The 2023 MDPI Annual Report has
been released!
 
18 pages, 21225 KiB  
Article
Thought to Be Extinct, but Still Alive Today: The Miocene Genus Primascena Klimaszewsi, 1997 (Hemiptera: Psyllidae) in the Light of Two Extant Species from Brazil
by Daniel Burckhardt and Dalva L. Queiroz
Insects 2024, 15(6), 382; https://doi.org/10.3390/insects15060382 - 23 May 2024
Abstract
Fossils can document the morphological diversification through time and date lineages, providing relevant characters are preserved. Primascena Klimaszewsi, 1997 was erected for P. subita Klimaszewsi, 1997 on the basis of a single, partly damaged male from Dominican amber. Originally assigned to Rhinocolidae: Paurocephalinae, [...] Read more.
Fossils can document the morphological diversification through time and date lineages, providing relevant characters are preserved. Primascena Klimaszewsi, 1997 was erected for P. subita Klimaszewsi, 1997 on the basis of a single, partly damaged male from Dominican amber. Originally assigned to Rhinocolidae: Paurocephalinae, the genus was subsequently transferred to Psyllidae: Aphalaroidinae. Recently, two undescribed species resembling the fossil species were discovered in Brazil (Mato Grosso do Sul), allowing a detailed morphological study of adults and immatures. Based on the morphological study, a revised diagnosis of the genus is provided, including the previously unknown female and fifth instar immatures. Primascena subita is redescribed and P. empsycha n. spec. and P. ruprechtiae n. spec. are formally described and illustrated. An identification key is provided for the species of Primascena. A cladistic morphological analysis supports the placement of the two new species in Primascena, and of this genus in the Aphalaroidinae. It is sister to all but Aphalaroida, though with little support. The two Brazilian species develop on Ruprechtia spp. (Polygonaceae: Eriogonoideae), an unusual psyllid host. Immatures of P. ruprechtiae are free-living on the lower leaf face and do not induce galls. Full article
(This article belongs to the Special Issue Phylogeny and Morphological Evolution of Hemiptera)
Show Figures

Figure 1

16 pages, 641 KiB  
Review
Knockout Genes in Bowel Anastomoses: A Systematic Review of Literature Outcomes
by Georgios Geropoulos, Kyriakos Psarras, Georgios Koimtzis, Massimiliano Fornasiero, Elissavet Anestiadou, Vasileios Geropoulos, Anna Michopoulou, Maria Papaioannou, Kokkona Kouzi-Koliakou and Ioannis Galanis
J. Pers. Med. 2024, 14(6), 553; https://doi.org/10.3390/jpm14060553 - 23 May 2024
Abstract
Background: The intestinal wound healing process is a complex event of three overlapping phases: exudative, proliferative, and remodeling. Although some mechanisms have been extensively described, the intestinal healing process is still not fully understood. There are some similarities but also some differences compared [...] Read more.
Background: The intestinal wound healing process is a complex event of three overlapping phases: exudative, proliferative, and remodeling. Although some mechanisms have been extensively described, the intestinal healing process is still not fully understood. There are some similarities but also some differences compared to other tissues. The aim of this systematic review was to summarize all studies with knockout (KO) experimental models in bowel anastomoses, underline any recent knowledge, and clarify further the cellular and molecular mechanisms of the intestinal healing process. A systematic review protocol was performed. Materials and methods: Medline, EMBASE, and Scopus were comprehensively searched. Results: a total of eight studies were included. The silenced genes included interleukin-10, the four-and-one-half LIM domain-containing protein 2 (FHL2), cyclooxygenase-2 (COX-2), annexin A1 (ANXA-1), thrombin-activatable fibrinolysis inhibitor (TAFI), and heparin-binding epidermal growth factor (HB-EGF) gene. Surgically, an end-to-end bowel anastomosis was performed in the majority of the studies. Increased inflammatory cell infiltration in the anastomotic site was found in IL-10-, annexin-A1-, and TAFI-deficient mice compared to controls. COX-1 deficiency showed decreased angiogenesis at the anastomotic site. Administration of prostaglandin E2 in COX-2-deficient mice partially improved anastomotic leak rates, while treatment of ANXA1 KO mice with Ac2-26 nanoparticles reduced colitis activity and increased weight recovery following surgery. Conclusions: our findings provide new insights into improving intestinal wound healing by amplifying the aforementioned genes using appropriate gene therapies. Further research is required to clarify further the cellular and micromolecular mechanisms of intestinal healing. Full article
Show Figures

Figure 1

14 pages, 5537 KiB  
Article
Differential Antioxidant Enzyme Gene Expression and Functional Analysis of Pyridaben-Susceptible and -Resistant Strains of Tetranychus truncatus (Acari: Tetranychidae) under High Temperature Stress
by Liwen Song, Cailan Yu, Wenliang Li, Lei Liu, Qinzhe Sun, Huan Liu and Senshan Wang
Insects 2024, 15(6), 381; https://doi.org/10.3390/insects15060381 - 23 May 2024
Abstract
Tetranychus truncatus (Acari: Tetranychidae) has caused serious economic losses on some crops (soybean, corn, and cotton) in China, and has developed resistance to most acaricides. Our laboratory study found that T. truncatus was resistant to pyridaben and also adapted to high temperature (34–40 [...] Read more.
Tetranychus truncatus (Acari: Tetranychidae) has caused serious economic losses on some crops (soybean, corn, and cotton) in China, and has developed resistance to most acaricides. Our laboratory study found that T. truncatus was resistant to pyridaben and also adapted to high temperature (34–40 °C). High temperature stress may cause arthropods to produce a large amount of reactive oxygen species (ROS), causing oxidative damage. Antioxidant enzymes, as the main antioxidants, can reduce the damage caused by excessive ROS in arthropods. In order to study the adaptation mechanism of the pyridaben-resistant strain of T. truncatus to high temperature and the role of antioxidant enzyme genes under high temperature stress, four antioxidant enzyme genes, TtSOD, TtPOD3, TtPOD4, and TtGSTs2, were screened according to the transcriptome sequencing data of pyridaben-susceptible and -resistant strains in T. truncatus. Firstly, the phylogeny and structure analyses of these four genes were carried out. Then, real-time quantitative PCR (RT-qPCR) technology was used to analyze the gene expression patterns of antioxidant enzymes in two strains of T. truncatus at three different high temperature ranges (34 °C, 38 °C, and 42 °C). The results showed that the expression levels of four antioxidant enzyme genes of two strains of T. truncatus were induced by high temperature stress, and the expression levels of antioxidant enzyme genes were significantly different in each development state. The gene expression of antioxidant enzyme genes in resistant strains at the adult stage was significantly higher than that in susceptible strains. After the TtSOD and TtPOD4 genes of adult mites of the resistant strain were silenced by RNA interference (RNAi) technology, the mortality rate of mites with TtPOD4 gene silencing reached 41.11% after 96 h at 34 °C, which was significantly higher than that of the control and TtSOD gene silencing. It has been confirmed that the TtPOD4 gene plays a key role in the adaptation of pyridaben-resistant strain of T. truncatus to high temperature. It lays a theoretical foundation for revealing the thermal adaptation mechanism of T. truncatus. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

27 pages, 7911 KiB  
Article
Development of a Digital Model for Predicting the Variation in Bearing Preload and Dynamic Characteristics of a Milling Spindle under Thermal Effects
by Tria Mariz Arief, Wei-Zhu Lin, Muhamad Aditya Royandi and Jui-Pin Hung
Lubricants 2024, 12(6), 185; https://doi.org/10.3390/lubricants12060185 - 23 May 2024
Abstract
The spindle tool is an important module of the machine tool. Its dynamic characteristics directly affect the machining performance, but it could also be affected by thermal deformation and bearing preload. However, it is difficult to detect the change in the bearing preload [...] Read more.
The spindle tool is an important module of the machine tool. Its dynamic characteristics directly affect the machining performance, but it could also be affected by thermal deformation and bearing preload. However, it is difficult to detect the change in the bearing preload through sensory instruments. Therefore, this study aimed to establish a digital thermal–mechanical model to investigate the thermal-induced effects on the spindle tool system. The technologies involved include the following: Run-in experiments of the milling spindle at different speeds, the establishment of the thermal–mechanical model, identification of the thermal parameters, and prediction of the thermal-induced preload of bearings in the spindle. The speed-dependent thermal parameters were identified from thermal analysis through comparisons with transient temperature history, which were further used to model the thermal effects on the bearing preload and dynamic compliance of the milling spindle under different operating speeds. Current results of thermal–mechanical analysis also indicate that the internal temperature of the bearing can reach 40 °C, and the thermal elongation of the spindle tool is about 27 µm. At the steady state temperature of 15,000 rpm, the bearing preload is reduced by 40%, which yields a decrease in the bearing rigidity by approximately 16%. This, in turn, increases the dynamic compliance of the spindle tool by 22%. Comparisons of the experimental measurements and modeling data show that the variation in bearing preload substantially affects the modal frequency and stiffness of the spindle. These findings demonstrated that the proposed digital spindle model accurately mirrors real spindle characteristics, offering a foundation for monitoring performance changes and refining design, especially in bearing configuration and cooling systems. Full article
(This article belongs to the Special Issue New Conceptions in Bearing Lubrication and Temperature Monitoring)
Show Figures

Figure 1

23 pages, 5590 KiB  
Article
In-Depth Exploration of Design and Analysis for PM-Assisted Synchronous Reluctance Machines: Implications for Light Electric Vehicles
by Cristina Adăscăliței, Radu Andrei Marțiș, Petros Karaisas and Claudia Steluța Marțiș
Machines 2024, 12(6), 361; https://doi.org/10.3390/machines12060361 - 23 May 2024
Abstract
In electric or hybrid vehicles’ propulsion systems, Permanent Magnet-Assisted Synchronous Reluctance Machines represent a viable alternative to Permanent Magnet Synchronous Machines. Based on previous research work, the present paper proposes, designs, and optimizes two ferrite PMaSynRM topologies, analyzed against a reference machine (also [...] Read more.
In electric or hybrid vehicles’ propulsion systems, Permanent Magnet-Assisted Synchronous Reluctance Machines represent a viable alternative to Permanent Magnet Synchronous Machines. Based on previous research work, the present paper proposes, designs, and optimizes two ferrite PMaSynRM topologies, analyzed against a reference machine (also PMaSynRM) with improved torque ripple content, based on similar specifications and dimensional constraints. Considering the trend of increasing the DC voltage level in electric and hybrid vehicles, the optimal topology is included in an analysis of the DC voltage level impact on the design and performances of PMSynRM. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

20 pages, 859 KiB  
Article
Local Influence for the Thin-Plate Spline Generalized Linear Model
by Germán Ibacache-Pulgar, Pablo Pacheco, Orietta Nicolis and Miguel Angel Uribe-Opazo
Axioms 2024, 13(6), 346; https://doi.org/10.3390/axioms13060346 - 23 May 2024
Abstract
Thin-Plate Spline Generalized Linear Models (TPS-GLMs) are an extension of Semiparametric Generalized Linear Models (SGLMs), because they allow a smoothing spline to be extended to two or more dimensions. This class of models allows modeling a set of data in which it is [...] Read more.
Thin-Plate Spline Generalized Linear Models (TPS-GLMs) are an extension of Semiparametric Generalized Linear Models (SGLMs), because they allow a smoothing spline to be extended to two or more dimensions. This class of models allows modeling a set of data in which it is desired to incorporate the non-linear joint effects of some covariates to explain the variability of a certain variable of interest. In the spatial context, these models are quite useful, since they allow the effects of locations to be included, both in trend and dispersion, using a smooth surface. In this work, we extend the local influence technique for the TPS-GLM model in order to evaluate the sensitivity of the maximum penalized likelihood estimators against small perturbations in the model and data. We fit our model through a joint iterative process based on Fisher Scoring and weighted backfitting algorithms. In addition, we obtained the normal curvature for the case-weight perturbation and response variable additive perturbation schemes, in order to detect influential observations on the model fit. Finally, two data sets from different areas (agronomy and environment) were used to illustrate the methodology proposed here. Full article
(This article belongs to the Special Issue Mathematical Models and Simulations II)
26 pages, 3875 KiB  
Review
How Was the Late Neogene Red Clay Formed in the Ordos Plateau (Northwest China)?
by Xu Lin, Chengwei Hu, Ruitong Wu, Lishuang Qin, Runzhi Xiang, Zhengyang An and Hang Lu
Minerals 2024, 14(6), 537; https://doi.org/10.3390/min14060537 - 23 May 2024
Abstract
Eolian sediments are extensively distributed across the Earth’s surface, and their formation is intricately linked to climate change, tectonic activity, and topographic features. Consequently, the investigation of eolian sediments bears great geological significance. The northwest region of China is renowned for hosting the [...] Read more.
Eolian sediments are extensively distributed across the Earth’s surface, and their formation is intricately linked to climate change, tectonic activity, and topographic features. Consequently, the investigation of eolian sediments bears great geological significance. The northwest region of China is renowned for hosting the most extensive and thickest Late Miocene–Pliocene red clay deposits globally. Nonetheless, scholars have yet to reach a consensus regarding the precise formation processes of these red clays. The identification of the source region of the red clays is crucial for comprehending their formation mechanism. The correlation of zircon U-Pb age spectra is a frequently utilized method for determining the provenance of eolian sediments. In this study, we compared the previously published zircon U-Pb ages (n = 12,918) of the Late Miocene–Pliocene red clays in the Ordos Plateau with those from the potential provenance regions (n = 24,280). The analysis, supported by the tectonic and climatic background of the region, revealed that the Late Miocene–Pliocene red clay in the Ordos Plateau originates predominantly from the Yellow and Wei rivers, with a minor contribution from the weathering of bedrock in the western North China Craton. The transport of these detrital materials by the East Asian winter monsoon is impeded by the presence of the Qinling and Taihang Shan, resulting in their deposition on the flat surface of the Ordos Plateau. This development of red clay is consistent with the proximal accumulation model, illustrating how the hydrosphere, atmosphere, and lithosphere interacted to shape the red clay deposits during the Late Miocene and Pliocene periods in the Ordos Plateau. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
8 pages, 7073 KiB  
Case Report
Uterine Arteriovenous Malformation: Diagnostic and Therapeutic Challenges
by Luisa Clavero Bertomeu, Laura Castro Portillo and Cristina Fernández-Conde de Paz
Diagnostics 2024, 14(11), 1084; https://doi.org/10.3390/diagnostics14111084 - 23 May 2024
Abstract
Uterine arteriovenous malformations are a rare cause of puerperal haemorrhage, but their incidence is increasing due to both improved diagnosis and the more frequent use of uterine surgery in recent years. The use of ultrasound, both B-mode and Doppler, is recommended for diagnosis [...] Read more.
Uterine arteriovenous malformations are a rare cause of puerperal haemorrhage, but their incidence is increasing due to both improved diagnosis and the more frequent use of uterine surgery in recent years. The use of ultrasound, both B-mode and Doppler, is recommended for diagnosis and follow-up, as it has been shown to be the simplest and most cost-effective method. Endometrial thickening associated with an anechoic and vascular intramiometrial structure is very useful for diagnosis and can help to exclude other causes of dysfunctional bleeding. Pulsed Doppler shows low-resistance vessels and high pulsatility indices with a high peak systolic velocity (PSV). In a healthy myometrium, the vessels have a peak systolic velocity of 9–40 cm/s and a resistance index between 0.6 and 0.8, whereas in the case of AVMs, the systolic and diastolic velocities are 4–6 times higher (PSV 25–110 cm/s with a mean of 60 cm/s and a resistance index of 0.27–0.75 with a mean of 0.41). For treatment, we must individualise each case, taking into account haemodynamic stability, the patient’s reproductive wishes, and the severity of the AVM as assessed by its size and PSV. Full article
(This article belongs to the Special Issue Current Challenges and Perspectives of Ultrasound)
Show Figures

Figure 1

23 pages, 8155 KiB  
Article
Space-Time Variability of Drought Characteristics in Pernambuco, Brazil
by Ivanildo Batista da Silva Júnior, Lidiane da Silva Araújo, Tatijana Stosic, Rômulo Simões Cezar Menezes and Antonio Samuel Alves da Silva
Water 2024, 16(11), 1490; https://doi.org/10.3390/w16111490 - 23 May 2024
Abstract
Drought is the most complex natural hazard that can occur over large spatial scales and during long time periods. It affects more people than any other natural hazard, particularly in areas with a dry climate, such as the semiarid region of the Brazilian [...] Read more.
Drought is the most complex natural hazard that can occur over large spatial scales and during long time periods. It affects more people than any other natural hazard, particularly in areas with a dry climate, such as the semiarid region of the Brazilian Northeast (NEB), which is the world’s most populated dry area. In this work, we analyzed trends and the spatial distribution of drought characteristics (frequency, affected area, and intensity) based on the Standardized Precipitation Index (SPI) on annual (SPI-12) and seasonal (SPI-3) scales. The study used monthly precipitation data recorded between 1962 and 2012 at 133 meteorological stations in Pernambuco State, Brazil, which is located in the eastern part of the NEB and has more than 80% of its territory characterized by a semiarid climate. The regions of Sertão, Agreste, and Zona da Mata of Pernambuco were considered for comparison. The Mann–Kendall and Sen’s slope tests were used to detect the trend and determine its magnitude, respectively. The results indicated that annual droughts in the state of Pernambuco became more frequent from the 1990s onwards, with summer having the greatest spatial coverage, followed by winter, autumn, and spring. Sertão presented a greater number of stations with a significant positive trend in drought frequency. Regarding the drought-affected area, global events occurred in a greater number of years on an annual scale and during the summer. Trend analysis pointed to an increase in areas with drought events on both scales. As for the drought intensity, the entire state of Pernambuco experienced drought events with high intensity during the autumn. The relationship between drought characteristics indicated an increase in the affected area as the result of an increase in drought intensity. Full article
(This article belongs to the Special Issue Drought Monitoring and Risk Assessment)
Show Figures

Figure 1

12 pages, 2013 KiB  
Article
Stable Isotope Hydrology of Karst Groundwaters in Romania
by Renata Feher, Carmen-Andreea Bădăluță, Traian Brad, Călin Drăgan, Virgil Drăgușin, Dragoș Ștefan Măntoiu, Aurel Perșoiu and Maria-Laura Tîrlă
Water 2024, 16(11), 1489; https://doi.org/10.3390/w16111489 - 23 May 2024
Abstract
In this article we present the first investigation of the stable isotope composition of groundwater in Romania, East-Central Europe, with a focus on the karst areas. Our aim is twofold: (1) to provide a countrywide map with the distribution of stable oxygen and [...] Read more.
In this article we present the first investigation of the stable isotope composition of groundwater in Romania, East-Central Europe, with a focus on the karst areas. Our aim is twofold: (1) to provide a countrywide map with the distribution of stable oxygen and hydrogen isotope ratios in groundwater, and (2) to assess the recharge patterns of karst water. We collected more than 600 water samples from springs and wells across Romania for stable isotope analyses and monitored in detail the stable isotope composition of the waters as they pass through five cave systems. Our data show a spatial distribution of the stable isotope composition of the groundwater with low values in the mountainous area and high values in the surrounding lowlands and the central Transylvanian Depression. However, waters in karst areas induce departures from this distribution, resulting from the fast (hours to days) transfer of waters from high (ponor) to low (spring) altitudes. Water emerging from the karst springs has generally lower δ values than before sinking through the ponors, thus indicating a substantial contribution of winter recharge through diffuse infiltration and seepage. This contribution results in overall dilution of the water entering through ponors, likely resulting in changes in the chemical composition of the water and diluting potential pollutants. Our data call for careful separation between karst and non-karst spring/well waters, as indiscriminate common treatment might lead to erroneous interpretations. Full article
23 pages, 10685 KiB  
Article
Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019)
by Filip Pawlak, Krystyna Koziol, Wanda Wilczyńska-Michalik, Mikołaj Worosz, Marek Michalik, Sara Lehmann-Konera and Żaneta Polkowska
Water 2024, 16(11), 1486; https://doi.org/10.3390/w16111486 - 23 May 2024
Abstract
The character of atmospheric pollution and its impact on surface waters may vary substantially in space, and hence, we add a potentially important location for the studies of atmospheric air pollution to the map of the High Arctic. We have investigated the anthropogenic [...] Read more.
The character of atmospheric pollution and its impact on surface waters may vary substantially in space, and hence, we add a potentially important location for the studies of atmospheric air pollution to the map of the High Arctic. We have investigated the anthropogenic particle characteristics and selected persistent organic pollutant concentrations, in a priorly unmonitored location in the Arctic (Svalbard), exposed to a climatic gradient. Single-particle analysis of PM indicates that besides the prevailing natural aerosol particles, anthropogenic ones were present. The likely anthropogenic origin of some particles was established for spherical Fe-rich or aluminosilicate particles formed in high-temperature processes or metal-rich particles of the chemical composition corresponding to industrial products and atypical for natural minerals; soot, tar balls, and secondary sulfate were also likely of anthropogenic origin. Some of the observed anthropogenic particles could only come from remote industrial sources. POP concentrations indicated a background of LRAT, consistent with the ΣPCB concentrations and volatility profile. However, the ΣDDX composition indicating aged sources and an order of magnitude higher concentrations of both ΣDDXs and ΣHCHs than at other High Arctic monitoring stations indicate their potential source in two types of re-emission from secondary sources, i.e., from seawater and snowpack, respectively. Full article
Show Figures

Figure 1

28 pages, 5531 KiB  
Article
Study on the Characteristics and Evolution Laws of Seepage Damage in Red Mud Tailings Dams
by Shiqi Chang, Xiaoqiang Dong, Xiaofeng Liu, Xin Xu, Haoru Zhang and Yinhao Huang
Water 2024, 16(11), 1487; https://doi.org/10.3390/w16111487 - 23 May 2024
Abstract
Seepage damage is a significant factor leading to red mud tailings dam failures. Laboratory tests on seepage damage were conducted to investigate the damage characteristics and distribution laws of red mud tailings dams, including soil pressure, infiltration line, pore water pressure, dam displacement, [...] Read more.
Seepage damage is a significant factor leading to red mud tailings dam failures. Laboratory tests on seepage damage were conducted to investigate the damage characteristics and distribution laws of red mud tailings dams, including soil pressure, infiltration line, pore water pressure, dam displacement, and crack evolution. The findings revealed the seepage damage mechanisms of red mud slopes, offering insights for the safe operation and seepage damage prevention of red mud tailings dams. The results showed that the higher the water level is in the red mud tailings dam, the higher position the infiltration line is when it reaches the slope face. At the highest infiltration line point of the slope surface, the increase of pore water pressure is the highest and the change of horizontal soil pressure is the highest. Consequently, increased pore water pressure leads to decreased effective stress and shear strength, increasing the susceptibility to damage. Cracks resulting from seepage damage predominantly form below the infiltration line; the higher the infiltration lines is on the slope surface, the higher the position of the main crack formations is. The displacement of the dam body primarily occurs due to the continuous expansion of major cracks; the higher the infiltration lines are on the slope surface, the larger the displacement of the dam body is. Full article
(This article belongs to the Special Issue Research Advances in Hydraulic Structure and Geotechnical Engineering)
28 pages, 1880 KiB  
Article
Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins
by Talent Diotrefe Banda and Muthukrishnavellaisamy Kumarasamy
Water 2024, 16(11), 1485; https://doi.org/10.3390/w16111485 - 23 May 2024
Abstract
Artificial neural networks (ANNs) are powerful data-oriented “black-box” algorithms capable of assessing and delineating linear and multifaceted non-linear correlations between the dependent and explanatory variables. Through the years, neural networks have proven to be effective and robust analytical techniques for establishing artificial intelligence-based [...] Read more.
Artificial neural networks (ANNs) are powerful data-oriented “black-box” algorithms capable of assessing and delineating linear and multifaceted non-linear correlations between the dependent and explanatory variables. Through the years, neural networks have proven to be effective and robust analytical techniques for establishing artificial intelligence-based tools for modelling, estimating, and projecting spatial and temporal variations in water bodies. Accordingly, ANN-based algorithms gained increased attention and have emerged as practical alternatives to traditional approaches for hydro-chemical analysis. ANNs are among the widely used computer systems for modelling surface water quality. Considering their wide recognition, resilience, flexibility, and accuracy, the current study employs a neural network-based methodology to construct a novel water quality index (WQI) model suitable for analysing South African rivers. The feed-forward, back-propagated multilayered perceptron model has three parallel-distributed neuron layers interconnected with seventy weighted links orientated laterally from left to right. First, the input layer includes thirteen neuro-nodes symbolising thirteen explanatory variables, including NH3, Ca, Cl, Chl-a, EC, F CaCO3, Mg, Mn, NO3, pH, SO4, and turbidity (NTU). Second, the hidden layer consists of eleven neuro-nodes accountable for computational tasks. Lastly, the output layer features one neuron responsible for conveying network outcomes using a single-digit WQI rating extending from zero to one hundred, where zero represents substandard water quality and one hundred denotes exceptional water quality. The AI-based model was developed using water quality data obtained from six monitoring locations within four drainage basins under the management of the Umgeni Water Board in the KwaZulu-Natal Province of South Africa. The dataset comprises 416 samples randomly divided into training, testing, and validation sets using a proportional split of 70:15:15%. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) technique was utilised to conduct backpropagation training and adjust synapse weights. The dependent variables are the WQI scores from the universal water quality index (UWQI) model developed specifically for South African river basins. The ANN demonstrated enhanced efficiency through an overall correlation coefficient (R) of 0.985. Furthermore, the neural network attained R-values of 0.987, 0.992, and 0.977 for the training, testing, and validation intervals. The ANN model achieved a Nash–Sutcliffe efficiency (NSE) value of 0.974 and coefficient of determination (R2) of 0.970. Sensitivity analysis provided additional validation of the preparedness and computational competence of the ANN model. The typical target-to-output error tolerance for the ANN model is 0.242, demonstrating an adequate predictive ability to deliver results comparable with the target UWQI, having the lowest and highest index ratings of 75.995 and 94.420, respectively. Accordingly, the three-layer neural network is scientifically sound, with index values and water quality evaluations corresponding to the UWQI results. The current research project seeks to document the processes used and the outcomes obtained. Full article
(This article belongs to the Section Water Quality and Contamination)
47 pages, 3334 KiB  
Review
Multi-Interacting Natural and Anthropogenic Stressors on Freshwater Ecosystems: Their Current Status and Future Prospects for 21st Century
by Doru Bănăduc, Angela Curtean-Bănăduc, Sophia Barinova, Verónica L. Lozano, Sergey Afanasyev, Tamara Leite, Paulo Branco, Daniel F. Gomez Isaza, Juergen Geist, Aristoteles Tegos, Horea Olosutean and Kevin Cianfanglione
Water 2024, 16(11), 1483; https://doi.org/10.3390/w16111483 - 23 May 2024
Abstract
The inheritance of historic human-induced disruption and the fierceness of its impact change aquatic ecosystems. This work reviews some of the main stressors on freshwater ecosystems, focusing on their effects, threats, risks, protection, conservation, and management elements. An overview is provided on the [...] Read more.
The inheritance of historic human-induced disruption and the fierceness of its impact change aquatic ecosystems. This work reviews some of the main stressors on freshwater ecosystems, focusing on their effects, threats, risks, protection, conservation, and management elements. An overview is provided on the water protection linked to freshwater stressors: solar ultraviolet radiation, thermal pollution, nanoparticles, radioactive pollution, salinization, nutrients, sedimentation, drought, extreme floods, fragmentation, pesticides, war and terrorism, algal blooms, invasive aquatic plants, riparian vegetation, and invasive aquatic fish. Altogether, these stressors build an exceptionally composite background of stressors that are continuously changing freshwater ecosystems and diminishing or even destroying their capability to create and maintain ongoing natural healthy products and essential services to humans. Environmental and human civilization sustainability cannot exist without the proper management of freshwater ecosystems all over the planet; this specific management is impossible if the widespread studied stressors are not deeply understood structurally and functionally. Without considering each of these stressors and their synergisms, the Earth’s freshwater is doomed in terms of both quantitative and qualitative aspects. Full article
12 pages, 2328 KiB  
Article
Analysis of the Factors Affecting the Deposition Coverage of Air-Assisted Electrostatic Spray on Tomato Leaves
by Jili Guo, Xiaoya Dong and Baijing Qiu
Agronomy 2024, 14(6), 1108; https://doi.org/10.3390/agronomy14061108 - 23 May 2024
Abstract
In order to investigate the effects of various factors (charging voltage, spray distance and spray pattern) on the deposition coverage of tomato leaves, the Box–Behnken surface response methodology was used to design an outdoor air-assisted electrostatic spraying experiment with three factors and three [...] Read more.
In order to investigate the effects of various factors (charging voltage, spray distance and spray pattern) on the deposition coverage of tomato leaves, the Box–Behnken surface response methodology was used to design an outdoor air-assisted electrostatic spraying experiment with three factors and three levels. The deposition coverage of tomato leaves in the upper, middle and lower layers was collected under different polarity charging voltages (0, +10 kV, −10 kV), spray distances (1, 3, 5 m) and spray patterns (ascending spray, descending spray, fixed height spray). Regression analysis and variance analysis were performed on the experimental data to determine the optimal working parameters. The results showed that (1) spray distance is the most important factor affecting the droplet coverage rate in the process of air-assisted electrostatic spraying; (2) the droplet coverage rate of air-assisted electrostatic spraying is optimal when the charging voltage polarity is negative voltage, the spray distance is 2.75 m, and the spray pattern is descending spray. The following conclusions were obtained. (1) In air-assisted electrostatic spraying, the distribution of air flow had the greatest effect on droplet deposition on tomato leaf surface. (2) Compared with air-assisted non-electrostatic spray, air-assisted electrostatic spray had a better deposition effect. Full article
(This article belongs to the Special Issue In-Field Detection and Monitoring Technology in Precision Agriculture)
Show Figures

Figure 1

10 pages, 411 KiB  
Perspective
Phosphorus Supply to Plants of Vaccinium L. Genus: Proven Patterns and Unexplored Issues
by Irina V. Struchkova, Vyacheslav S. Mikheev, Ekaterina V. Berezina and Anna A. Brilkina
Agronomy 2024, 14(6), 1109; https://doi.org/10.3390/agronomy14061109 - 23 May 2024
Abstract
Phosphorus availability is a serious problem for plants growing and grown in acidic soils of bogs, poor in macronutrients. The application of phosphorus fertilizers to such soils is unprofitable because of the physical and chemical properties of these soils, where phosphate is firmly [...] Read more.
Phosphorus availability is a serious problem for plants growing and grown in acidic soils of bogs, poor in macronutrients. The application of phosphorus fertilizers to such soils is unprofitable because of the physical and chemical properties of these soils, where phosphate is firmly bound to organic and inorganic compounds and becomes inaccessible to plants. Plants of the Vaccinium genus both from natural stands and commercial plantations may suffer from phosphorus deficiency, so they need to have a number of adaptations that allow them to efficiently extract phosphorus. This review addresses the following issues in relation to plants of the Vaccinium genus: sources of phosphorus for plants; the release of phosphate ions from soil components; the transport of phosphate ions into plants; and the importance of mycorrhiza in supplying phosphorus to plants. Thus, we sought to draw researchers’ attention to sources and routes of phosphorus supply of plants of the Vaccinium genus and its unexplored aspects. Full article
28 pages, 19739 KiB  
Article
Epoxy/Graphene Nanoplatelet (GNP) Nanocomposites: An Experimental Study on Tensile, Compressive, and Thermal Properties
by Mahmuda Akter, Huseyin Ozdemir and Kadir Bilisik
Polymers 2024, 16(11), 1483; https://doi.org/10.3390/polym16111483 - 23 May 2024
Abstract
This paper presents an experimental investigation of nanocomposites composed of three ratios of epoxy/graphene nanoplatelets (GNPs) by weight. The 0.1, 0.2, and 0.3 wt.% specimens were carefully manufactured, and their mechanical and thermal conductivity properties were examined. The tensile strength and modulus of [...] Read more.
This paper presents an experimental investigation of nanocomposites composed of three ratios of epoxy/graphene nanoplatelets (GNPs) by weight. The 0.1, 0.2, and 0.3 wt.% specimens were carefully manufactured, and their mechanical and thermal conductivity properties were examined. The tensile strength and modulus of epoxy/GNPs were enhanced by the large surface area of graphene nanoplatelets, causing crack deflection that created new fracture fronts and friction because of the rough fracture surface. However, the compressive strength was gradually reduced as GNP loading percentages increased. This was probably due to severe plastic yielding on the epoxy, leading to catastrophic axial splitting caused by premature fractures. Furthermore, the highest thermal conductivity was 0.1283 W/m-K, representing a 20.92% improvement over neat epoxy (0.1061 W/m-K) when 0.3 wt.% GNPs were added to the epoxy. This was because of efficient heat propagation in the GNPs due to electron movement through percolative paths. The tensile failure mode in epoxy/GNP nanocomposites showed a few deflected and bifurcated rough cracks and brittle, dimple-like fractures. Contrarily, compressive failure mode in GNP-added epoxy showed plastic flexural buckling and brittle large-axial splitting. The epoxy/GNP nanocomposites were considered a damage-tolerant material. Full article
(This article belongs to the Special Issue Advances in Polymer/Graphene Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 4364 KiB  
Article
The Use of Polysaccharide Matrices as a Basis for the Formation of Tellurium Nanoparticles with Different Morphologies
by Marina Zvereva
Polymers 2024, 16(11), 1482; https://doi.org/10.3390/polym16111482 - 23 May 2024
Abstract
The widening of possible areas of practical uses for zero-valent tellurium nanoparticles (Te0NPs) from biomedicine to optoelectronic and thermoelectric applications determines the actuality of the development of simple and affordable methods for their preparation. Among the existing variety of approaches to [...] Read more.
The widening of possible areas of practical uses for zero-valent tellurium nanoparticles (Te0NPs) from biomedicine to optoelectronic and thermoelectric applications determines the actuality of the development of simple and affordable methods for their preparation. Among the existing variety of approaches to the synthesis of Te0NPs, special attention should be paid to chemical methods, and especially to “green” approaches, which are based on the use of precursors of tellurium in their powder bulk form and natural galactose-containing polysaccharides—arabinogalactan (Ar-Gal), galactomannan—(GM-dP) and κ-carrageenan (κ-CG) acting as ligands stabilizing the surface of the Te0NPs. The use of basic-reduction system “N2H4 H2O-NaOH” for preliminary activation of bulk-Te and Ar-Gal, GM-dP and κ-CG allowed us to obtain in aqueous medium a number of stable nanocomposites consisting of Te0NPs stabilized by the polysaccharides’ macromolecules. By varying the precursor ratio, different morphologies of nanoparticles were obtained, ranging from spheres at a polysaccharide/Te ratio of 100:1 to rice-like at a 10:1 ratio. The type (branched, combed, or linear sulfated) of polysaccharide and its molecular weight value determined the size of the nanoparticles. Thus, the galactose-containing polysaccharides that were selected for this study may be promising renewable materials for the production of water-soluble Te0NPs with different morphology on this basis. Full article
Show Figures

Figure 1

25 pages, 9988 KiB  
Review
Recent Developments in Nanocomposite Membranes Based on Carbon Dots
by Shuheng He, Yiding Meng, Jiali Liu, Dali Huang, Yifang Mi and Rong Ma
Polymers 2024, 16(11), 1481; https://doi.org/10.3390/polym16111481 - 23 May 2024
Abstract
Carbon dots (CDs) have aroused colossal attention in the fabrication of nanocomposite membranes ascribed to their ultra-small size, good dispersibility, biocompatibility, excellent fluorescence, facile synthesis, and ease of functionalization. Their unique properties could significantly improve membrane performance, including permeance, selectivity, and antifouling ability. [...] Read more.
Carbon dots (CDs) have aroused colossal attention in the fabrication of nanocomposite membranes ascribed to their ultra-small size, good dispersibility, biocompatibility, excellent fluorescence, facile synthesis, and ease of functionalization. Their unique properties could significantly improve membrane performance, including permeance, selectivity, and antifouling ability. In this review, we summarized the recent development of CDs-based nanocomposite membranes in many application areas. Specifically, we paid attention to the structural regulation and functionalization of CDs-based nanocomposite membranes by CDs. Thus, a detailed discussion about the relationship between the CDs’ properties and microstructures and the separation performance of the prepared membranes was presented, highlighting the advantages of CDs in designing high-performance separation membranes. In addition, the excellent optical and electric properties of CDs enable the nanocomposite membranes with multiple functions, which was also presented in this review. Full article
27 pages, 3442 KiB  
Article
A Low-Cost Ecofriendly Oxidation Process to Manufacture High-Performance Polymeric Biosurfactants Derived from Municipal Biowaste
by Elio Padoan, Francesco Contillo, Matteo Marafante, Enzo Montoneri, Matteo Francavilla, Silvia Berto and Andrea Baglieri
Polymers 2024, 16(11), 1479; https://doi.org/10.3390/polym16111479 - 23 May 2024
Abstract
Biosurfactants account for about 12% of the global value of the surfactant market, which is currently dominated by synthetic surfactants obtained from fossil sources. Yet, the production of biosurfactants from renewable feedstock is bound to increase, driven by the increasing pressure from both [...] Read more.
Biosurfactants account for about 12% of the global value of the surfactant market, which is currently dominated by synthetic surfactants obtained from fossil sources. Yet, the production of biosurfactants from renewable feedstock is bound to increase, driven by the increasing pressure from both society and governments for chemistry-based industries to become more ecofriendly and economically sustainable. A photo-chemical oxidation process is reported here, yielding new biosurfactants from urban biowaste in water that perform as a solvent and terminal oxidant reagent at room temperature without the addition of conventional oxidants and catalysts. Products with 200–500 kDa molecular weight are obtained. They lower the surface tension of water down to 34 mN/m at 0.5–2 g/L concentration. The estimated cost is rather low (0.1–1.5 EUR/kg), which is competitive with the cost of synthetic surfactants but much lower than the cost of the best-performing bacterial surfactants. For the implementation of the photo-chemical oxidation process at the industrial level, the results suggest that the new biosurfactants obtained in the present work may not reach the performance level of the best-performing bacterial surfactants capable of lowering the surface tension of water down to 28 mN/m. Yet, the biosurfactants produced by the photo-chemical process have a greater chance of being marketed on large scales. Full article
(This article belongs to the Special Issue Biorefinery: From Wastes to Biopolymers)
Show Figures

Figure 1

44 pages, 2661 KiB  
Article
Combustion Behavior of Cellulose Ester Fibrous Bundles from Used Cigarette Filters: Kinetic Analysis Study
by Filip Veljković, Vladimir Dodevski, Milena Marinović-Cincović, Suzana Veličković and Bojan Janković
Polymers 2024, 16(11), 1480; https://doi.org/10.3390/polym16111480 - 23 May 2024
Abstract
This study is focused on the detailed examination of the combustion properties and kinetic analysis of a cellulose acetate fibrous bundle (CAFB), separated from used cigarette filters. It was shown that the faster rate of CAFB heating allows a large amount of heat [...] Read more.
This study is focused on the detailed examination of the combustion properties and kinetic analysis of a cellulose acetate fibrous bundle (CAFB), separated from used cigarette filters. It was shown that the faster rate of CAFB heating allows a large amount of heat to be supplied to a combustion system in the initial stages, where the increase in heating rate has a positive response to ignition behavior. The best combustion stability of CAFB is achieved at the lowest heating rate. Through the use of different kinetic methods, it was shown that combustion takes place through two series of consecutive reaction steps and one independent single-step reaction. By optimizing the kinetic parameters within the proposed reaction models, it was found that the steps related to the generation of levoglucosenone (LGO) (by catalytic dehydration of levoglucosan (LG)) and acrolein (by breakdown of glycerol during CAFB burning—which was carried out through glycerol adsorption on a TiO2 surface in a the developed dehydration mechanism) represent rate-controlling steps, which are strongly controlled by applied heating rate. Isothermal predictions have shown that CAFB manifests very good long-term stability at 60 °C (which corresponds to storage in a sea shipping container), while at 200 °C, it shows a sudden loss in thermal stability, which is related to the physical properties of the sample. Full article
(This article belongs to the Special Issue Polymer Combustion and Pyrolysis Kinetics)
12 pages, 2951 KiB  
Article
Electrochemical Study and Mechanical Properties of Ti-Zr Alloy for Biomedical Applications
by Iosif Hulka, Ion-Dragoș Uțu, Santiago Brito-Garcia, Amparo Verdu-Vazquez and Julia C. Mirza-Rosca
Crystals 2024, 14(6), 493; https://doi.org/10.3390/cryst14060493 - 23 May 2024
Abstract
In response to concerns of potential cytotoxicity and adverse tissue reactions caused by vanadium and aluminum in the currently used biomaterial Ti-6Al-4V, the Ti–20Zr alloy was evaluated in this study because it has been suggested as a candidate for human body implant material. [...] Read more.
In response to concerns of potential cytotoxicity and adverse tissue reactions caused by vanadium and aluminum in the currently used biomaterial Ti-6Al-4V, the Ti–20Zr alloy was evaluated in this study because it has been suggested as a candidate for human body implant material. The Ti-20Zr alloy was obtained by vacuum-melting, followed by heat treatment at 1000 °C for 1 h, and then air-cooled. Optical and scanning electron microscopy revealed that the sample had an α and β lamellar microstructure. Analysis showed that the mechanical properties, in terms of hardness measurements performed at low loads, were significantly different between the two phases. Thus, it was found out that the α phase is softer by about 30% compared to the β phase. The Electrochemical Impedance Spectroscopy technique (EIS) was employed to study the electrochemical behavior in simulated body fluid (SBF). The electrochemical behavior demonstrated that Ti-20Zr alloy exhibits excellent corrosion resistance due to the stable oxide layer formed on its surface. SEM and EDS investigations showed that the surface topography, after electrochemical studies, is characterized by a porous film with increased oxygen content, which might be suitable for the osteoinductive growth of bone. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behaviour of Structural Materials)
Show Figures

Figure 1

14 pages, 3575 KiB  
Article
Shape Dependence of Photoresponsive Molecular Crystals Composed of Naphthyl Acrylic Acid Stimulated by Solid-State [2 + 2] Photocycloaddition
by Tian-Yuan Li, Yu-Ze Du, Tian-Yi Xu, Tian-Le Zhang and Fei Tong
Crystals 2024, 14(6), 492; https://doi.org/10.3390/cryst14060492 - 23 May 2024
Abstract
Photomechanical molecular crystals, actuated by solid-state photochemical reactions, manifest a spectrum of mechanical motions upon light exposure, underscoring their prospective integration into the next generation of intelligent materials and devices. Utilizing the solid-state photodimerization of naphthyl acrylic acid as a paradigm, this study [...] Read more.
Photomechanical molecular crystals, actuated by solid-state photochemical reactions, manifest a spectrum of mechanical motions upon light exposure, underscoring their prospective integration into the next generation of intelligent materials and devices. Utilizing the solid-state photodimerization of naphthyl acrylic acid as a paradigm, this study delved into the interplay between crystal morphology and reaction dynamics on the photomechanical responses of molecular crystals. Distinct crystal forms—bulk, microrods, and microplates—were cultivated through tailored crystallization conditions. While bulk crystals of naphthyl acrylic acid (NA) underwent shattering and splintering upon UV light exposure, the microplate counterparts displayed unique cracking patterns with fissures yet retained their overall structural integrity. In contrast, NA microrods underwent pronounced bending under identical irradiation conditions. These phenomena are attributed to the efficient lattice reconfiguration stemming from the [2 + 2] cycloaddition photochemical reaction within the crystals. An intermediate fluorescence enhancement was observed across all crystal types upon light exposure. Collectively, our results underscore the pivotal role of crystal shape in dictating photomechanical behavior, thereby heralding novel strategies for developing advanced photomechanical materials. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop