The 2023 MDPI Annual Report has
been released!
 
17 pages, 734 KiB  
Article
Metallo-Glycodendrimeric Materials against Enterotoxigenic Escherichia coli
by Aly El Riz, Armelle Tchoumi Neree, Leila Mousavifar, René Roy, Younes Chorfi and Mircea Alexandru Mateescu
Microorganisms 2024, 12(5), 966; https://doi.org/10.3390/microorganisms12050966 (registering DOI) - 11 May 2024
Abstract
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed [...] Read more.
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10−2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10−4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria–polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal–mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Nanoparticle)
12 pages, 324 KiB  
Review
A Review of Resistance Mechanisms to Bruton’s Kinase Inhibitors in Chronic Lymphocytic Leukemia
by Kamil Wiśniewski and Bartosz Puła
Int. J. Mol. Sci. 2024, 25(10), 5246; https://doi.org/10.3390/ijms25105246 (registering DOI) - 11 May 2024
Abstract
Bruton’s Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of [...] Read more.
Bruton’s Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
19 pages, 4584 KiB  
Article
Mobile Robot + IoT: Project of Sustainable Technology for Sanitizing Broiler Poultry Litter
by Alan Kunz Cechinel, Carlos Eduardo Soares, Sergio Genilson Pfleger, Leonardo Luiz Gambalonga Alves De Oliveira, Ederson Américo de Andrade, Claudia Damo Bertoli, Carlos Roberto De Rolt, Edson Roberto De Pieri, Patricia Della Méa Plentz and Juha Röning
Sensors 2024, 24(10), 3049; https://doi.org/10.3390/s24103049 (registering DOI) - 11 May 2024
Abstract
The traditional aviary decontamination process involves farmers applying pesticides to the aviary’s ground. These agricultural defenses are easily dispersed in the air, making the farmers susceptible to chronic diseases related to recurrent exposure. Industry 5.0 raises new pillars of research and innovation in [...] Read more.
The traditional aviary decontamination process involves farmers applying pesticides to the aviary’s ground. These agricultural defenses are easily dispersed in the air, making the farmers susceptible to chronic diseases related to recurrent exposure. Industry 5.0 raises new pillars of research and innovation in transitioning to more sustainable, human-centric, and resilient companies. Based on these concepts, this paper presents a new aviary decontamination process that uses IoT and a robotic platform coupled with ozonizer (O3) and ultraviolet light (UVL). These clean technologies can successfully decontaminate poultry farms against pathogenic microorganisms, insects, and mites. Also, they can degrade toxic compounds used to control living organisms. This new decontamination process uses physicochemical information from the poultry litter through sensors installed in the environment, which allows accurate and safe disinfection. Different experimental tests were conducted to construct the system. First, tests related to measuring soil moisture, temperature, and pH were carried out, establishing the range of use and the confidence interval of the measurements. The robot’s navigation uses a back-and-forth motion that parallels the aviary’s longest side because it reduces the number of turns, reducing energy consumption. This task becomes more accessible because of the aviaries’ standardized geometry. Furthermore, the prototype was tested in a real aviary to confirm the innovation, safety, and effectiveness of the proposal. Tests have shown that the UV + ozone combination is sufficient to disinfect this environment. Full article
14 pages, 2793 KiB  
Article
Comparison of the Analgesic Effect of Pericapsular Nerve Group Block and Lumbar Erector Spinae Plane Block in Elective Hip Surgery
by Onur Küçük, Fatih Sağ, Ali Eyrice, Selman Karadayı, Ali Alagöz and Alkin Çolak
Medicina 2024, 60(5), 799; https://doi.org/10.3390/medicina60050799 (registering DOI) - 11 May 2024
Abstract
Background and Objectives: The aim of this study was to compare the effectiveness of pericapsular nerve group (PENG) and lumbar erector spinae plane (L-ESP) blocks, both administered with a high volume (40 mL) of local anesthetic (LA), for multimodal postoperative analgesia in [...] Read more.
Background and Objectives: The aim of this study was to compare the effectiveness of pericapsular nerve group (PENG) and lumbar erector spinae plane (L-ESP) blocks, both administered with a high volume (40 mL) of local anesthetic (LA), for multimodal postoperative analgesia in patients undergoing hip surgery. Materials and Methods: This was a prospective, double-blind, randomized study that included 75 adult patients who were divided into three equal groups: control, PENG, and L-ESP. The study compared pain intensity, morphine consumption, time to first morphine request, and postoperative satisfaction between the control group, which received standard multimodal analgesia, and the block groups, which received PENG or L-ESP block in addition to multimodal analgesia. The numerical rating scale (NRS) was used to measure pain intensity. Results: The results showed that the block groups had lower pain intensity scores and morphine consumption, a longer time to the first morphine request, and higher postoperative satisfaction compared to the control group. The median maximum NRS score during the first 12 h was four in the control group, two in the PENG group, and three in the L-ESP group. The control group (21.52 ± 9.63 mg) consumed more morphine than the two block groups (PENG, 11.20 ± 7.55 mg; L-ESP, 12.88 ± 8.87 mg) and requested morphine 6.8 h earlier and 5 h earlier than the PENG and L-ESP groups, respectively. The control group (median 3) had the lowest Likert satisfaction scores, while the PENG group (median 4) had the lowest NRS scores (L-ESP, median 4). Conclusions: The application of PENG or L-ESP blocks with high-volume LA in patients undergoing hip surgery reduces the need for postoperative analgesia and improves the quality of multimodal analgesia. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

13 pages, 9814 KiB  
Article
Aluminium-Silicon Lightweight Thermal Management Alloys with Controlled Thermal Expansion
by Peter Lewis, Andrew Tarrant, Andreas Frehn, Fritz Grensing, James Nicholson, Nick Farrah and Martyn Acreman
Crystals 2024, 14(5), 455; https://doi.org/10.3390/cryst14050455 (registering DOI) - 11 May 2024
Abstract
With the ever-growing emphasis on global decarbonization and rapid increases in the power densities of electronics equipment in recent years, new methods and lightweight materials have been developed to manage heat load as well as interfacial stresses associated with coefficient of thermal expansion [...] Read more.
With the ever-growing emphasis on global decarbonization and rapid increases in the power densities of electronics equipment in recent years, new methods and lightweight materials have been developed to manage heat load as well as interfacial stresses associated with coefficient of thermal expansion (CTE) mismatches between components. The Al–Si system provides an attractive combination of CTE performance and high thermal conductivity whilst being a very lightweight option. Such materials are of interest to industries where thermal management is a key design criterion, such as the aerospace, automotive, consumer electronics, defense, EV, and space sectors. This paper will describe the development and manufacture of a family of high-performance hypereutectic Al–Si alloys (AyontEX™) by a powder metallurgy method. These alloys are of particular interest for structural heat sink applications that require high reliability under thermal cycling (CTE of 17 μm/(m·°C)), as well as reflective optics and instrument assemblies that require good thermal and mechanical stability (CTE of 13 μm/(m·°C)). Critical performance relationships are presented, coupled with the microstructural, physical, and mechanical properties of these Al–Si alloys. Full article
Show Figures

Figure 1

11 pages, 994 KiB  
Article
Zinc Oxide Nanostructure Deposition into Sub-5 nm Vertical Mesopores in Silica Hard Templates by Atomic Layer Deposition
by Tauqir Nasir, Yisong Han, Chris Blackman, Richard Beanland and Andrew L. Hector
Materials 2024, 17(10), 2272; https://doi.org/10.3390/ma17102272 (registering DOI) - 11 May 2024
Abstract
Nanostructures synthesised by hard-templating assisted methods are advantageous as they retain the size and morphology of the host templates which are vital characteristics for their intended applications. A number of techniques have been employed to deposit materials inside porous templates, such as electrodeposition, [...] Read more.
Nanostructures synthesised by hard-templating assisted methods are advantageous as they retain the size and morphology of the host templates which are vital characteristics for their intended applications. A number of techniques have been employed to deposit materials inside porous templates, such as electrodeposition, vapour deposition, lithography, melt and solution filling, but most of these efforts have been applied with pore sizes higher in the mesoporous regime or even larger. Here, we explore atomic layer deposition (ALD) as a method for nanostructure deposition into mesoporous hard templates consisting of mesoporous silica films with sub-5 nm pore diameters. The zinc oxide deposited into the films was characterised by small-angle X-ray scattering, X-ray diffraction and energy-dispersive X-ray analysis. Full article
(This article belongs to the Special Issue Atomic Layer Deposition: From Thin Films to Nanostructured Materials)
19 pages, 8994 KiB  
Article
The Impact of Plasma Surface Treatments on the Mechanical Properties and Magnetic Performance of FDM-Printed NdFeB/PA12 Magnets
by Ana Damnjanović, Gregor Primc, Rok Zaplotnik, Miran Mozetič and Nataša Kovačević
Materials 2024, 17(10), 2275; https://doi.org/10.3390/ma17102275 (registering DOI) - 11 May 2024
Abstract
This study presents a novel approach for improving the interfacial adhesion between Nd–Fe–B spherical magnetic powders and polyamide 12 (PA12) in polymer-bonded magnets using plasma treatments. By applying radio frequency plasma to the magnetic powder and low-pressure microwave plasma to PA12, we achieved [...] Read more.
This study presents a novel approach for improving the interfacial adhesion between Nd–Fe–B spherical magnetic powders and polyamide 12 (PA12) in polymer-bonded magnets using plasma treatments. By applying radio frequency plasma to the magnetic powder and low-pressure microwave plasma to PA12, we achieved a notable enhancement in the mechanical and environmental stability of fused deposition modeling (FDM)-printed Nd-Fe-B/PA12 magnets. The densities of the FDM-printed materials ranged from 92% to 94% of their theoretical values, with magnetic remanence (Br) ranging from 85% to 89% of the theoretical values across all batches. The dual plasma-treated batch demonstrated an optimal mechanical profile with an elastic modulus of 578 MPa and the highest ductility at 21%, along with a tensile strength range of 6 to 7 MPa across all batches. Flexural testing indicated that this batch also achieved the highest flexural strength of 15 MPa with a strain of 5%. Environmental stability assessments confirmed that applied plasma treatments did not compromise resistance to corrosion, evidenced by negligible flux loss in both hygrothermal and bulk corrosion tests. These results highlight plasma treatment’s potential to enhance mechanical strength, magnetic performance, and environmental stability. Full article
Show Figures

Figure 1

15 pages, 1340 KiB  
Article
Chemical Composition of Essential Oil from Citrus reticulata Blanco cv. Chachiensis (Chachi) and Its Anti-Mosquito Activity against Pyrethroid-Resistant Aedes albopictus
by Jifan Cao, Wende Zheng, Baizhong Chen, Zhenping Yan, Xiaowen Tang, Jiahao Li, Zhen Zhang, Song Ang, Chen Li, Rihui Wu, Panpan Wu and Wen-Hua Chen
Insects 2024, 15(5), 345; https://doi.org/10.3390/insects15050345 (registering DOI) - 11 May 2024
Abstract
The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito [...] Read more.
The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito activity of the essential oil (EO) of Citrus reticulata Blanco cv. Chachiensis (Chachi) (referred to as CRB) at immature, semi-mature, and mature stages. The chemical compositions of the CRB EO were analyzed using GC-MS. The main components were identified to be D-limonene and γ-terpinene. The contents of D-limonene at the immature, semi-mature, and mature stages were 62.35%, 76.72%, and 73.15%, respectively; the corresponding contents of γ-terpinene were 14.26%, 11.04%, and 11.27%, respectively. In addition, the corresponding contents of a characteristic component, methyl 2-aminobenzoate, were 4.95%, 1.93%, and 2.15%, respectively. CRB EO exhibited significant larvicidal activity against Aedes albopictus (Ae. albopictus, Diptera: Culicidae), with the 50% lethal doses being 65.32, 61.47, and 65.91 mg/L for immature, semi-mature, and mature CRB EO, respectively. CRB EO was able to inhibit acetylcholinesterase and three detoxification enzymes, significantly reduce the diversity of internal microbiota in mosquitoes, and decrease the relative abundance of core species within the microbiota. The present results may provide novel insights into the utilization of plant-derived essential oils in anti-mosquitoes. Full article
(This article belongs to the Section Insect Pest and Vector Management)
18 pages, 4725 KiB  
Article
Do Water Transfer Projects Promote Water Use Efficiency? Case Study of South-to-North Water Transfer Project in Yellow River Basin of China
by Li Ma and Qi Wang
Water 2024, 16(10), 1367; https://doi.org/10.3390/w16101367 (registering DOI) - 11 May 2024
Abstract
With a huge capital and labor input influx, inter-basin water transfer (IBWT) projects have been shown to effectively mitigate water stress and ensure the water demand for social and economic development in the receiving area. Whether they have promoted the improvement of regional [...] Read more.
With a huge capital and labor input influx, inter-basin water transfer (IBWT) projects have been shown to effectively mitigate water stress and ensure the water demand for social and economic development in the receiving area. Whether they have promoted the improvement of regional water use efficiency (WUE) is crucial for sustainable management of regional water resources. Targeting the South-to-North Water Transfer Project (SNWTP), the largest and most ambitious inter-basin water transfer project in China, this study establishes quantitatively econometric models to analyze the impact of different water diversion projects, specifically the eastern route of the SNWTP (ER-SNWTP), middle route of the SNWTP (MR-SNWTP), and diversion from the main stream of the Yellow River (DYR), on the regional water consumption per unit of GDP; regional water stress, water use structure, economic structure, and urbanization level are used as control variables in different types of cities in the Yellow River Basin, and some intriguing results are found. While the overall water transfer project demonstrates a positive impact on water use efficiency, the effects of the three water transfer measures vary significantly. The ER-SNWTP does not exhibit a notable positive effect on regional water use efficiency, whereas the MR-SNWTP demonstrates a significant positive impact. Interestingly, the DYR has a notable negative influence on water use efficiency in developed cities. The water use structure, shaped by the pricing, scale, and policies of different projects, emerges as a pivotal factor in explaining these differences. Finally, this paper suggests that the impact of water transfer projects on the improvement of regional water use efficiency be viewed from a more comprehensive and developmental perspective. Full article
(This article belongs to the Special Issue Socio-Economics of Water Resources Management)
17 pages, 2933 KiB  
Article
Efficacy of Engraftment and Safety of Human Umbilical Di-Chimeric Cell (HUDC) Therapy after Systemic Intraosseous Administration in an Experimental Model
by Maria Siemionow, Lucile Chambily and Sonia Brodowska
Biomedicines 2024, 12(5), 1064; https://doi.org/10.3390/biomedicines12051064 (registering DOI) - 11 May 2024
Abstract
Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo [...] Read more.
Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo study, we assessed HUDC safety and biodistribution in the NOD SCID mouse model at 90 days following the systemic intraosseous administration of HUDCs. Twelve NOD SCID mice (n = 6/group) received intraosseous injection of donor UCB cells (3.0 × 106) in Group 1, or HUDCs (3.0 × 106) in Group 2, without immunosuppression. Flow cytometry assessed hematopoietic cell surface markers in peripheral blood and the presence of HLA-ABC class I antigens in lymphoid and non-lymphoid organs. HUDC safety was assessed by weekly evaluations, magnetic resonance imaging (MRI), and at autopsy for tumorigenicity. At 90 days after intraosseous cell administration, the comparable expression of HLA-ABC class I antigens in selected organs was found in UCB control and HUDC therapy groups. MRI and autopsy confirmed safety by no signs of tumor growth. This study confirmed HUDC biodistribution to selected lymphoid organs following intraosseous administration, without immunosuppression. These data introduce HUDCs as a novel promising approach for immunomodulation in transplantation. Full article
(This article belongs to the Special Issue Human Stem Cells in Disease Modelling and Treatment)
Show Figures

Figure 1

26 pages, 593 KiB  
Article
Does Digital Inclusive Finance Help County Level Governance in the Five Provinces of Northwest China, from the Perspective of Economic Resilience?
by Xinshu Gong and Liyu Zhao
Sustainability 2024, 16(10), 4034; https://doi.org/10.3390/su16104034 (registering DOI) - 11 May 2024
Abstract
The sustainable development of a country requires stable funds to reshape and restore its economy, something which cannot be separated from the support of financial services. Digital financial inclusion, with its inclusive and extensive features, has provided a new impetus for economic development [...] Read more.
The sustainable development of a country requires stable funds to reshape and restore its economy, something which cannot be separated from the support of financial services. Digital financial inclusion, with its inclusive and extensive features, has provided a new impetus for economic development and governance. Based on the panel data of 193 counties in 5 provinces of northwest China from 2014 to 2021, this paper uses a bi-directional fixed effect model, an intermediary effect model and a threshold effect model in order to test digital inclusive finance and county-level economic resilience, and to explore the internal correlation details. The results show that digital inclusive finance will significantly enhance the economic resilience of the five northwestern provinces by improving capital allocation efficiency, enhancing entrepreneurship and employment vitality, and reducing pollution emissions. In addition, there is a double threshold effect between capital allocation efficiency and employment vitality, in which the threshold effect of capital allocation efficiency presents a progressively increasing state, and in which the threshold effect of entrepreneurship and employment vitality presents a state of fluctuating increase. Therefore, China needs to further improve the digital inclusive financial environment in its northwest; continue and deepen the significant functions of digital inclusive finance in resource allocation efficiency, entrepreneurship and employment vitality, and environmental protection; and provide guidance for solving regional imbalances and promoting national sustainable development. Full article
(This article belongs to the Section Sustainable Management)
12 pages, 2456 KiB  
Article
Spheroids Generated from Malignant Pleural Effusion as a Tool to Predict the Response of Non-Small Cell Lung Cancer to Treatment
by Tsung-Ming Yang, Yu-Hung Fang, Chieh-Mo Lin, Miao-Fen Chen and Chun-Liang Lin
Diagnostics 2024, 14(10), 998; https://doi.org/10.3390/diagnostics14100998 (registering DOI) - 11 May 2024
Abstract
Background: Spheroids generated by tumor cells collected from malignant pleural effusion (MPE) were shown to retain the characteristics of the original tumors. This ex vivo model might be used to predict the response of non-small cell lung cancer (NSCLC) to anticancer treatments. Methods: [...] Read more.
Background: Spheroids generated by tumor cells collected from malignant pleural effusion (MPE) were shown to retain the characteristics of the original tumors. This ex vivo model might be used to predict the response of non-small cell lung cancer (NSCLC) to anticancer treatments. Methods: The characteristics, epidermal growth factor receptor (EGFR) mutation status, and clinical response to EGFR-TKIs treatment of enrolled patients were recorded. The viability of the spheroids generated from MPE of enrolled patients were evaluated by visualization of the formazan product of the MTT assay. Results: Spheroids were generated from 14 patients with NSCLC-related MPE. Patients with EGFR L861Q, L858R, or Exon 19 deletion all received EGFR-TKIs, and five of these seven patients responded to treatment. The viability of the spheroids generated from MPE of these five patients who responded to EGFR-TKIs treatment was significantly reduced after gefitinib treatment. On the other hand, gefitinib treatment did not reduce the viability of the spheroids generated from MPE of patients with EGFR wild type, Exon 20 insertion, or patients with sensitive EGFR mutation but did not respond to EGFR-TKIs treatment. Conclusion: Multicellular spheroids generated from NSCLC-related MPE might be used to predict the response of NSCLC to treatment. Full article
(This article belongs to the Special Issue Advances in Cell-Based Technologies for Precision Diagnostics)
Show Figures

Figure 1

13 pages, 686 KiB  
Article
Assessing the Impact of Novel BRCA1 Exon 11 Variants on Pre-mRNA Splicing
by Halla Elshwekh, Inas M. Alhudiri, Adam Elzagheid, Nabil Enattah, Yasmine Abbassi, Lubna Abou Assali, Ilenia Marino, Cristiana Stuani, Emanuele Buratti and Maurizio Romano
Cells 2024, 13(10), 824; https://doi.org/10.3390/cells13100824 (registering DOI) - 11 May 2024
Abstract
Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that [...] Read more.
Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that the c.2363T>G and c.3192T>C variants could impact both splicing and protein function, resulting in the V340A and V788G mutations, respectively. We further examined their splicing effects using minigene assays in MCF7 and SKBR3 breast cancer cell lines. Interestingly, we found that the c.2363T>G variant significantly altered splicing patterns in MCF7 cells but not in SKBR3 cells. This finding suggests a potential influence of cellular context on the variant’s effects. While attempts to correlate in silico predictions with RNA binding factors were inconclusive, this observation underscores the complexity of splicing regulation. Splicing is governed by various factors, including cellular contexts and protein interactions, making it challenging to predict outcomes accurately. Further research is needed to fully understand the functional consequences of the c.2363T>G variant in breast cancer pathogenesis. Integrating computational predictions with experimental data will provide valuable insights into the role of alternative splicing regulation in different breast cancer types and stages. Full article
16 pages, 3236 KiB  
Article
Unveiling Novel Kunitz- and Waprin-Type Toxins in the Micrurus mipartitus Coral Snake Venom Gland: An In Silico Transcriptome Analysis
by Mónica Saldarriaga-Córdoba, Claudia Clavero-León, Paola Rey-Suarez, Vitelbina Nuñez-Rangel, Ruben Avendaño-Herrera, Stefany Solano-González and Juan F. Alzate
Toxins 2024, 16(5), 224; https://doi.org/10.3390/toxins16050224 (registering DOI) - 11 May 2024
Abstract
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity [...] Read more.
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz–Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

21 pages, 2440 KiB  
Article
Depth Control of an Underwater Sensor Platform: Comparison between Variable Buoyancy and Propeller Actuated Devices
by João Falcão Carneiro, João Bravo Pinto, Fernando Gomes de Almeida and Nuno A. Cruz
Sensors 2024, 24(10), 3050; https://doi.org/10.3390/s24103050 (registering DOI) - 11 May 2024
Abstract
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This [...] Read more.
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications. Full article
12 pages, 1926 KiB  
Article
Dual-Message QR Codes
by Kuo-Chien Chou and Ran-Zan Wang
Sensors 2024, 24(10), 3055; https://doi.org/10.3390/s24103055 (registering DOI) - 11 May 2024
Abstract
A novel dual-message QR code is proposed for carrying two individual messages that can be read by standard QR code readers: one from a close range and the other from a large distance. By exploring the module value determining the rule of typical [...] Read more.
A novel dual-message QR code is proposed for carrying two individual messages that can be read by standard QR code readers: one from a close range and the other from a large distance. By exploring the module value determining the rule of typical QR code readers, we designed two-state module blocks that can be recognized as different module values through changing the distance from which the QR code is scanned, and applied them to construct the proposed dual-message QR code. Experiments were conducted to test the readability of the two messages within a dual-message QR code, with the results demonstrating the high feasibility of the proposed method. The dual-message QR code can be applied for designing creative applications. For example, an interactive wedding card that can access the growing film of the groom and that of the bride interchangeably, which bring the viewers a higher-quality experience. Full article
(This article belongs to the Special Issue Data Engineering in the Internet of Things—Second Edition)
10 pages, 1733 KiB  
Article
Sleep-like State in Pond Snails Leads to Enhanced Memory Formation
by Kengo Namiki, Junko Nakai, Ken Lukowiak and Etsuro Ito
Biology 2024, 13(5), 336; https://doi.org/10.3390/biology13050336 (registering DOI) - 11 May 2024
Abstract
To test the hypothesis that a sleep-like quiescent state enhances memory consolidation in the pond snail Lymnaea stagnalis, we interposed a period in which snails experienced either a quiescent, sleeping state or an active, non-sleeping state following escape behavior suppression learning (EBSL). [...] Read more.
To test the hypothesis that a sleep-like quiescent state enhances memory consolidation in the pond snail Lymnaea stagnalis, we interposed a period in which snails experienced either a quiescent, sleeping state or an active, non-sleeping state following escape behavior suppression learning (EBSL). During EBSL training, the number of escapes made by a snail from a container was significantly suppressed using an external aversive stimulus (punishment). After training, the snails were divided into two groups. One group of snails was allowed to move freely and to experience a sleep-like quiescent state for 3 h in distilled water. The other group was stimulated with a sucrose solution every 10 min to keep them active (i.e., non-sleeping). In the memory test, escape behavior was suppressed in the group that experienced the quiescent state, whereas the suppression was not observed in snails that were kept active. Additionally, the latency of the first escape in the memory test was shorter in the snails kept active than in those that experienced the quiescent state. Together, these data are consistent with the hypothesis that a sleep-like quiescent state enhances EBSL memory consolidation in L. stagnalis. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

18 pages, 7218 KiB  
Article
Combinatory Nanovesicle with siRNA-Loaded Extracellular Vesicle and IGF-1 for Osteoarthritis Treatments
by Jun Yong Kim, Seung Yeon Lee, Seung-Gyu Cha, Jung Min Park, Duck Hyun Song, Sang-Hyuk Lee, Dong-Youn Hwang, Byoung Ju Kim, Seungsoo Rho, Chun Gwon Park, Won-Kyu Rhim and Dong Keun Han
Int. J. Mol. Sci. 2024, 25(10), 5242; https://doi.org/10.3390/ijms25105242 (registering DOI) - 11 May 2024
Abstract
Extracellular vesicles (EVs) have been found to have the characteristics of their parent cells. Based on the characteristics of these EVs, various studies on disease treatment using mesenchymal stem cell (MSC)-derived EVs with regenerative activity have been actively conducted. The therapeutic nature of [...] Read more.
Extracellular vesicles (EVs) have been found to have the characteristics of their parent cells. Based on the characteristics of these EVs, various studies on disease treatment using mesenchymal stem cell (MSC)-derived EVs with regenerative activity have been actively conducted. The therapeutic nature of MSC-derived EVs has been shown in several studies, but in recent years, there have been many efforts to functionalize EVs to give them more potent therapeutic effects. Strategies for functionalizing EVs include endogenous and exogenous methods. In this study, human umbilical cord MSC (UCMSC)-derived EVs were selected for optimum OA treatments with expectation via bioinformatics analysis based on antibody array. And we created a novel nanovesicle system called the IGF-si-EV, which has the properties of both cartilage regeneration and long-term retention in the lesion site, attaching positively charged insulin-like growth factor-1 (IGF-1) to the surface of the UCMSC-derived Evs carrying siRNA, which inhibits MMP13. The downregulation of inflammation-related cytokine (MMP13, NF-kB, and IL-6) and the upregulation of cartilage-regeneration-related factors (Col2, Acan) were achieved with IGF-si-EV. Moreover, the ability of IGF-si-EV to remain in the lesion site for a long time has been proven through an ex vivo system. Collectively, the final constructed IGF-si-EV can be proposed as an effective OA treatment through its successful MMP13 inhibition, chondroprotective effect, and cartilage adhesion ability. We also believe that this EV-based nanoparticle-manufacturing technology can be applied as a platform technology for various diseases. Full article
(This article belongs to the Special Issue Roles and Function of Extracellular Vesicles in Diseases 2.0)
Show Figures

Figure 1

13 pages, 2503 KiB  
Article
Enhancing the Responsiveness of Thermoelectric Gas Sensors with Boron-Doped and Thermally Annealed SiGe Thin Films via Low-Pressure Chemical Vapor Deposition
by Woosuck Shin, Maiko Nishibori, Toshio Itoh, Noriya Izu and Ichiro Matsubara
Sensors 2024, 24(10), 3058; https://doi.org/10.3390/s24103058 (registering DOI) - 11 May 2024
Abstract
Thermoelectric gas sensor (THGS) devices with catalysts and Si0.8Ge0.2 thin films of different boron doping levels of 1018, 1019, and 1020 cm−3 were fabricated, and their transport properties are investigated. SiGe films were deposited [...] Read more.
Thermoelectric gas sensor (THGS) devices with catalysts and Si0.8Ge0.2 thin films of different boron doping levels of 1018, 1019, and 1020 cm−3 were fabricated, and their transport properties are investigated. SiGe films were deposited on Si3N4/SiO2 multilayers on Si substrates using low-pressure chemical vapor deposition (LPCVD) and thermally annealed at 1050 °C. The Seebeck coefficients of the SiGe films were increased after thermal annealing, ranging from 191 to 275 μV/K at temperatures of 74 to 468 °C in air, and reaching the highest power factor of 6.78 × 10−4 W/mK2 at 468 °C. The thermal conductivity of the SiGe films varied from 2.4 to 3.0 W/mK at 25 °C. The THGS detection performance was tested for the H2 gas in air from 0.01 to 1.0%, and compared to the thermoelectric properties of the SiGe films. The high-temperature annealing treatment process was successful in enhancing the thermoelectric performance of both the SiGe films and sensor devices, achieving the best THGS performance with the sensor device fabricated from the annealed SiGe film with 1018 cm−3 boron-doped Si0.8Ge0.2. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

16 pages, 943 KiB  
Article
Human Antibodies against Herpes Simplex Virus 2 Glycoprotein G Do Not Neutralize but Mediate Antibody-Dependent Cellular Cytotoxicity
by Jan-Åke Liljeqvist, Karin Önnheim, Petra Tunbäck, Kristina Eriksson, Staffan Görander, Malin Bäckström and Tomas Bergström
Antibodies 2024, 13(2), 40; https://doi.org/10.3390/antib13020040 (registering DOI) - 11 May 2024
Abstract
Herpes simplex virus 2 (HSV-2) is a sexually transmitted infection affecting 491 million individuals globally. Consequently, there is a great need for both prophylactic and therapeutic vaccines. Unfortunately, several vaccine clinical trials, primarily employing the glycoprotein D of HSV-2 (gD-2), have failed. The [...] Read more.
Herpes simplex virus 2 (HSV-2) is a sexually transmitted infection affecting 491 million individuals globally. Consequently, there is a great need for both prophylactic and therapeutic vaccines. Unfortunately, several vaccine clinical trials, primarily employing the glycoprotein D of HSV-2 (gD-2), have failed. The immune protection conferred by human anti-HSV-2 antibodies in genital infection and disease remains elusive. It is well-known that gD-2 elicits cross-reactive neutralizing antibodies, i.e., anti-gD-2 antibodies recognize gD in HSV-1 (gD-1). In contrast, anti-glycoprotein G in HSV-2 (mgG-2) antibodies are exclusively type-specific for HSV-2. In this study, truncated versions of gD-2 and mgG-2 were recombinantly produced in mammalian cells and used for the purification of anti-gD-2 and anti-mgG-2 antibodies from the serum of five HSV-2-infected subjects, creating a pool of purified antibodies. These antibody pools were utilized as standards together with purified mgG-2 and gD-2 antigens in ELISA to quantitatively estimate and compare the levels of cross-reactive anti-gD-1 and anti-gD-2 antibodies, as well as anti-mgG-2 antibodies in sera from HSV-1+2-, HSV-2-, and HSV-1-infected subjects. The median concentration of anti-mgG-2 antibodies was five times lower in HSV-1+2-infected subjects as compared with cross-reactive anti-gD-1 and anti-gD-2 antibodies, and three times lower in HSV-2 infected subjects as compared with anti-gD-2 antibodies. The pool of purified anti-gD-2 antibodies presented neutralization activity at low concentrations, while the pool of purified anti-mgG-2 antibodies did not. Instead, these anti-mgG-2 antibodies mediated antibody-dependent cellular cytotoxicity (ADCC) by human granulocytes, monocytes, and NK-cells, but displayed no complement-dependent cytotoxicity. These findings indicate that antibodies to mgG-2 in HSV-2-infected subjects are present at low concentrations but mediate the killing of infected cells via ADCC rather than by neutralizing free viral particles. We, and others, speculate that Fc-receptor mediated antibody functions such as ADCC following HSV-2 vaccination may serve as a better marker of protection correlate instead of neutralizing activity. In an mgG-2 therapeutic vaccine, our findings of low levels of anti-mgG-2 antibodies in HSV-2-infected subjects may suggest an opportunity to enhance the immune responses against mgG-2. In a prophylactic HSV-2 mgG-2 vaccine, a possible interference in cross-reactive immune responses in already infected HSV-1 subjects can be circumvented. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

18 pages, 31413 KiB  
Article
Design of a 3-Bit Circularly Polarized Reconfigurable Reflectarray
by Zhe Chen, Chenlu Huang, Xinmi Yang, Xiaoming Yan, Xianqi Lin and Yedi Zhou
Electronics 2024, 13(10), 1886; https://doi.org/10.3390/electronics13101886 (registering DOI) - 11 May 2024
Abstract
In this paper, a 3-bit circularly polarized reconfigurable reflectarray is proposed. The array consists of 64 units in an 8 × 8 configuration, with each unit containing a circular metal patch loaded with phase-delay lines and eight PIN diodes. To independently control each [...] Read more.
In this paper, a 3-bit circularly polarized reconfigurable reflectarray is proposed. The array consists of 64 units in an 8 × 8 configuration, with each unit containing a circular metal patch loaded with phase-delay lines and eight PIN diodes. To independently control each unit, a corresponding DC control circuit was designed and tested with the array. In the bandwidth of 3.43–3.71 GHz, the circularly polarized reconfigurable reflectarray achieved a gain of 16 dB, an aperture efficiency of 27%, an axial ratio of ≤3 dB, an operating bandwidth of 8%, and a beam scanning range of ±60°. The circularly polarized reconfigurable reflectarray can also achieve a good dual-beam radiation performance after testing. The 3-bit circularly polarized reconfigurable reflectarray proposed in this paper offers several advantages, including low loss, high aperture efficiency, a wide beam scanning range, and excellent stability in wide-angle oblique incidence. It has potential applications in low-cost phased array, satellite communications, and deep space exploration. Full article
Show Figures

Figure 1

25 pages, 9871 KiB  
Article
Investigating the Morphometry and Hydrometeorological Variability of a Fragile Tropical Karstic Lake of the Yucatán Peninsula: Bacalar Lagoon
by Laura Carrillo, Mario Yescas, Mario Oscar Nieto-Oropeza, Manuel Elías-Gutiérrez, Juan C. Alcérreca-Huerta, Emilio Palacios-Hernández and Oscar F. Reyes-Mendoza
Hydrology 2024, 11(5), 68; https://doi.org/10.3390/hydrology11050068 (registering DOI) - 11 May 2024
Abstract
Comprehensive morphometric and hydrometeorological studies on Bacalar Lagoon, Mexico’s largest tropical karstic lake and a significant aquatic system of the Yucatán Peninsula, are lacking. This study provides a detailed analysis of its bathymetry, morphometry, and hydrometeorological characteristics. The lake’s main basin stretches more [...] Read more.
Comprehensive morphometric and hydrometeorological studies on Bacalar Lagoon, Mexico’s largest tropical karstic lake and a significant aquatic system of the Yucatán Peninsula, are lacking. This study provides a detailed analysis of its bathymetry, morphometry, and hydrometeorological characteristics. The lake’s main basin stretches more than 52.7 km in length, with widths varying from 0.18 km to 2.28 km. It has a volume of 554.4 million cubic meters, with an average depth of 8.85 m, reaching depths of up to 26 m in the north and featuring sub-lacustrine dolines in the south, with depths of 38 m, 48.5 m, and 63.6 m. The study reveals seasonal variations in surface water temperature, closely linked to air temperature (r = 0.89), and immediate responses of water levels to hydrometeorological events. Water level fluctuations also exhibit seasonal patterns that are correlated with regional aquifer conditions, with a lag of 2 months after seasonal rainfall. Interannual variability in rainfall and water levels was observed. From 2010 to 2012, rainfall consistently remained below its mean climatic value, due to a prolonged La Niña event, while the exceptionally wet conditions in 2020 were also associated with La Niña. Extreme and anomalous hydrometeorological events, such as those following tropical storm Cristobal in 2020, revealed the fragility of Bacalar Lagoon, causing a notable transformation in lake color and transparency, shifting it from its typical oligotrophic state to eutrophic conditions that lasted longer than a year. These color changes raise questions about the factors impacting ecological health in tropical karstic regions. Additional factors affecting water quality in the BL in 2020, such as deforestation, coastline changes, and urban growth, warrant further investigation. Our study can serve as a starting landmark. Full article
(This article belongs to the Topic Karst Environment and Global Change)
Show Figures

Figure 1

17 pages, 962 KiB  
Article
Stability and Hopf Bifurcation of a Delayed Predator–Prey Model with a Stage Structure for Generalist Predators and a Holling Type-II Functional Response
by Zi-Wei Liang and Xin-You Meng
Symmetry 2024, 16(5), 597; https://doi.org/10.3390/sym16050597 (registering DOI) - 11 May 2024
Abstract
In this paper, we carry out some research on a predator–prey system with maturation delay, a stage structure for generalist predators and a Holling type-II functional response, which has already been proposed. First, for the delayed model, we obtain the conditions for the [...] Read more.
In this paper, we carry out some research on a predator–prey system with maturation delay, a stage structure for generalist predators and a Holling type-II functional response, which has already been proposed. First, for the delayed model, we obtain the conditions for the occurrence of stability switches of the positive equilibrium and possible Hopf bifurcation values owing to the growth of the value of the delay by applying the geometric criterion. It should be pointed out that when we suppose that the characteristic equation has a pair of imaginary roots λ=±iω(ω>0), we just need to consider iω(ω>0) due to the symmetry, which alleviates the computation requirements. Next, we investigate the nature of Hopf bifurcation. Finally, we conduct numerical simulations to verify the correctness of our findings. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry of Differential Equations in Biomathematics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop