The 2023 MDPI Annual Report has
been released!
 
13 pages, 2261 KiB  
Article
Peposertib, a DNA-PK Inhibitor, Enhances the Anti-Tumor Efficacy of Topoisomerase II Inhibitors in Triple-Negative Breast Cancer Models
by Steffie Revia, Felix Neumann, Julia Jabs, Florian Orio, Christian Sirrenberg, Astrid Zimmermann, Christiane Amendt and Joachim Albers
Int. J. Mol. Sci. 2024, 25(10), 5120; https://doi.org/10.3390/ijms25105120 (registering DOI) - 08 May 2024
Abstract
Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the [...] Read more.
Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients. Full article
(This article belongs to the Special Issue DNA Damage and DNA Repair Pathways in Cancer Development)
Show Figures

Figure 1

14 pages, 6604 KiB  
Article
(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation
by Wei Zhang, Liyan Xue, Jincheng Zhang, Meng Zhang, Kaixian Wang, Minzhong Huang, Fan Yang, Zhengming Jiang and Tongxiang Liang
Materials 2024, 17(10), 2205; https://doi.org/10.3390/ma17102205 (registering DOI) - 08 May 2024
Abstract
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address [...] Read more.
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address these issues, we developed a novel ceramic fiber@bioderived carbon composite aerogel with a continuous through-hole structure via electrospinning and freeze-casting methods. Specifically, an aerogel was prepared by incorporating perovskite oxide (Ca0.25La0.5Dy0.25)CrO3 ceramic fibers (CCFs) and amylopectin-derived carbon (ADC). The CCFs exhibited remarkable photothermal conversion efficiencies, and the ADC served as a connecting agent and imparted hydrophilicity to the aerogel due to its abundant oxygen-containing functional groups. After optimizing the composition and microstructure, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel demonstrated remarkable properties, including efficient light absorption and rapid transport of water and solutes. Under 1 kW m−2 light intensity irradiation, this novel material exhibited a high temperature (48.3 °C), high evaporation rate (1.68 kg m−2 h−1), and impressive solar vapor conversion efficiency (91.6%). Moreover, it exhibited long-term stability in water evaporation even with highly concentrated salt solutions (25 wt%). Therefore, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel holds great promise for various applications of solar interface evaporation. Full article
(This article belongs to the Special Issue High-Entropy Ceramics: Synthesis and Applications)
Show Figures

Figure 1

34 pages, 49917 KiB  
Editorial
Meeting and Working with K. Alex Müller: Personal Memories
by Annette Bussmann-Holder and Hugo Keller
Condens. Matter 2024, 9(2), 24; https://doi.org/10.3390/condmat9020024 (registering DOI) - 08 May 2024
Abstract
On 9 January 2023, K [...] Full article
(This article belongs to the Special Issue Complexity in Quantum Materials: In Honor of Prof. K.A. Muller)
Show Figures

Figure 1

23 pages, 1677 KiB  
Article
Effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the Structure and Function of the Intestinal Flora in Rabbits Undergoing Hepatic Artery Infusion Chemotherapy
by Xiangdong Yan, Liuhui Bai, Jin Lv, Ping Qi, Xiaojing Song and Lei Zhang
Biology 2024, 13(5), 327; https://doi.org/10.3390/biology13050327 (registering DOI) - 08 May 2024
Abstract
Few studies have explored the biological mechanism by which probiotics alleviate adverse reactions to chemotherapy drugs after local hepatic chemotherapy perfusion by regulating the intestinal flora. This study investigates the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus [...] Read more.
Few studies have explored the biological mechanism by which probiotics alleviate adverse reactions to chemotherapy drugs after local hepatic chemotherapy perfusion by regulating the intestinal flora. This study investigates the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the intestinal microbial structure and intestinal barrier function, as well as the potential mechanism in rabbits after local hepatic chemotherapy infusion. Eighteen New Zealand White rabbits were randomly divided into a control group, a hepatic local chemotherapy perfusion group, and a hepatic local chemotherapy perfusion + Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets group to assess the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the adverse reactions. The administration of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets alleviated the intestinal flora disorder caused by local hepatic perfusion chemotherapy, promoted the growth of beneficial bacteria, and inhibited the growth of harmful bacteria. The Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets also reduced the levels of serum pro-inflammatory cytokines and liver injury factors induced by local hepatic perfusion chemotherapy. Our findings indicate that Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets can ameliorate the toxicity and side effects of chemotherapy by regulating intestinal flora, blocking pro-inflammatory cytokines, reducing liver injury factors, and repairing the intestinal barrier. Probiotics may be used as a potential alternative therapeutic strategy to prevent the adverse reactions caused by chemotherapy with local hepatic perfusion. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
18 pages, 808 KiB  
Article
Four-Component Statistical Copolymers by RAFT Polymerization
by Dimitrios Vagenas and Stergios Pispas
Polymers 2024, 16(10), 1321; https://doi.org/10.3390/polym16101321 (registering DOI) - 08 May 2024
Abstract
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA [...] Read more.
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA475), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzyl methacrylate (BzMA). Monomer choice was based on factors such as the chemical nature of pendant functional groups, the polyelectrolyte/polyampholyte and amphiphilic character and the overall hydrophobic–hydrophilic balance (HLB) of the obtained quaterpolymers. Their synthesis was achieved via a one-pot reversible addition fragmentation chain transfer (RAFT) polymerization in two distinct compositions and molecular architectures, linear and hyperbranched, respectively, in order to explore the effects of macromolecular topology. The resulting statistical quaterpolymers were characterized via 1H-NMR and ATR-FTIR spectroscopies. Their behavior in aqueous solutions was studied by dynamic (DLS) and electrophoretic light scattering (ELS) and fluorescence spectroscopy (FS), producing vital information concerning their self-assembly and the structure of the formed aggregates. The physicochemical studies were extended by tuning parameters such as the solution pH and ionic strength. Finally, the quaterpolymer behavior in FBS/PBS solutions was investigated to test their colloid stability and biocompatibility in an in vivo-mimicking, biological fluid environment. Full article
(This article belongs to the Section Polymer Chemistry)
17 pages, 400 KiB  
Review
Polyglutamate: Unleashing the Versatility of a Biopolymer for Cosmetic Industry Applications
by Mónica Serra, Eduardo Gudina, Cláudia Botelho, José António Teixeira and Ana Novo Barros
Cosmetics 2024, 11(3), 76; https://doi.org/10.3390/cosmetics11030076 (registering DOI) - 08 May 2024
Abstract
Polyglutamic acid (PGA), a biopolymer comprising repeating units of glutamic acid, has garnered significant attention owing to its versatile applications. In recent years, microbial production processes have emerged as promising methods for the large-scale synthesis of PGA, offering advantages such as sustainability, efficiency, [...] Read more.
Polyglutamic acid (PGA), a biopolymer comprising repeating units of glutamic acid, has garnered significant attention owing to its versatile applications. In recent years, microbial production processes have emerged as promising methods for the large-scale synthesis of PGA, offering advantages such as sustainability, efficiency, and tailored molecular properties. Beyond its industrial applications, PGA exhibits unique properties that render it an attractive candidate for use in the cosmetic industry. The biocompatibility, water solubility, and film-forming characteristics of PGA make it an ideal ingredient for cosmetic formulations. This article explores the extensive potential cosmetic applications of PGA, highlighting its multifaceted role in skincare, haircare, and various beauty products. From moisturizing formulations to depigmentating agents and sunscreen products, PGA offers a wide array of benefits. Its ability to deeply hydrate the skin and hair makes it an ideal ingredient for moisturizers, conditioners, and hydrating masks. Moreover, PGA’s depigmentating properties contribute to the reduction in hyperpigmentation and uneven skin tone, enhancing the overall complexion. As the demand for sustainable and bio-derived cosmetic ingredients escalates, comprehending the microbial production and cosmetic benefits of PGA becomes crucial for driving innovation in the cosmetic sector. Full article
(This article belongs to the Special Issue Natural Sources for Cosmetic Ingredients: Challenges and Innovations)
26 pages, 1143 KiB  
Review
Models of Herpes Simplex Virus Latency
by Paige N. Canova, Audra J. Charron and David A. Leib
Viruses 2024, 16(5), 747; https://doi.org/10.3390/v16050747 (registering DOI) - 08 May 2024
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily [...] Read more.
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each. Full article
(This article belongs to the Special Issue Advances in HSV Research)
24 pages, 1136 KiB  
Article
Comprehensive Evaluation of Resilience for Qinling Tunnel Group Operation Safety System Based on Combined Weighting and Cloud Model
by Haiyang Liu and Yiyang He
Sustainability 2024, 16(10), 3937; https://doi.org/10.3390/su16103937 (registering DOI) - 08 May 2024
Abstract
An extensive network of tunnels has recently been constructed in the Qinling Mountains. Characterized by high and steep terrain, this network has led to frequent traffic accidents. To address this issue, this paper introduces the theory of resilience into the evaluation system of [...] Read more.
An extensive network of tunnels has recently been constructed in the Qinling Mountains. Characterized by high and steep terrain, this network has led to frequent traffic accidents. To address this issue, this paper introduces the theory of resilience into the evaluation system of safety systems during the operation period of highway tunnel groups. Based on this, this paper establishes a resilience evaluation index system for the operation safety system of highway tunnel groups, including a human system, vehicle system, and road system. To address both qualitative and quantitative issues concerning the indicators, this paper employs the analytic hierarchy process (AHP) and entropy weight method to combine and assign weights to the resilience evaluation indicators. Subsequently, the cloud model method is utilized to quantify the level of resilience of the highway tunnel group safety system during the operation period. The study results unveiled the patterns of traffic accidents within the Qinling Tunnel Group from the perspectives of vehicle, road, and human factors. The final weight allocation reveals that the road system has the highest proportion, exerting the greatest influence as a primary level index. Moreover, by taking the Qinling Tunnel Group on the Xihan Expressway as an engineering example, the resilience level of the case project was analyzed and obtained. Proposals for enhancing resilience were put forth, taking into account the project’s unique attributes, encompassing adaptability, resistance, and recovery. Overall, this study validates the feasibility and reliability of the proposed method for assessing the resilience of highway networks, offering empirical support for transportation administrators in the implementation of resilience-enhancing strategies. Full article
39 pages, 12717 KiB  
Article
Improved Multi-Strategy Sand Cat Swarm Optimization for Solving Global Optimization
by Kuan Zhang, Yirui He, Yuhang Wang and Changjian Sun
Biomimetics 2024, 9(5), 280; https://doi.org/10.3390/biomimetics9050280 (registering DOI) - 08 May 2024
Abstract
The sand cat swarm optimization algorithm (SCSO) is a novel metaheuristic algorithm that has been proposed in recent years. The algorithm optimizes the search ability of individuals by mimicking the hunting behavior of sand cat groups in nature, thereby achieving robust optimization performance. [...] Read more.
The sand cat swarm optimization algorithm (SCSO) is a novel metaheuristic algorithm that has been proposed in recent years. The algorithm optimizes the search ability of individuals by mimicking the hunting behavior of sand cat groups in nature, thereby achieving robust optimization performance. It is characterized by few control parameters and simple operation. However, due to the lack of population diversity, SCSO is less efficient in solving complex problems and is prone to fall into local optimization. To address these shortcomings and refine the algorithm’s efficacy, an improved multi-strategy sand cat optimization algorithm (IMSCSO) is proposed in this paper. In IMSCSO, a roulette fitness–distance balancing strategy is used to select codes to replace random agents in the exploration phase and enhance the convergence performance of the algorithm. To bolster population diversity, a novel population perturbation strategy is introduced, aiming to facilitate the algorithm’s escape from local optima. Finally, a best–worst perturbation strategy is developed. The approach not only maintains diversity throughout the optimization process but also enhances the algorithm’s exploitation capabilities. To evaluate the performance of the proposed IMSCSO, we conducted experiments in the CEC 2017 test suite and compared IMSCSO with seven other algorithms. The results show that the IMSCSO proposed in this paper has better optimization performance. Full article
Show Figures

Figure 1

26 pages, 688 KiB  
Review
Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines
by Zahra Sedarat and Andrew W. Taylor-Robinson
Pathogens 2024, 13(5), 392; https://doi.org/10.3390/pathogens13050392 (registering DOI) - 08 May 2024
Abstract
Helicobacter pylori is a gastric oncopathogen that infects over half of the world’s human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people [...] Read more.
Helicobacter pylori is a gastric oncopathogen that infects over half of the world’s human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology, structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases. Full article
(This article belongs to the Special Issue Oncopathogens)
14 pages, 14115 KiB  
Article
Highway Deformation Monitoring by Multiple InSAR Technology
by Dan Zhao, Haonan Yao and Xingyu Gu
Sensors 2024, 24(10), 2988; https://doi.org/10.3390/s24102988 (registering DOI) - 08 May 2024
Abstract
Addressing the challenge of large-scale uneven deformation and the complexities of monitoring road conditions, this study focuses on a segment of the G15 Coastal Highway in Jiangsu Province. It employs PS-InSAR, SBAS-InSAR, and DS-InSAR techniques to comprehensively observe deformation. Analysis of 73 image [...] Read more.
Addressing the challenge of large-scale uneven deformation and the complexities of monitoring road conditions, this study focuses on a segment of the G15 Coastal Highway in Jiangsu Province. It employs PS-InSAR, SBAS-InSAR, and DS-InSAR techniques to comprehensively observe deformation. Analysis of 73 image datasets spanning 2018 to 2021 enables separate derivation of deformation data using distinct InSAR methodologies. Results are then interpreted alongside geological and geomorphological features. Findings indicate widespread deformation along the G15 Coastal Highway, notably significant settlement near Guanyun North Hub and uplift near Guhe Bridge. Maximum deformation rates exceeding 10 mm/year are observed in adjacent areas by all three techniques. To assess data consistency across techniques, identical observation points are identified, and correlation and difference analyses are conducted using statistical software. Results reveal a high correlation between the monitoring outcomes of the three techniques, with an average observation difference of less than 2 mm/year. This underscores the feasibility of employing a combination of these InSAR techniques for road deformation monitoring, offering a reliable approach for establishing real-time monitoring systems and serving as a foundation for ongoing road health assessments. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 879 KiB  
Article
Metadata-Private Resource Allocation in Edge Computing Withstands Semi-Malicious Edge Nodes
by Zihou Zhang, Jiangtao Li, Yufeng Li and Yuanhang He
Sensors 2024, 24(10), 2989; https://doi.org/10.3390/s24102989 (registering DOI) - 08 May 2024
Abstract
Edge computing provides higher computational power and lower transmission latency by offloading tasks to nearby edge nodes with available computational resources to meet the requirements of time-sensitive tasks and computationally complex tasks. Resource allocation schemes are essential to this process. To allocate resources [...] Read more.
Edge computing provides higher computational power and lower transmission latency by offloading tasks to nearby edge nodes with available computational resources to meet the requirements of time-sensitive tasks and computationally complex tasks. Resource allocation schemes are essential to this process. To allocate resources effectively, it is necessary to attach metadata to a task to indicate what kind of resources are needed and how many computation resources are required. However, these metadata are sensitive and can be exposed to eavesdroppers, which can lead to privacy breaches. In addition, edge nodes are vulnerable to corruption because of their limited cybersecurity defenses. Attackers can easily obtain end-device privacy through unprotected metadata or corrupted edge nodes. To address this problem, we propose a metadata privacy resource allocation scheme that uses searchable encryption to protect metadata privacy and zero-knowledge proofs to resist semi-malicious edge nodes. We have formally proven that our proposed scheme satisfies the required security concepts and experimentally demonstrated the effectiveness of the scheme. Full article
(This article belongs to the Special Issue Security, Privacy and Cybersecurity in Internet of Things (IoT))
Show Figures

Figure 1

29 pages, 14870 KiB  
Review
A Review on Underwater Collection and Transportation Equipment of Polymetallic Nodules in Deep-Sea Mining
by Xiuzhan Zhang, Yuhang Zuo, Jiakang Wei, Fei Sha, Zhenqin Yuan, Xuelin Liu, Mingshuai Xi and Jingze Xu
J. Mar. Sci. Eng. 2024, 12(5), 788; https://doi.org/10.3390/jmse12050788 (registering DOI) - 08 May 2024
Abstract
In response to the anticipated scarcity of terrestrial land resources in the coming years, the acquisition of marine mineral resources is imperative. This paper mainly summarizes the development of underwater collection and transportation equipment of polymetallic nodules in deep-sea mining. Firstly, the collection [...] Read more.
In response to the anticipated scarcity of terrestrial land resources in the coming years, the acquisition of marine mineral resources is imperative. This paper mainly summarizes the development of underwater collection and transportation equipment of polymetallic nodules in deep-sea mining. Firstly, the collection equipment is reviewed. The deep-sea mining vehicle (DSMV), as the key equipment of the collection equipment, mainly includes the collecting device and the walking device. The micro and macro properties of sediments have a great influence on the collection efficiency of mining vehicles. For the collecting device, the optimization of the jet head structure and the solid–liquid two-phase flow transport of the hose are discussed. The structure of the walking device restricts mining efficiency. The optimization of the geometric structure is studied, and the geometric passability and lightweight design of the walking device are discussed. Secondly, the core of transportation equipment is the lifting device composed of a riser and lifting pump. In order to explore the key factors affecting mineral transport, the lifting device is summarized, and the design optimization of the lifting pump and the factors affecting the stability of the riser are discussed. Then, the relationship between each device is discussed, and the overall coupling of the device is summarized. Finally, the existing problems and future research focus are summarized. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

14 pages, 3786 KiB  
Article
A Chymotrypsin-Dependent Live-Attenuated Influenza Vaccine Provides Protective Immunity against Homologous and Heterologous Viruses
by Peiqing He, Mengxuan Gui, Tian Chen, Yue Zeng, Congjie Chen, Zhen Lu, Ningshao Xia, Guosong Wang and Yixin Chen
Vaccines 2024, 12(5), 512; https://doi.org/10.3390/vaccines12050512 (registering DOI) - 08 May 2024
Abstract
Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. [...] Read more.
Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites. Full article
(This article belongs to the Special Issue Vaccine Development for Influenza Virus)
Show Figures

Figure 1

22 pages, 885 KiB  
Article
A Reliable and Privacy-Preserving Vehicular Energy Trading Scheme Using Decentralized Identifiers
by Myeonghyun Kim, Kisung Park and Youngho Park
Mathematics 2024, 12(10), 1450; https://doi.org/10.3390/math12101450 (registering DOI) - 08 May 2024
Abstract
As the usage of electric vehicles (EVs) expands, various energy management technologies, including battery energy storage systems, are being developed to efficiently charge EVs using various energy sources. In recent years, many blockchain-based energy trading schemes have been proposed for secure energy trading. [...] Read more.
As the usage of electric vehicles (EVs) expands, various energy management technologies, including battery energy storage systems, are being developed to efficiently charge EVs using various energy sources. In recent years, many blockchain-based energy trading schemes have been proposed for secure energy trading. However, existing schemes cannot fully solve privacy issues and security problems during energy trading. In this paper, we propose a reliable and privacy-preserving vehicular energy trading scheme utilizing decentralized identifier technology. In the proposed scheme, identity information and trading result information are not revealed publicly; this is due to the use of decentralized identifiers and verifiable credential technologies. Additionally, only parties who have successfully conducted energy trading can manage complete transaction information. We also demonstrate our method’s security and ensure privacy preservation by performing informal and formal security analyses. Furthermore, we analyze the performance and security features of the proposed scheme and related works and show that the proposed scheme has competitive performance. Full article
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Employing Plant Parasitic Nematodes as an Indicator for Assessing Advancements in Landfill Remediation
by Anita Zapałowska, Andrzej Skwiercz, Dawid Kozacki and Czesław Puchalski
Sustainability 2024, 16(10), 3936; https://doi.org/10.3390/su16103936 (registering DOI) - 08 May 2024
Abstract
This research concentrated on the soil nematode communities inhabiting a reclaimed municipal waste landfill situated in Giedlarowa, southeastern Poland. The landfill, which was layered with natural soil in 2008 and cultivated with grass, served as the primary focus of the study. Samples for [...] Read more.
This research concentrated on the soil nematode communities inhabiting a reclaimed municipal waste landfill situated in Giedlarowa, southeastern Poland. The landfill, which was layered with natural soil in 2008 and cultivated with grass, served as the primary focus of the study. Samples for analysis were taken four times (October 2020 (Pf1), March 2021 (Pf2), October 2021 (Pf3), and March 2022 (Pf4)), with each time comprising three repetitions. The analysis was conducted employing microscopic examination, which enabled the identification of up to five trophic groups and species of plant-parasitic nematodes. During the assessment of nematode activity in the initial and subsequent growing seasons, it was found that Pratylenchus crenatus emerged as the predominant species among herbivorous nematodes in the plant-parasitic nematode (PPNs) community. Criconemoides informis, another nematode species, held a significant rank as well; their population during the third growing season formed the most substantial group among the PPN organisms dwelling in the soil. Nevertheless, interesting results were also obtained by populations of nematodes of the genus Hemicyclophora and Loofia, which were characterized by high densities. The analyzed soil environment showcased a C:N ratio spanning from 0.69 to 3.13. Furthermore, the soil samples exhibited variations in phosphorus content (P2O5), ranging from 4.02 mg/100 g to 10.09 mg/100 g. Criconemoides informis, Longidorus attenuates, Mesocriconema spp., and Bitylenchus maximus exhibited a positive correlation with soil mineral levels of calcium (Ca) and magnesium (Mg). Full article
Show Figures

Figure 1

14 pages, 2943 KiB  
Article
Cellulose-Based Triboelectric Nanogenerator Prepared by Multi-Fluid Electrospinning for Respiratory Protection and Self-Powered Sensing
by Jiaqi Huang, Yan Zhang, Haijiao Yu, Guangping Han and Wanli Cheng
Actuators 2024, 13(5), 178; https://doi.org/10.3390/act13050178 (registering DOI) - 08 May 2024
Abstract
A cellulose-based triboelectric nanogenerator (TENG) with fiber–wave–arch structure was prepared through a multi-fluid electrospinning process for air filtration and wind sensing. The TENG is composed of a cellulose nanocrystals (CNC)/zein membrane and a cyanoethyl cellulose (CEC)/polyvinylidene fluoride (PVDF) membrane. The results show that [...] Read more.
A cellulose-based triboelectric nanogenerator (TENG) with fiber–wave–arch structure was prepared through a multi-fluid electrospinning process for air filtration and wind sensing. The TENG is composed of a cellulose nanocrystals (CNC)/zein membrane and a cyanoethyl cellulose (CEC)/polyvinylidene fluoride (PVDF) membrane. The results show that the addition of CEC improves the output performance and filterability of TENG. At the same time, the reduced diameter and high roughness of CEC/PVDF nanofibers improve the output performance of the TENG. The TENG with a 6 wt% CEC/PVDF solution concentration has the highest output performance with a short-circuit current of 3.30 μA and an open-circuit voltage of 10.01 V. The particle filtration of 12 wt% CEC/PVDF TENG is the best, showing an efficiency of 98.84% and a pressure drop of 50 Pa. The TENG also has a good formaldehyde filtration capability with an efficiency of 92% at 0.25 mg/m3. The TENG shows great potential in self-powered sensor applications. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

22 pages, 7042 KiB  
Article
Urban Echoes: Exploring the Dynamic Realities of Cities through Digital Twins
by Piero Boccardo, Luigi La Riccia and Yogender Yadav
Land 2024, 13(5), 635; https://doi.org/10.3390/land13050635 (registering DOI) - 08 May 2024
Abstract
Digital twins (DTs) are highly valuable tools for urban planning as they provide a virtual replica of the physical city, integrating real-time data and simulations to enhance the decision-making and management processes. The use of DTs expands the possibilities for data integration and [...] Read more.
Digital twins (DTs) are highly valuable tools for urban planning as they provide a virtual replica of the physical city, integrating real-time data and simulations to enhance the decision-making and management processes. The use of DTs expands the possibilities for data integration and visualization in urban contexts. This includes real-time data measurements from multiple sources, such as sensors and IoT devices, facilitating comprehensive insights. DT’s virtual representation helps authorities and planners visualize urban dynamics and improve their understanding of urban ecosystems, energy efficiency, traffic management, emergency response, and more. DT supports the simulation and modeling of different scenarios in an urban built environment, enabling the predictive analysis of transformation decisions and the anticipation of future trends and challenges. This paper highlights the assumptions and ongoing progress in the development of a DT for the city of Turin (Italy), focusing on a range of applications, such as the extraction of built and natural environment features, land use data, road network and pavement quality, and signage, along with continuous model updates over time. Full article
(This article belongs to the Special Issue Recent Progress in Urbanisation Dynamics Research Ⅱ)
27 pages, 1384 KiB  
Article
Robust Control Based on Adaptative Fuzzy Control of Double-Star Permanent Synchronous Motor Supplied by PWM Inverters for Electric Propulsion of Ships
by Djamel Ziane, Samir Zeghlache, Mohamed Fouad Benkhoris and Ali Djerioui
Mathematics 2024, 12(10), 1451; https://doi.org/10.3390/math12101451 (registering DOI) - 08 May 2024
Abstract
This study presents the development of an adaptive fuzzy control strategy for double-star PMSM-PWM inverters used in ship electrical propulsion. The approach addresses the current and speed tracking challenges of double-star permanent magnet synchronous motors (DSPMSMs) in the presence of parametric uncertainties. Initially, [...] Read more.
This study presents the development of an adaptive fuzzy control strategy for double-star PMSM-PWM inverters used in ship electrical propulsion. The approach addresses the current and speed tracking challenges of double-star permanent magnet synchronous motors (DSPMSMs) in the presence of parametric uncertainties. Initially, a modeling technique employing a matrix transformation method is introduced, generating decoupled and independent star windings to eliminate inductive couplings, while maintaining model consistency and torque control. The precise DSPMSM model serves as the foundation for an unknown nonlinear backstepping controller, approximated directly using an adaptive fuzzy controller. Through the Lyapunov direct method, system stability is demonstrated. All signals in the closed-loop system are ensured to be uniformly ultimately bounded (UUB). The proposed control system aims for low tracking errors, while also mitigating the impact of parametric uncertainties. The effectiveness of the adaptive fuzzy nonlinear control system is validated through tests conducted in hardware-in-the-loop (HIL) simulations, utilizing the OPAL-RT platform, OP4510. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 2nd Edition)
14 pages, 4877 KiB  
Article
Simplified Strategy for Trajectory Tracking Application of a Passive Suspension Rover-Type Mobile Robot
by Jheison Duvier Diaz-Ortega, Octavio Gutiérrez-Frías, José Alejandro Aguirre-Anaya and Alberto Luviano-Juárez
Machines 2024, 12(5), 322; https://doi.org/10.3390/machines12050322 (registering DOI) - 08 May 2024
Abstract
In the present work, based on an approximate modelling of a rover-type robot and a proportional control law, a simplified trajectory tracking strategy for a passive suspension rover-type mobile robot was developed. This strategy achieves trajectory tracking and the autonomous displacement of a [...] Read more.
In the present work, based on an approximate modelling of a rover-type robot and a proportional control law, a simplified trajectory tracking strategy for a passive suspension rover-type mobile robot was developed. This strategy achieves trajectory tracking and the autonomous displacement of a rover, of which its configuration involves complex kinematics and dynamics. All these lineaments reduce the complexity of the analysis, the number of electronic components to implement, the computational requirements and the energy consumption. The robotic system used is based on the Shrimp rover, which is a robot with a passive suspension that is capable of carrying out displacements over rough terrain. The tests were performed using numerical simulations with different desired trajectories, and also using experimental tests using a passive suspension rover-type mobile robot. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 5664 KiB  
Article
Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues
by Valentina Quintero, Johann F. Osma, Ulugbek Azimov and Debora Nabarlatz
Membranes 2024, 14(5), 108; https://doi.org/10.3390/membranes14050108 (registering DOI) - 08 May 2024
Abstract
Agricultural and animal farming practices contribute significantly to greenhouse gas (GHG) emissions such as NH3, CH4, CO2, and NOx, causing local environmental concerns involving health risks and water/air pollution. A growing need to capture these [...] Read more.
Agricultural and animal farming practices contribute significantly to greenhouse gas (GHG) emissions such as NH3, CH4, CO2, and NOx, causing local environmental concerns involving health risks and water/air pollution. A growing need to capture these pollutants is leading to the development of new strategies, including the use of solid adsorbents. However, commonly used adsorbent materials often pose toxicity and negative long-term environmental effects. This study aimed to develop responsive eco-friendly cryogels using xylan extracted from coffee parchment, a typical residue from coffee production. The crosslinking in cryogels was accomplished by “freeze-thawing” and subsequent freeze-drying. Cryogels were characterized in terms of morphology by using scanning electron microscopy, porosity, and density by the liquid saturation method and also moisture adsorption and ammonia adsorption capacity. The analysis showed that the porosity in the cryogels remained around 0.62–0.42, while the apparent densities varied from 0.14 g/cm3 to 0.25 g/cm3. The moisture adsorption capacity was the highest at the highest relative humidity level (80%), reaching 0.25–0.43 g of water per gram of sample; the amount of water adsorbed increased when the xylan content in the cryogel increased up to 10% w/v, which was consistent with the hygroscopic nature of xylan. The ammonia adsorption process was modeled accurately by a pseudo-second-order equation, where the maximum adsorption capacity in equilibrium reached 0.047 mg NH3/g when xylan reached 10% w/v in cryogels, indicating a chemisorption process. The cryogels under investigation hold promise for ammonia adsorption applications and GHG separation, offering a sustainable alternative for gas-capturing processes. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

20 pages, 8084 KiB  
Article
Current-Prediction-Controlled Quasi-Z-Source Cascaded Multilevel Photovoltaic Inverter
by Shanshan Lei, Ningzhi Jin and Jiaxin Jiang
Electronics 2024, 13(10), 1824; https://doi.org/10.3390/electronics13101824 (registering DOI) - 08 May 2024
Abstract
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a [...] Read more.
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a dead zone setting. Additionally, its cascaded multilevel structure enables independent control of each power unit structure without capacitor voltage sharing problems. Secondly, this study proposes a current-predictive control strategy to reduce current harmonics on the grid side. Moreover, the feedback model of current and system state is established, and the fast control of grid-connected current is realized with the deadbeat control weighted by the predicted current deviation. And a grid-side inductance parameter identification is added to improve control accuracy. Also, an improved multi-carrier phase-shifted sinusoidal PWM method is adopted to address the issue of switching frequency doubling, which is caused by the shoot-through zero vector in quasi-Z-source inverters. Finally, the problems of switching frequency doubling and high harmonics on the grid side are solved by the improved deadbeat control strategy with an improved MPSPWM method. And a seven-level simulation model is built in MATLAB (2022b) to verify the correctness and superiority of the above theory. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

48 pages, 969 KiB  
Article
The Second-Order Features Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (2nd-FASAM-L): Mathematical Framework and Illustrative Application to an Energy System
by Dan Gabriel Cacuci
Energies 2024, 17(10), 2263; https://doi.org/10.3390/en17102263 (registering DOI) - 08 May 2024
Abstract
The Second-Order Features Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as “2nd-FASAM-L”), presented in this work, enables the most efficient computation of exactly obtained mathematical expressions of first- and second-order sensitivities of a generic system response with respect to the [...] Read more.
The Second-Order Features Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as “2nd-FASAM-L”), presented in this work, enables the most efficient computation of exactly obtained mathematical expressions of first- and second-order sensitivities of a generic system response with respect to the functions (“features”) of model parameters. Subsequently, the first- and second-order sensitivities with respect to the model’s uncertain parameters, boundaries, and internal interfaces are obtained analytically and exactly, without needing large-scale computations. Within the 2nd-FASAM-L methodology, the number of large-scale computations is proportional to the number of model features (defined as functions of model parameters), as opposed to being proportional to the number of model parameters. This characteristic enables the 2nd-FASAM-L methodology to maximize the efficiency and accuracy of any other method for computing exact expressions of first- and second-order response sensitivities with respect to the model’s features and/or primary uncertain parameters. The application of the 2nd-FASAM-L methodology is illustrated using a simplified energy-dependent neutron transport model of fundamental significance in nuclear reactor physics. Full article
(This article belongs to the Section B4: Nuclear Energy)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop