacted fish populations, it has not diminished abundance, biomass, or species richness. In conclusion, the artificial rocky habitat resulting from the construction attempt at Puerto Amor harbor has fish populations with ecological significance and its removal could lead to undesirable impacts in the area, as the fish assemblages have become well established. Full article
Show Figures

Figure 1

18 pages, 1268 KiB  
Article
Defining Terminal Airspace Air Traffic Complexity Indicators Based on Air Traffic Controller Tasks
by Tea Jurinić, Biljana Juričić, Bruno Antulov-Fantulin and Kristina Samardžić
Aerospace 2024, 11(5), 367; https://doi.org/10.3390/aerospace11050367 (registering DOI) - 06 May 2024
Abstract
This paper focuses on terminal air traffic complexity indicators. By thorough analysis of previous research, the benefits and limitations of the existing terminal complexity models are identified. According to these findings, a new approach for determining terminal air traffic complexity indicators is proposed [...] Read more.
This paper focuses on terminal air traffic complexity indicators. By thorough analysis of previous research, the benefits and limitations of the existing terminal complexity models are identified. According to these findings, a new approach for determining terminal air traffic complexity indicators is proposed which assumes that terminal complexity could be determined based on approach air traffic controller (ATCO) tasks. The comprehensive list of general approach ATCO tasks was defined using a literature review and observation of training exercises, forming the basis for subsequent expert group workshops which enabled the acquisition of ATCOs’ knowledge data. Through these workshops, new approach ATCO tasks were additionally identified, and terminal complexity indicators were defined with airspace and traffic parameters. These new tasks and indicators present a novelty in this field of research since they incorporate ATCOs’ knowledge as the data input and consider various traffic scenarios, all types of traffic, weather conditions, and off-nominal situations. Full article
Show Figures

Figure 1

11 pages, 235 KiB  
Article
Susceptibility and Cixous’s Self-Strange Subject
by Robert Hughes
Philosophies 2024, 9(3), 65; https://doi.org/10.3390/philosophies9030065 (registering DOI) - 06 May 2024
Abstract
This essay reads a short narrative, “Savoir” by Hélène Cixous, to describe susceptibility as a problem organized around two lines of impingement: between subject and world and between consciousness and the wayward impulses of interior life. The young girl in Cixous’s text suffers [...] Read more.
This essay reads a short narrative, “Savoir” by Hélène Cixous, to describe susceptibility as a problem organized around two lines of impingement: between subject and world and between consciousness and the wayward impulses of interior life. The young girl in Cixous’s text suffers a moment of disorientation and distress one misty morning and, against presumptions of inviolability and ideals of subjective consistency, this unhappy event comes to resonate with her disappointed trust in the generosity of the world, her anxious sense of betrayal with respect to those who ought to protect her and her insecurity about her own role in this complex of associations. The frame of susceptibility thus opens up a space for Cixous’s reader and this essay to think the subject in her inconsistency and self-strangeness. Full article
(This article belongs to the Special Issue Susceptibilities: Toward a Cultural Politics of Consent under Erasure)
10 pages, 420 KiB  
Article
New Directions for Arts Education through the Health Humanities: Wellness, Care and Interdisciplinary Learning Using Creative Elaboration
by Rina Kundu Little and Jonathan David Little
Educ. Sci. 2024, 14(5), 498; https://doi.org/10.3390/educsci14050498 (registering DOI) - 06 May 2024
Abstract
Psychological research has shown that empathy and compassion can be developed through mediation, simulation and embodiment techniques that foster benevolence and kindness, attributes and actions that play a major role in increasing subjective feelings of happiness and overall wellbeing. Our exercise of having [...] Read more.
Psychological research has shown that empathy and compassion can be developed through mediation, simulation and embodiment techniques that foster benevolence and kindness, attributes and actions that play a major role in increasing subjective feelings of happiness and overall wellbeing. Our exercise of having students re-write the ending with a more positive outcome and re-draw the cover for the famous 19th century short story “The Yellow Wallpaper” serves as a model for future art education practices interested in promoting positive psychological experiences that can be used for enhanced self-care and empathy development. Full article
(This article belongs to the Special Issue Future Directions in Art Education)
Show Figures

Figure 1

15 pages, 7428 KiB  
Article
Removal of Bisphenol A from Water by Single-Walled Carbon Nanotubes Loaded with Iron Oxide Nanoparticles
by Luying Chen, Jintao Jiang and Leimei Sheng
Appl. Sci. 2024, 14(9), 3943; https://doi.org/10.3390/app14093943 (registering DOI) - 06 May 2024
Abstract
Single-walled carbon nanotubes (SWCNTs) loaded with magnetic iron oxide nanoparticles were prepared by the arc discharge method and air heat treatment. The nanocomposite was characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, vibrating sample magnetometry, etc. The results showed that the heat-treated [...] Read more.
Single-walled carbon nanotubes (SWCNTs) loaded with magnetic iron oxide nanoparticles were prepared by the arc discharge method and air heat treatment. The nanocomposite was characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, vibrating sample magnetometry, etc. The results showed that the heat-treated nanocomposites (SWCNTs/FexOy) had iron oxide phases and superparamagnetic properties with a saturation magnetization of 33.32 emu/g. Compared with the non-heat-treated materials, SWCNTs/FexOy had a larger specific surface area and pore volume. Using SWCNTs/FexOy to remove the organic contaminant (bisphenol A, BPA), it was found that under the conditions of pH = 3 and adsorbent dosage of 0.2 g/L, the maximum adsorption capacity of the composite was 117 mg/g, and the adsorption could reach more than 90% in only 5 min when the BPA content was below 0.05 mmol/L. The fitting results of the Langmuir and D-R models are more consistent with the experimental data, indicating a relatively uniform distribution of the adsorption sites and that the adsorption process is more consistent with physical adsorption. The kinetic calculations showed that the SWCNTs/FexOy exhibits chemical effects on both the surface and the gap, and the adsorption process is controlled by the π-π bonds and the hydrophobicity of the SWCNTs/FexOy. Full article
(This article belongs to the Topic Nanomaterials for Energy and Environmental Applications)
Show Figures

Figure 1

15 pages, 3908 KiB  
Article
Deep Learning-Based Design Method for Acoustic Metasurface Dual-Feature Fusion
by Qiang Lv, Huanlong Zhao, Zhen Huang, Guoqiang Hao and Wei Chen
Materials 2024, 17(9), 2166; https://doi.org/10.3390/ma17092166 (registering DOI) - 06 May 2024
Abstract
Existing research in metasurface design was based on trial-and-error high-intensity iterations and requires deep acoustic expertise from the researcher, which severely hampered the development of the metasurface field. Using deep learning enabled the fast and accurate design of hypersurfaces. Based on this, in [...] Read more.
Existing research in metasurface design was based on trial-and-error high-intensity iterations and requires deep acoustic expertise from the researcher, which severely hampered the development of the metasurface field. Using deep learning enabled the fast and accurate design of hypersurfaces. Based on this, in this paper, an integrated learning approach was first utilized to construct a model of the forward mapping relationship between the hypersurface physical structure parameters and the acoustic field, which was intended to be used for data enhancement. Then a dual-feature fusion model (DFCNN) based on a convolutional neural network was proposed, in which the first feature was the high-dimensional nonlinear features extracted using a data-driven approach, and the second feature was the physical feature information of the acoustic field mined using the model. A convolutional neural network was used for feature fusion. A genetic algorithm was used for network parameter optimization. Finally, generalization ability verification was performed to prove the validity of the network model. The results showed that 90% of the integrated learning models had an error of less than 3 dB between the real and predicted sound field data, and 93% of the DFCNN models could achieve an error of less than 5 dB in the local sound field intensity. Full article
Show Figures

Figure 1

14 pages, 1837 KiB  
Article
Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning
by Alok Kumar Sharma, Shing-Hong Liu, Xin Zhu and Wenxi Chen
Electronics 2024, 13(9), 1791; https://doi.org/10.3390/electronics13091791 (registering DOI) - 06 May 2024
Abstract
This study aims to evaluate leg movement by integrating gait analysis with surface electromyography (sEMG) and accelerometer (ACC) data from the lower limbs. We employed a wireless, self-made, and multi-channel measurement system in combination with commercial GaitUp Physilog® 5 shoe-worn inertial sensors [...] Read more.
This study aims to evaluate leg movement by integrating gait analysis with surface electromyography (sEMG) and accelerometer (ACC) data from the lower limbs. We employed a wireless, self-made, and multi-channel measurement system in combination with commercial GaitUp Physilog® 5 shoe-worn inertial sensors to record the walking patterns and muscle activations of 17 participants. This approach generated a comprehensive dataset comprising 1452 samples. To accurately predict gait parameters, a machine learning model was developed using features extracted from the sEMG signals of thigh and calf muscles, and ACCs from both legs. The study utilized evaluation metrics including accuracy (R2), Pearson correlation coefficient (PCC), root mean squared error (RMSE), mean absolute percentage error (MAPE), mean squared error (MSE), and mean absolute error (MAE) to evaluate the performance of the proposed model. The results highlighted the superiority of the CatBoost model over alternatives like XGBoost and Decision Trees. The CatBoost’s average PCCs for 17 temporospatial gait parameters of the left and right legs are 0.878 ± 0.169 and 0.921 ± 0.047, respectively, with MSE of 7.65, RMSE of 1.48, MAE of 1.00, MAPE of 0.03, and Accuracy (R2-Score) of 0.91. This research marks a significant advancement by providing a more comprehensive method for detecting and analyzing gait statuses. Full article
(This article belongs to the Special Issue Emerging E-health Applications and Medical Information Systems)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop