The 2023 MDPI Annual Report has
been released!
 
32 pages, 21234 KiB  
Article
Anthropomorphic Tendon-Based Hands Controlled by Agonist–Antagonist Corticospinal Neural Network
by Francisco García-Córdova, Antonio Guerrero-González and Fernando Hidalgo-Castelo
Sensors 2024, 24(9), 2924; https://doi.org/10.3390/s24092924 (registering DOI) - 03 May 2024
Abstract
This article presents a study on the neurobiological control of voluntary movements for anthropomorphic robotic systems. A corticospinal neural network model has been developed to control joint trajectories in multi-fingered robotic hands. The proposed neural network simulates cortical and spinal areas, as well [...] Read more.
This article presents a study on the neurobiological control of voluntary movements for anthropomorphic robotic systems. A corticospinal neural network model has been developed to control joint trajectories in multi-fingered robotic hands. The proposed neural network simulates cortical and spinal areas, as well as the connectivity between them, during the execution of voluntary movements similar to those performed by humans or monkeys. Furthermore, this neural connection allows for the interpretation of functional roles in the motor areas of the brain. The proposed neural control system is tested on the fingers of a robotic hand, which is driven by agonist–antagonist tendons and actuators designed to accurately emulate complex muscular functionality. The experimental results show that the corticospinal controller produces key properties of biological movement control, such as bell-shaped asymmetric velocity profiles and the ability to compensate for disturbances. Movements are dynamically compensated for through sensory feedback. Based on the experimental results, it is concluded that the proposed biologically inspired adaptive neural control system is robust, reliable, and adaptable to robotic platforms with diverse biomechanics and degrees of freedom. The corticospinal network successfully integrates biological concepts with engineering control theory for the generation of functional movement. This research significantly contributes to improving our understanding of neuromotor control in both animals and humans, thus paving the way towards a new frontier in the field of neurobiological control of anthropomorphic robotic systems. Full article
(This article belongs to the Special Issue Tactile Sensors for Robotics Applications)
Show Figures

Figure 1

15 pages, 2678 KiB  
Article
Oxidovanadium(V) Schiff Base Complexes Derived from Chiral 3-amino-1,2-propanediol Enantiomers: Synthesis, Spectroscopic Studies, Catalytic and Biological Activity
by Grzegorz Romanowski, Justyna Budka and Iwona Inkielewicz-Stepniak
Int. J. Mol. Sci. 2024, 25(9), 5010; https://doi.org/10.3390/ijms25095010 (registering DOI) - 03 May 2024
Abstract
Oxidovanadium(V) complexes, [(+)VOL1-5] and [(–)VOL1-5], with chiral tetradentate Schiff bases, which are products of monocondensation of S(‒)-3-amino-1,2-propanediol or R(+)-3-amino-1,2-propanediol with salicylaldehyde derivatives, have been synthesized. Different spectroscopic methods, viz. 1H and 51V NMR, IR, [...] Read more.
Oxidovanadium(V) complexes, [(+)VOL1-5] and [(–)VOL1-5], with chiral tetradentate Schiff bases, which are products of monocondensation of S(‒)-3-amino-1,2-propanediol or R(+)-3-amino-1,2-propanediol with salicylaldehyde derivatives, have been synthesized. Different spectroscopic methods, viz. 1H and 51V NMR, IR, UV-Vis, and circular dichroism, as well as elemental analysis, have been used for their detailed characterization. Furthermore, the epoxidation of styrene, cyclohexene, and two monoterpenes, S(‒)-limonene and (‒)-α-pinene, using two oxidants, aqueous 30% H2O2 or tert-butyl hydroperoxide (TBHP) in decane, has been studied with catalytic amounts of all complexes. Finally, biological cytotoxicity studies have also been performed with these oxidovanadium(V) compounds for comparison with cis-dioxidomolybdenum(VI) Schiff base complexes with the same chiral ligands, as well as to determine the cytoprotection against the oxidative damage caused by 30% H2O2 in the HT-22 hippocampal neuronal cells in the range of their 10–100 μM concentration. Full article
Show Figures

Figure 1

12 pages, 317 KiB  
Article
Scale Mixture of Gleser Distribution with an Application to Insurance Data
by Neveka M. Olmos, Emilio Gómez-Déniz and Osvaldo Venegas
Mathematics 2024, 12(9), 1397; https://doi.org/10.3390/math12091397 (registering DOI) - 03 May 2024
Abstract
In this paper, the scale mixture of the Gleser (SMG) distribution is introduced. This new distribution is the product of a scale mixture between the Gleser (G) distribution and the Beta(a,1) distribution. The SMG distribution is an alternative [...] Read more.
In this paper, the scale mixture of the Gleser (SMG) distribution is introduced. This new distribution is the product of a scale mixture between the Gleser (G) distribution and the Beta(a,1) distribution. The SMG distribution is an alternative to distributions with two parameters and a heavy right tail. We study its representation and some basic properties, maximum likelihood inference, and Fisher’s information matrix. We present an application to a real dataset in which the SMG distribution shows a better fit than two other known distributions. Full article
(This article belongs to the Special Issue Probabilistic Models in Insurance and Finance)
Show Figures

Figure 1

25 pages, 19602 KiB  
Article
Real-Time EtherCAT-Based Control Architecture for Electro-Hydraulic Humanoid
by Maysoon Ghandour, Subhi Jleilaty, Naima Ait Oufroukh, Serban Olaru and Samer Alfayad
Mathematics 2024, 12(9), 1405; https://doi.org/10.3390/math12091405 (registering DOI) - 03 May 2024
Abstract
Electro-hydraulic actuators have witnessed significant development over recent years due to their remarkable abilities to perform complex and dynamic movements. Integrating such an actuator in humanoids is highly beneficial, leading to a humanoid capable of performing complex tasks requiring high force. This highlights [...] Read more.
Electro-hydraulic actuators have witnessed significant development over recent years due to their remarkable abilities to perform complex and dynamic movements. Integrating such an actuator in humanoids is highly beneficial, leading to a humanoid capable of performing complex tasks requiring high force. This highlights the importance of safety, especially since high power output and safe interaction seem to be contradictory; the greater the robot’s ability to generate high dynamic movements, the more difficult it is to achieve safety, as this requires managing a large amount of motor energy before, during, and after the collision. No matter what technology or algorithm is used to achieve safety, none can be implemented without a stable control system. Hence, one of the main parameters remains the quality and reliability of the robot’s control architecture through handling a huge amount of data without system failure. This paper addresses the development of a stable control architecture that ensures, in later stages, that the safety algorithm is implemented correctly. The optimum control architecture to utilize and ensure the maximum benefit of electro-hydraulic actuators in humanoid robots is one of the important subjects in this field. For a stable and safe functioning of the humanoid, the development of the control architecture and the communication between the different components should adhere to some requirements such as stability, robustness, speed, and reduced complexity, ensuring the easy addition of numerous components. This paper presents the developed control architecture for an underdeveloped electro-hydraulic actuated humanoid. The proposed solution has the advantage of being a distributed, real-time, open-source, modular, and adaptable control architecture, enabling simple integration of numerous sensors and actuators to emulate human actions and safely interact with them. The contribution of this paper is an enhancement of the updated rate compared to other humanoids by 20% and by 40 % in the latency of the master. The results demonstrate the potential of using EtherCAT fieldbus and open-source software to develop a stable robot control architecture capable of integrating safety and security algorithms in later stages. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 2nd Edition)
Show Figures

Figure 1

9 pages, 507 KiB  
Article
Degree of Hamstring Extensibility and Its Relationship with Pelvic Tilt in Professional Cyclists
by José M. Muyor, Pedro A. López-Miñarro, Fernando Alacid and Daniel López-Plaza
Appl. Sci. 2024, 14(9), 3912; https://doi.org/10.3390/app14093912 (registering DOI) - 03 May 2024
Abstract
The cyclist’s posture is typically characterized by a trunk flexion position to reach the handlebar of the bike. The pelvis serves as the base of the spine, and its tilt has been associated with the degree of extensibility of the hamstring, particularly in [...] Read more.
The cyclist’s posture is typically characterized by a trunk flexion position to reach the handlebar of the bike. The pelvis serves as the base of the spine, and its tilt has been associated with the degree of extensibility of the hamstring, particularly in flexion postures of the trunk. The aim of this study was to determine whether, in professional cyclists, the degree of hamstring extensibility influences the pelvic tilt maintained while seated on the bicycle with support from the three handlebar grips of the road bike, as well as in other positions of the bicycle. To evaluate pelvic tilt, all participants were measured using the Spinal Mouse system. The results revealed statistically significant differences in pelvic tilt among the six positions assessed (p ≤ 0.05). Furthermore, the degree of hamstring extensibility of the hamstrings presented a strong and positive correlation with pelvic tilt in standing posture (r = 0.82), Sit-and-Reach (r = 0.76), and Toe-Touch (r = 0.88). However, the degree of hamstring extensibility showed no significant correlations with pelvic tilt in any posture maintained on the bicycle. Full article
(This article belongs to the Special Issue Research of Sports Medicine on Health Care)
13 pages, 2526 KiB  
Article
Toe Box Shape of Running Shoes Affects In-Shoe Foot Displacement and Deformation: A Randomized Crossover Study
by Chengyuan Zhu, Yang Song, Yufan Xu, Aojie Zhu, Julien S. Baker, Wei Liu and Yaodong Gu
Bioengineering 2024, 11(5), 457; https://doi.org/10.3390/bioengineering11050457 (registering DOI) - 03 May 2024
Abstract
Background: Long-distance running is popular but associated with a high risk of injuries, particularly toe-related injuries. Limited research has focused on preventive measures, prompting exploration into the efficacy of raised toe box running shoes. Purpose: This study aimed to investigate the effect of [...] Read more.
Background: Long-distance running is popular but associated with a high risk of injuries, particularly toe-related injuries. Limited research has focused on preventive measures, prompting exploration into the efficacy of raised toe box running shoes. Purpose: This study aimed to investigate the effect of running shoes with raised toe boxes on preventing toe injuries caused by distance running. Methods: A randomized crossover design involved 25 male marathon runners (height: 1.70 ± 0.02 m, weight: 62.6 + 4.5 kg) wearing both raised toe box (extended by 8 mm along the vertical axis and 3 mm along the sagittal axis) and regular toe box running shoes. Ground reaction force (GRF), in-shoe displacement, and degree of toe deformation (based on the distance change between the toe and the metatarsal head) were collected. Results: Wearing raised toe box shoes resulted in a significant reduction in vertical (p = 0.001) and antero–posterior (p = 0.015) ground reaction forces during the loading phase, with a notable increase in vertical ground reaction force during the toe-off phase (p < 0.001). In-shoe displacement showed significant decreased movement in the forefoot medial (p < 0.001) and rearfoot (medial: p < 0.001, lateral: p < 0.001) and significant increased displacement in the midfoot (medial: p = 0.002, lateral: p < 0.001). Impact severity on the hallux significantly decreased (p < 0.001), while impact on the small toes showed no significant reduction (p = 0.067). Conclusions: Raised toe box running shoes offer an effective means of reducing toe injuries caused by long-distance running. Full article
(This article belongs to the Special Issue Multiscale Modeling in Computational Biomechanics)
12 pages, 4325 KiB  
Article
Theoretical Modeling and Mechanical Characterization at Increasing Temperatures under Compressive Loads of Al Core and Honeycomb Sandwich
by Alessandra Ceci, Girolamo Costanza and Maria Elisa Tata
Metals 2024, 14(5), 544; https://doi.org/10.3390/met14050544 (registering DOI) - 03 May 2024
Abstract
This work investigates the mechanical behavior under out-of-plane compression of the Al core and honeycomb sandwich at increasing temperatures of up to 300 °C. After the first introductive theoretical modeling on room-temperature compressive behavior, the experimental results at increasing temperatures up to 300 [...] Read more.
This work investigates the mechanical behavior under out-of-plane compression of the Al core and honeycomb sandwich at increasing temperatures of up to 300 °C. After the first introductive theoretical modeling on room-temperature compressive behavior, the experimental results at increasing temperatures up to 300 °C are presented and discussed. The analysis of the results shows that peak stress, plateau stress, and specific absorbed energy gradually decrease as the temperature increases. The final densification occurs always at the same strain level (around 75%). Sandwich honeycomb test temperatures have been limited to 200 °C for bonding problems of the skin to the sandwich due to the glue. The experimental and modeling results agree well at room temperature as well at increasing temperatures. The results can provide useful information to choose base materials for greater energy absorption at increasing temperatures. Full article
Show Figures

Figure 1

11 pages, 286 KiB  
Article
Effect of Butorphanol-Medetomidine and Butorphanol-Dexmedetomidine on Echocardiographic Parameters during Propofol Anaesthesia in Dogs
by Andrej Bočkay, Carlos Fernando Agudelo, Mária Figurová, Nela Vargová and Alexandra Trbolová
Animals 2024, 14(9), 1379; https://doi.org/10.3390/ani14091379 (registering DOI) - 03 May 2024
Abstract
This study compared the effects of butorphanol-medetomidine and butorphanol-dexmedetomidine combinations on echocardiographic parameters during propofol anaesthesia in dogs. The dogs were randomly divided into two groups. In the butorphanol-medetomidine (BM) group, butorphanol (0.2 mg/kg) and medetomidine (15 μg/kg) were intravenously administered; in the [...] Read more.
This study compared the effects of butorphanol-medetomidine and butorphanol-dexmedetomidine combinations on echocardiographic parameters during propofol anaesthesia in dogs. The dogs were randomly divided into two groups. In the butorphanol-medetomidine (BM) group, butorphanol (0.2 mg/kg) and medetomidine (15 μg/kg) were intravenously administered; in the butorphanol-dexmedetomidine (BD) group, butorphanol (0.2 mg/kg) and dexmedetomidine (7.5 μg/kg) was used. Anaesthesia was induced with propofol and maintained with a constant-rate infusion of propofol (0.2 mg/kg/min). The echocardiographic parameters were assessed in conscious dogs (T0). Echocardiography was conducted again at 10 min post premedication (T1), followed by assessments at 30 (T2), 60 (T3), and 90 (T4) mins. The dogs were subjected to diagnostic procedures (radiography, computed tomography) under anaesthesia. A significant reduction in heart rate and cardiac output was noted in both groups at T1. There was no significant difference in the stroke volume between the BM and BD groups. The application of butorphanol-dexmedetomidine caused a significant increase in the left ventricular internal diameter in diastole and the diameter of the left atrium compared to that caused by butorphanol-medetomidine. This study documented that butorphanol-medetomidine and butorphanol-dexmedetomidine combinations caused similar reductions in heart rate and cardiac output in both groups. ‘New´ valvular regurgitation occurred following their administration. Full article
(This article belongs to the Special Issue Anaesthesia and Analgesia in Companion Animals)
18 pages, 5269 KiB  
Article
Combining Transcriptome- and Metabolome-Analyzed Differentially Expressed Genes and Differential Metabolites in Development Period of Caoyuanheimo-1 (Agaricus sp.) from Inner Mongolia, China
by Hai-yan Wang, Ya-nan Lu, Ya-jiao Li, Guo-qin Sun, Yuan Wu, Rui-qing Ji and Wei Yan
Horticulturae 2024, 10(5), 469; https://doi.org/10.3390/horticulturae10050469 (registering DOI) - 03 May 2024
Abstract
Caoyuanheimo-1 (Agaricus sp.) is a delectable mushroom native to Inner Mongolia, China, belonging to the Agaricus genus and valued for both its edible and medicinal properties. Although it has been cultivated to a certain extent, the molecular mechanisms regulating its development remain [...] Read more.
Caoyuanheimo-1 (Agaricus sp.) is a delectable mushroom native to Inner Mongolia, China, belonging to the Agaricus genus and valued for both its edible and medicinal properties. Although it has been cultivated to a certain extent, the molecular mechanisms regulating its development remain poorly understood. Building on our understanding of its growth and development conditions at various stages, we conducted transcriptomic and metabolomic studies to identify the differentially expressed genes (DEGs) and metabolites throughout its growth cycle. Simultaneously, we analyzed the synthesis pathways and identified several key genes involved in the production of terpenoids, which are secondary metabolites with medicinal value widely found in mushrooms. A total of 6843 unigenes were annotated, and 449 metabolites were detected in our study. Many of these metabolites and differentially expressed genes (DEGs) are involved in the synthesis and metabolism of amino acids, such as arginine, cysteine, methionine, and other amino acids, which indicates that the genes related to amino acid metabolism may play an important role in the fruiting body development of Caoyuanheimo-1. Succinic acid also showed a significant positive correlation with the transcriptional level changes of nine genes, including laccase-1 (TRINITY_DN5510_c0_g1), fruiting body protein SC3 (TRINITY_DN3577_c0_g1), and zinc-binding dihydrogenase (TRINITY_DN2099_c0_g1), etc. Additionally, seventeen terpenoids and terpenoid-related substances were identified, comprising five terpenoid glycosides, three monoterpenoids, two diterpenoids, one sesquiterpenoid, one sesterterpenoid, two terpenoid lactones, and three triterpenoids. The expression levels of the genes related to terpenoid synthesis varied across the three developmental stages. Full article
15 pages, 2439 KiB  
Article
Assessment of Anti-Prostate Cancer Activity among Four Seaweeds, with Focus on Caulerpa lentillifera J.Agardh
by Guan-James Wu and Pei-Wen Hsiao
Foods 2024, 13(9), 1411; https://doi.org/10.3390/foods13091411 (registering DOI) - 03 May 2024
Abstract
In response to a global shift towards health-conscious and environmentally sustainable food choices, seaweed has emerged as a focus for researchers due to its large-scale cultivation potential and the development of bioactive substances. This research explores the potential anticancer properties of seaweed extracts, [...] Read more.
In response to a global shift towards health-conscious and environmentally sustainable food choices, seaweed has emerged as a focus for researchers due to its large-scale cultivation potential and the development of bioactive substances. This research explores the potential anticancer properties of seaweed extracts, focusing on analyzing the impact of four common edible seaweeds in Taiwan on prostate cancer (PCa) cells’ activity. The study used bioassay-guided fractionation to extract Cl80 from various seaweeds with androgen receptor (AR)-inhibitory activity. Cl80 demonstrated effective suppression of 5α-dihydrotestosterone (DHT)-induced AR activity in 103E cells and attenuated the growth and prostate-specific antigen (PSA) protein expression in LNCaP and 22Rv1 cells. Additionally, Cl80 exhibited differential effects on various PCa cell lines. Concentrations above 5 μg/mL significantly inhibited LNCaP cell proliferation, while 22Rv1 cells were more resistant to Cl80. PC-3 cell proliferation was inhibited at 5 μg/mL but not completely at 50 μg/mL. A clonogenic assay showed that at a concentration of 0.5 μg/mL, the colony formation in LNCaP and PC-3 cells was significantly reduced, with a dose-dependent effect. Cl80 induced apoptosis in all PCa cell types, especially in LNCaP cells, with increased apoptotic cells observed at higher concentrations. Cl80 also decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner in all PCa cell lines. Furthermore, Cl80 suppressed the migration ability of PCa cells, with significant reductions observed in LNCaP, 22Rv1, and PC-3 cells at various concentrations. These compelling findings highlight the promising therapeutic potential of C. lentillifera J.Agardh and its isolated compound Cl80 in the treatment of PCa. Full article
Show Figures

Graphical abstract

13 pages, 2028 KiB  
Article
Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers
by Tiago Afonso Salgueiro, Rita Carvalho Veloso, João Ventura, Federico Danzi and Joana Oliveira
Batteries 2024, 10(5), 157; https://doi.org/10.3390/batteries10050157 (registering DOI) - 03 May 2024
Abstract
The global environmental crisis necessitates reliable, sustainable, and safe energy storage solutions. The current systems are nearing their capacity limits due to the reliance on conventional liquid electrolytes, which are fraught with stability and safety concerns, prompting the exploration of solid-state electrolytes, which [...] Read more.
The global environmental crisis necessitates reliable, sustainable, and safe energy storage solutions. The current systems are nearing their capacity limits due to the reliance on conventional liquid electrolytes, which are fraught with stability and safety concerns, prompting the exploration of solid-state electrolytes, which enable the integration of metal electrodes. Solid-state sodium-ion batteries emerge as an appealing option by leveraging the abundance, low cost, and sustainability of sodium. However, low ionic conductivity and high interfacial resistance currently prevent their widespread adoption. This study explores polyvinyl-based polymers as wetting agents for the NASICON-type NZSP (Na3Zr2Si2PO12) solid electrolyte, resulting in a combined system with enhanced ionic conductivity suitable for Na-ion solid-state full cells. Electrochemical impedance spectroscopy (EIS) performed on symmetric cells employing NZSP paired with different wetting agent compositions demonstrates a significant reduction in interfacial resistance with the use of poly(vinyl acetate)—(PVAc-) based polymers, achieving an impressive ionic conductivity of 1.31 mS cm−1 at room temperature, 63.8% higher than the pristine material, notably reaching 7.36 mS cm−1 at 90 °C. These results offer valuable insights into the potential of PVAc-based polymers for advancing high-performance solid-state sodium-ion batteries by reducing their total internal resistance. Full article
(This article belongs to the Collection Advances in Battery Materials)
Show Figures

Figure 1

19 pages, 9357 KiB  
Article
Quantification of Fundamental Textile Properties of Electronic Textiles Fabricated Using Different Techniques
by Arash M. Shahidi, Kalana Marasinghe, Parvin Ebrahimi, Jane Wood, Zahra Rahemtulla, Philippa Jobling, Carlos Oliveira, Tilak Dias and Theo Hughes-Riley
Textiles 2024, 4(2), 218-236; https://doi.org/10.3390/textiles4020013 (registering DOI) - 03 May 2024
Abstract
Electronic textiles (E-textiles) have experienced an increase in interest in recent years leading to a variety of new concepts emerging in the field. Despite these technical innovations, there is limited literature relating to the testing of E-textiles for some of the fundamental properties [...] Read more.
Electronic textiles (E-textiles) have experienced an increase in interest in recent years leading to a variety of new concepts emerging in the field. Despite these technical innovations, there is limited literature relating to the testing of E-textiles for some of the fundamental properties linked to wearer comfort. As such, this research investigates four fundamental properties of E-textiles: air permeability, drape, heat transfer, and moisture transfer. Three different types of E-textiles were explored: an embroidered electrode, a knitted electrode, and a knitted structure with an embedded electronic yarn. All of the E-textiles utilized the same base knitted fabric structure to facilitate a comparative study. The study used established textile testing practices to evaluate the E-textiles to ascertain the suitability of these standards for these materials. The study provides a useful point of reference to those working in the field and highlights some limitations of existing textile testing methodologies when applied to E-textiles. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Graphical abstract

8 pages, 1252 KiB  
Communication
SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism
by Ewelina Elert-Dobkowska, Iwona Stepniak, Wiktoria Radziwonik-Fraczyk, Amir Jahic, Christian Beetz and Anna Sulek
Int. J. Mol. Sci. 2024, 25(9), 5008; https://doi.org/10.3390/ijms25095008 (registering DOI) - 03 May 2024
Abstract
The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency [...] Read more.
The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of Alu sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in SPAST to map gene breakpoints and evaluate the mutation mechanism. The study group consisted of 69 individuals, including 50 SPG4 patients and 19 healthy relatives from 18 families. Affected family members from 17 families carried varying ranges of microrearrangements in the SPAST gene, while one individual had a single nucleotide variant in the 5′UTR of SPAST. To detect the breakpoints of the SPAST gene, long-range PCR followed by sequencing was performed. The breakpoint sequence was detected for five different intragenic SPAST deletions and one duplication, revealing Alu-mediated microhomology at breakpoint junctions resulting from non-allelic homologous recombination in these patients. Furthermore, SPAST gene expression analysis was performed using patient RNA samples extracted from whole blood. Quantitative real-time PCR tests performed in 14 patients suggest no expression of transcripts with microrearrangements in 5 of them. The obtained data indicate that nonsense-mediated decay degradation is not the only mechanism of hereditary spastic paraplegia in patients with SPAST microrearrangements. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1779 KiB  
Review
Flavonoid Oxidation Potentials and Antioxidant Activities-Theoretical Models Based on Oxidation Mechanisms and Related Changes in Electronic Structure
by Ante Miličević
Int. J. Mol. Sci. 2024, 25(9), 5011; https://doi.org/10.3390/ijms25095011 (registering DOI) - 03 May 2024
Abstract
Herein, I will review our efforts to develop a comprehensive and robust model for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA, of flavonoids that would, besides enabling fast and cheap prediction of Ep1 and AA [...] Read more.
Herein, I will review our efforts to develop a comprehensive and robust model for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA, of flavonoids that would, besides enabling fast and cheap prediction of Ep1 and AA for a flavonoid of interest, help us explain the relationship between Ep1, AA and electronic structure. The model development went forward with enlarging the set of flavonoids and, that way, we had to learn how to deal with the structural peculiarities of some of the 35 flavonoids from the final calibration set, for which the Ep1 measurements were all made in our laboratory. The developed models were simple quadratic models based either on atomic spin densities or differences in the atomic charges of the species involved in any of the three main oxidation mechanisms. The best model takes into account all three mechanisms of oxidation, single electron transfer-proton transfer (SET-PT), sequential proton loss electron transfer (SPLET) and hydrogen atom transfer (HAT), yielding excellent statistics (R2 = 0.970, S.E. = 0.043). Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling)
Show Figures

Figure 1

22 pages, 10574 KiB  
Article
Rats Orally Administered with Ethyl Alcohol for a Prolonged Time Show Histopathology of the Epididymis and Seminal Vesicle Together with Changes in the Luminal Metabolite Composition
by Chayakorn Taoto, Nareelak Tangsrisakda, Wipawee Thukhammee, Jutarop Phetcharaburanin, Sitthichai Iamsaard and Nongnuj Tanphaichitr
Biomedicines 2024, 12(5), 1010; https://doi.org/10.3390/biomedicines12051010 (registering DOI) - 03 May 2024
Abstract
Prolonged ethanol (EtOH) consumption is associated with male infertility, with a decreased spermatogenesis rate as one cause. The defective maturation and development of sperm during their storage in the cauda epididymis and transit in the seminal vesicle can be another cause, possibly occurring [...] Read more.
Prolonged ethanol (EtOH) consumption is associated with male infertility, with a decreased spermatogenesis rate as one cause. The defective maturation and development of sperm during their storage in the cauda epididymis and transit in the seminal vesicle can be another cause, possibly occurring before the drastic spermatogenesis disruption. Herein, we demonstrated that the cauda epididymis and seminal vesicle of rats, orally administered with EtOH under a regimen in which spermatogenesis was still ongoing, showed histological damage, including lesions, a decreased height of the epithelial cells and increased collagen fibers in the muscle layer, which implicated fibrosis. Lipid peroxidation (shown by malondialdehyde (MDA) levels) was observed, indicating that reactive oxygen species (ROS) were produced along with acetaldehyde during EtOH metabolism by CYP2E1. MDA, acetaldehyde and other lipid peroxidation products could further damage cellular components of the cauda epididymis and seminal vesicle, and this was supported by increased apoptosis (shown by a TUNEL assay and caspase 9/caspase 3 expression) in these two tissues of EtOH-treated rats. Consequently, the functionality of the cauda epididymis and seminal vesicle in EtOH-treated rats was impaired, as demonstrated by a decreases in 1H NMR-analyzed metabolites (e.g., carnitine, fructose), which were important for sperm development, metabolism and survival in their lumen. Full article
(This article belongs to the Special Issue Molecular Regulation of Spermatozoa)
Show Figures

Figure 1

14 pages, 1596 KiB  
Article
An Analysis of the Main Nutrient Components of the Fruits of Different Macadamia (Macadamia integrifolia) Cultivars in Rocky Desertification Areas and a Comprehensive Evaluation of the Mineral Element Contents
by Zhuanmiao Kang, Guangzheng Guo, Fengping He, Hui Zeng, Xinghao Tu and Wenlin Wang
Horticulturae 2024, 10(5), 468; https://doi.org/10.3390/horticulturae10050468 (registering DOI) - 03 May 2024
Abstract
This study aims to understand the main nutrient composition and comprehensively evaluate the differences in the mineral element contents of fruits of different macadamia cultivars, as well as screen good cultivars that are suitable for use in rocky desert mountains. Nine macadamia nut [...] Read more.
This study aims to understand the main nutrient composition and comprehensively evaluate the differences in the mineral element contents of fruits of different macadamia cultivars, as well as screen good cultivars that are suitable for use in rocky desert mountains. Nine macadamia nut cultivars were selected as test materials in rocky desert mountain orchards. The contents of crude fat, crude protein, and total soluble sugar in kernels and N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B in peels and kernels were determined, respectively. Then, the kernels’ mineral element contents were comprehensively evaluated based on principal component analysis. The results showed that the kernels were rich in crude fat, protein, and soluble sugar, with the crude fat content reaching 75% or greater, and the variation among cultivars was small. However, the variation in soluble sugar content was extensive. The content of mineral elements varied in different cultivars and parts of the fruit, with the average macronutrient content being K > N > Ca > P > Mg in the pericarp and N > K > P > Mg > Ca in the kernel, and the content of micronutrients in the pericarp and the kernel being Mn > Fe > Zn > Cu > B. By principal component analysis, the 10 mineral nutrient indexes were calculated as four principal components, with a cumulative contribution rate of 88.051%. Using the affiliation function value method and the calculation of the comprehensive evaluation value, the nine cultivars could be classified into three categories. The cultivar with the highest comprehensive evaluation value of the mineral element content was O.C. The one with the lowest value was H2, which indicated that O.C is a suitable variety for popularization in rocky desert mountainous areas. Stepwise regression analysis concluded that P, K, Fe, Mn, and Cu were the indicators significantly influencing the mineral element content of macadamia nuts and fruits in rocky desert mountains. Full article
(This article belongs to the Special Issue Fertilizer Usage and Nutrient Management in Horticultural Crops)
Show Figures

Figure 1

17 pages, 1870 KiB  
Article
Assessing the Interpretability–Performance Trade-Off of Artificial Neural Networks Using Sentinel Fish Health Data
by Patrick G. McMillan, Zeny Z. Feng, Tim J. Arciszewski, Robert Proner and Lorna E. Deeth
Environments 2024, 11(5), 94; https://doi.org/10.3390/environments11050094 (registering DOI) - 03 May 2024
Abstract
A number of sentinel species are regularly sampled from the environment near the Oil Sands Region (OSR) in Alberta, Canada. In particular, trout-perch are sampled as a proxy for the health of the aquatic ecosystem. As the development of the OSR began before [...] Read more.
A number of sentinel species are regularly sampled from the environment near the Oil Sands Region (OSR) in Alberta, Canada. In particular, trout-perch are sampled as a proxy for the health of the aquatic ecosystem. As the development of the OSR began before the environmental monitoring program was in place, there is currently no established measure for the baseline health of the local ecosystem. A common solution is to calculate normal ranges for fish endpoints. Observations found to be outside the normal range are then flagged, alerting researchers to the potential presence of stressors in the local environment. The quality of the normal ranges is dependent on the accuracy of the estimates used to calculate them. This paper explores the use of neural networks and regularized regression for improving the prediction accuracy of fish endpoints. We also consider the trade-off between the prediction accuracy and interpretability of each model. We find that neural networks can provide increased prediction accuracy, but this improvement in accuracy may not be worth the loss in interpretability in some ecological studies. The elastic net offers both good prediction accuracy and interpretability, making it a safe choice for many ecological applications. A hybridized method combining both the neural network and elastic net offers high prediction accuracy as well as some interpretability, and therefore it is the recommended method for this application. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

20 pages, 5209 KiB  
Article
Four Storm Surge Cases on the Coast of São Paulo, Brazil: Weather Analyses and High-Resolution Forecasts
by Sin Chan Chou, Marcely Sondermann, Diego José Chagas, Jorge Luís Gomes, Celia Regina de Gouveia Souza, Matheus Souza Ruiz, Alexandra F. P. Sampaio, Renan Braga Ribeiro, Regina Souza Ferreira, Priscila Linhares da Silva and Joseph Harari
J. Mar. Sci. Eng. 2024, 12(5), 771; https://doi.org/10.3390/jmse12050771 (registering DOI) - 03 May 2024
Abstract
The coast of São Paulo, Brazil, is exposed to storm surges that can cause damage and floods. These storm surges are produced by slowly traveling cyclone–anticyclone systems. The motivation behind this work was the need to evaluate high-resolution forecasts of the mean sea-level [...] Read more.
The coast of São Paulo, Brazil, is exposed to storm surges that can cause damage and floods. These storm surges are produced by slowly traveling cyclone–anticyclone systems. The motivation behind this work was the need to evaluate high-resolution forecasts of the mean sea-level pressure and 10 m winds, which are the major drivers of the wave model. This work is part of the activity in devising an early warning system for São Paulo coastal storm surges. For the evaluation, four case studies that had a major impact on the coast of São Paulo in 2020 were selected. Because storm surges that reach the coast may cause coastal flooding, precipitation forecasts were also evaluated. The mesoscale Eta model produces forecasts with a 5 km resolution for up to an 84 h lead time. The model was set up in a region that covers part of southeast and south Brazil. The ERA5 reanalysis was used to describe the large-scale synoptic conditions and to evaluate the weather forecasts. The cases showed a region in common between 35° S, 40° S and 35° W, 45° W where the low-pressure center deepened rapidly on the day before the highest waves reached the coast of São Paulo, with a mostly eastward, rather than northeastward, displacement of the associated surface cyclone and minimal or no tilt with height. The winds on the coast were the strongest on the day before the surge reached the coast of São Paulo, and then the winds weakened on the day of the maximum wave height. The pattern of the mean sea-level pressure and 10 m wind in the 36 h, 60 h, and 84 h forecasts agreed with the ERA5 reanalysis, but the pressure was slightly underestimated. In contrast, the winds along the coast were slightly overestimated. The 24 h accumulated precipitation pattern was also captured by the forecast, but was overestimated, especially at high precipitation rates. The 36 h forecasts showed the smallest error, but the growth in the error for longer lead times was small, which made the 84 h forecasts useful for driving wave models and other local applications, such as an early warning system. Full article
(This article belongs to the Special Issue Real-Time Forecasting of Waves and Storm Surge)
8 pages, 204 KiB  
Article
A Qualitative Review of Patient Feedback for the OPAT (Outpatient Antimicrobial Therapy) Service in Bristol
by Shuchita Soni, Irasha Harding, Carys Jones, Sue Wade, Jenna Norton and Jennifer Siobhan Pollock
Antibiotics 2024, 13(5), 420; https://doi.org/10.3390/antibiotics13050420 (registering DOI) - 03 May 2024
Abstract
Outpatient parenteral antimicrobial therapy (OPAT) aims to deliver intravenous antimicrobials to medically stable patients with complex infections outside of a hospital setting. There is good evidence to demonstrate the safety and efficacy of OPAT in the literature. Anecdotally, the feedback from patients has [...] Read more.
Outpatient parenteral antimicrobial therapy (OPAT) aims to deliver intravenous antimicrobials to medically stable patients with complex infections outside of a hospital setting. There is good evidence to demonstrate the safety and efficacy of OPAT in the literature. Anecdotally, the feedback from patients has been positive, but only a few studies evaluate this topic in detail. The aim of this qualitative study was to examine patients’ experiences with and feedback on the OPAT service in Bristol, United Kingdom, which was established in 2021. A total of 92 patient feedback surveys were reviewed retrospectively, and thematic analysis was undertaken. Feedback from OPAT patients in our centre was overwhelmingly positive. The key themes identified were benefits to the patients, their friends, and family, and positive feedback about OPAT staff. The mean overall satisfaction score for OPAT was 9.6 out of 10. Areas to improve included communication between the OPAT and parent teams, improving OPAT capacity, and expansion of the service. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
15 pages, 2920 KiB  
Article
Machine Learning and Weather Model Combination for PV Production Forecasting
by Amedeo Buonanno, Giampaolo Caputo, Irena Balog, Salvatore Fabozzi, Giovanna Adinolfi, Francesco Pascarella, Gianni Leanza, Giorgio Graditi and Maria Valenti
Energies 2024, 17(9), 2203; https://doi.org/10.3390/en17092203 (registering DOI) - 03 May 2024
Abstract
Accurate predictions of photovoltaic generation are essential for effectively managing power system resources, particularly in the face of high variability in solar radiation. This is especially crucial in microgrids and grids, where the proper operation of generation, load, and storage resources is necessary [...] Read more.
Accurate predictions of photovoltaic generation are essential for effectively managing power system resources, particularly in the face of high variability in solar radiation. This is especially crucial in microgrids and grids, where the proper operation of generation, load, and storage resources is necessary to avoid grid imbalance conditions. Therefore, the availability of reliable prediction models is of utmost importance. Authors address this issue investigating the potential benefits of a machine learning approach in combination with photovoltaic power forecasts generated using weather models. Several machine learning methods have been tested for the combined approach (linear model, Long Short-Term Memory, eXtreme Gradient Boosting, and the Light Gradient Boosting Machine). Among them, the linear models were demonstrated to be the most effective with at least an RMSE improvement of 3.7% in photovoltaic production forecasting, with respect to two numerical weather prediction based baseline methods. The conducted analysis shows how machine learning models can be used to refine the prediction of an already established PV generation forecast model and highlights the efficacy of linear models, even in a low-data regime as in the case of recently established plants. Full article
(This article belongs to the Special Issue Climate Changes and the Impacts on Power and Energy Systems)
Show Figures

Figure 1

23 pages, 5718 KiB  
Article
Influence of Settlement on Base Resistance of Long Piles in Soft Soil—Field and Machine Learning Assessments
by Thanh T. Nguyen, Viet D. Le, Thien Q. Huynh and Nhu H.T. Nguyen
Geotechnics 2024, 4(2), 447-469; https://doi.org/10.3390/geotechnics4020025 (registering DOI) - 03 May 2024
Abstract
Understanding the role that settlement can have on the base resistance of piles is a crucial matter in the design and safety control of deep foundations under various buildings and infrastructure, especially for long to super-long piles (60–90 m length) in soft soil. [...] Read more.
Understanding the role that settlement can have on the base resistance of piles is a crucial matter in the design and safety control of deep foundations under various buildings and infrastructure, especially for long to super-long piles (60–90 m length) in soft soil. This paper presents a novel assessment of this issue by applying explainable machine learning (ML) techniques to a robust database (1131 datapoints) of fully instrumented pile tests across 37 real-life projects in the Mekong Delta. The analysis of data based on conventional methods shows distinct responses of long piles to rising settlement, as compared to short piles. The base resistance can rapidly develop at a small settlement threshold (0.015–0.03% of pile’s length) and contribute up to 50–55% of the total bearing capacity in short piles, but it slowly rises over a wide range of settlement to only 20–25% in long piles due to considerable loss of settlement impact over the depth. Furthermore, by leveraging the advantages of ML methods, the results significantly enhance our understanding of the settlement–base resistance relationship through explainable computations. The ML-based prediction method is compared with popular practice codes for pile foundations, further attesting to the high accuracy and reliability of the newly established model. Full article
11 pages, 9339 KiB  
Article
Enhanced Thermoelectric Performance of Na0.55CoO2 Ceramics Doped by Transition and Heavy Metal Oxides
by Natalie S. Krasutskaya, Andrei I. Klyndyuk, Lyudmila E. Evseeva, Nikolai N. Gundilovich, Ekaterina A. Chizhova and Andrei V. Paspelau
Solids 2024, 5(2), 267-277; https://doi.org/10.3390/solids5020017 (registering DOI) - 03 May 2024
Abstract
Using the solid-state reactions method Na0.55(Co,M)O2 (M = Cr, Ni, Zn, W, and Bi) ceramics were prepared and their crystal structure, microstructure, electrophysical, thermophysical, and thermoelectric properties were studied. Doping of Na0.55CoO2 by transition [...] Read more.
Using the solid-state reactions method Na0.55(Co,M)O2 (M = Cr, Ni, Zn, W, and Bi) ceramics were prepared and their crystal structure, microstructure, electrophysical, thermophysical, and thermoelectric properties were studied. Doping of Na0.55CoO2 by transition or heavy metal oxides led to the increase in the grain size of ceramics, a decrease in electrical resistivity and thermal diffusivity values, and a sharp increase in the Seebeck coefficient, which resulted in essential enhancement of their thermoelectric properties. The largest power factor (1.04 mW/(m·K2) at 1073 K) and figure of merit (0.702 at 1073 K) among the studied samples possessed the Na0.55Co0.9Bi0.1O2 compound, which also demonstrated the highest values of the Seebeck coefficient (666 μV/K at 1073 K). The obtained results show that the doping of layered sodium cobaltite by different metal oxides allows for improving its stability, microstructure, and functional properties, which proves the effectiveness of the doping strategy for developing new thermoelectric oxides with enhanced thermoelectric performance. Full article
Show Figures

Graphical abstract

19 pages, 1581 KiB  
Review
Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor
by Harika Nagandla and Christoforos Thomas
Receptors 2024, 3(2), 182-200; https://doi.org/10.3390/receptors3020010 (registering DOI) - 03 May 2024
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until [...] Read more.
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop