The 2023 MDPI Annual Report has
been released!
 
18 pages, 2525 KiB  
Article
Water Extracts of Cruciferous Vegetable Seeds Inhibit Enzymic Browning of Fresh-Cut Mid Ribs of Romaine Lettuce
by Efstratios Androudis, Athanasios Gerasopoulos, Athanasios Koukounaras, Anastasios S. Siomos and Dimitrios Gerasopoulos
Horticulturae 2024, 10(5), 500; https://doi.org/10.3390/horticulturae10050500 (registering DOI) - 12 May 2024
Abstract
Enzymatic browning, occurring on the cut surfaces of many popular fresh-cut fruit and vegetables due to wounding and the activity of endogenous polyphenyloxidase enzymes, is considered as the main reason for their rejection by consumers. In this study, water extracts were obtained from [...] Read more.
Enzymatic browning, occurring on the cut surfaces of many popular fresh-cut fruit and vegetables due to wounding and the activity of endogenous polyphenyloxidase enzymes, is considered as the main reason for their rejection by consumers. In this study, water extracts were obtained from seeds of cabbage, sinapis, and wild rocket at 10 and 20% w/w seed:water ratios (SWE) and analyzed for total phenolic compounds (TPC) and antioxidant capacity (AC). The extract was then applied on cut surfaces of mid rib segments of lettuce leaves for 1 or 3 min. The segments were stored at 7 °C for 14 days. The SWE’s inhibitory capacity on enzymatic browning were measured by CIELAB color coordinates L* a* and b* and expressed as second derivatives, their % inhibition and different indices. An additional visual acceptance measurement and calculation of shelf life was also performed. The seed extracts of cabbage at 10–20% and wild rocket at 20% showed the highest anti-browning efficacy (comparable to 25 mM potassium metabisulfite control) along with TPC and AC. A high % of seed:water extract and increased exposure time led to a considerable increase in shelf life, visual score, % inhibition of browning or whitening index of the extracts of all seed sources. Chromatometric outcome data clearly showed that the visual data were more accurate than the chromatometric procedure (L*, a*, b* values, their derives ΔE, h°, C, Δh° and ΔC or calculated indices), although the latter could detect the differing degrees of browning development or its inhibition in treated and control segments during storage. Full article
Show Figures

Figure 1

20 pages, 2052 KiB  
Article
Assessment of the Antioxidant and Hypolipidemic Properties of Salicornia europaea for the Prevention of TAFLD in Rats
by Aymen Souid, Lucia Giambastiani, Antonella Castagna, Marco Santin, Fabio Vivarelli, Donatella Canistro, Camilla Morosini, Moreno Paolini, Paola Franchi, Marco Lucarini, Andrea Raffaelli, Lucia Giorgetti, Annamaria Ranieri, Vincenzo Longo, Luisa Pozzo and Andrea Vornoli
Antioxidants 2024, 13(5), 596; https://doi.org/10.3390/antiox13050596 (registering DOI) - 12 May 2024
Abstract
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes [...] Read more.
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes in different growth phases; then, the potential protective effects against low-dose CCl4-induced toxicant-associated fatty liver disease (TAFLD) were investigated by administering an aqueous suspension of young leaves to rats daily for two weeks. Quantification of total and individual phenolic compounds and in vitro antioxidant activity assays (DPPH, FRAP, and ORAC) showed the highest values in young leaves compared to mature ones. Salicornia treatment mitigated CCl4-induced hepatic oxidative stress, reducing lipid peroxidation and protein carbonyl levels, and preserving the decrease in glutathione levels. Electronic paramagnetic resonance (EPR) spectroscopy confirmed these results in the liver and evidenced free radicals increase prevention in the brain. Salicornia treatment also attenuated enzymatic disruptions in the liver’s drug metabolizing system and Nrf2-dependent antioxidant enzymes. Furthermore, histopathological examination revealed reduced hepatic lipid accumulation and inflammation. Overall, this study highlights Salicornia’s potential as a source of bioactive compounds with effective hepatoprotective properties capable to prevent TAFLD. Full article
16 pages, 1043 KiB  
Systematic Review
Mining Heritage Reuse Risks: A Systematic Review
by Shuangyan Guo, Shan Yang and Canjiao Liu
Sustainability 2024, 16(10), 4048; https://doi.org/10.3390/su16104048 (registering DOI) - 12 May 2024
Abstract
Mining heritage reuse refers to the practice of repurposing former mining sites and their associated structures, landscapes, and communities for new uses, which plays a critical role in the green transformation of countries that are heavily reliant on mining resources. Nonetheless, repurposing closed [...] Read more.
Mining heritage reuse refers to the practice of repurposing former mining sites and their associated structures, landscapes, and communities for new uses, which plays a critical role in the green transformation of countries that are heavily reliant on mining resources. Nonetheless, repurposing closed mining sites comes with its own set of risks. Given these complexities, conducting a comprehensive risk analysis is imperative. Adhering to the PRISMA guidelines, this study established a systematic review for assessing risks in mining heritage reuse. We meticulously screened literature from Web of Science (WoS), Engineer Village (EI), and Wiley, ultimately focusing on 12 pertinent articles. Our findings categorize the repurposing of mining heritage into six distinct sectors: renewable energy, agriculture, residential developments, tourism, forestry, and underground laboratories. Analysis of the extant literature reveals a predominant focus on the environmental and technical aspects of risks, with less attention paid to the social dimensions of risks. A key contribution of this review is the introduction of the Public–Private Partnership (PPP) model and a multi-hazard approach to examining risks associated with mining heritage reuse. Consequently, future research on the risks of repurposing mining heritage is recommended to incorporate assessments of social-level risks and the interplay among various risk factors. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

14 pages, 2557 KiB  
Article
A Microphysiological Model to Mimic the Placental Remodeling during Early Stage of Pregnancy under Hypoxia-Induced Trophoblast Invasion
by Seorin Jeong, Ahmed Fuwad, Sunhee Yoon, Tae-Joon Jeon and Sun Min Kim
Biomimetics 2024, 9(5), 289; https://doi.org/10.3390/biomimetics9050289 (registering DOI) - 12 May 2024
Abstract
Placental trophoblast invasion is critical for establishing the maternal–fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human [...] Read more.
Placental trophoblast invasion is critical for establishing the maternal–fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human umbilical vein endothelial cells (HUVECs) under oxygen-deprived conditions upon trophoblast invasion, we observed significant HUVEC artery remodeling, suggesting the critical role of hypoxia in placentation. In particular, we found that trophoblasts secrete matrix metalloproteinase (MMP) proteins under hypoxic conditions, which contribute to arterial remodeling by the degradation of extracellular matrix components. This MMP-mediated remodeling is critical for facilitating trophoblast invasion and proper establishment of the maternal–fetal interface. In addition, our platform allows real-time monitoring of HUVEC vessel contraction during trophoblast interaction, providing valuable insights into the dynamic interplay between trophoblasts and maternal vasculature. Collectively, our findings highlight the importance of MMP-mediated arterial remodeling in placental development and underscore the potential of our platform to study pregnancy-related complications and evaluate therapeutic interventions. Full article
(This article belongs to the Special Issue Organ-on-a-Chip Platforms for Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 546 KiB  
Review
Immunotherapy as a Complement to Surgical Management of Hepatocellular Carcinoma
by Susan J. Kim, Kaelyn C. Cummins and Allan Tsung
Cancers 2024, 16(10), 1852; https://doi.org/10.3390/cancers16101852 (registering DOI) - 12 May 2024
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor in adults, and the fourth leading cause of cancer-related deaths worldwide. While surgical and ablative therapies remain the standard of care in early localized disease, late presentation with advanced stages of disease, impaired [...] Read more.
Hepatocellular carcinoma (HCC) is the most common primary liver tumor in adults, and the fourth leading cause of cancer-related deaths worldwide. While surgical and ablative therapies remain the standard of care in early localized disease, late presentation with advanced stages of disease, impaired hepatic function, or local recurrence following surgical resection preclude operative management as the sole treatment modality in a subgroup of patients. As such, systemic therapies, namely immunotherapy, have become an integral part of the HCC treatment algorithm over the past decade. While agents, such as atezolizumab/bevacizumab, have well-established roles as first-line systemic therapy in intermediate- and advanced-stage HCC, the role of immunotherapy in disease amenable to surgical management continues to evolve. In this review, we will discuss the current evidence and aggregate impact of immunotherapy in the context of HCC amenable to surgical management, including its application in the neoadjuvant and adjuvant settings. Full article
(This article belongs to the Special Issue Molecular Markers and Targeted Therapy for Hepatobiliary Tumors)
Show Figures

Figure 1

27 pages, 1908 KiB  
Review
Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses
by Tomas Ferreira and Santiago Rodriguez
Genes 2024, 15(5), 617; https://doi.org/10.3390/genes15050617 (registering DOI) - 12 May 2024
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a [...] Read more.
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA’s high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
17 pages, 9430 KiB  
Article
Bolt-Hole Elongation of Woven Carbon-Epoxy Composite Plates and Joints Using the Digital Image Correlation Technique
by Masoud Mehrabian, Aouni Lakis, Jr. and Rachid Boukhili
J. Compos. Sci. 2024, 8(5), 180; https://doi.org/10.3390/jcs8050180 (registering DOI) - 12 May 2024
Abstract
The elongation of the bolt hole is an important parameter for assessing the failure of bolted joints. However, direct experimental measurement using strain gauges and extensometers is difficult. This article shows that digital image correlation (DIC) can overcome the difficulties and provide important [...] Read more.
The elongation of the bolt hole is an important parameter for assessing the failure of bolted joints. However, direct experimental measurement using strain gauges and extensometers is difficult. This article shows that digital image correlation (DIC) can overcome the difficulties and provide important indications of the failure mechanisms of bolted joints. Hole elongation was measured using DIC in the following carbon/epoxy composite configurations: standard open-hole tensile (OHT) and filled-hole tensile (FHT), single-lap shear only-bolted (OB), and single-lap shear hybrid-bolted/bonded (HBB) joints. For each configuration, the hole-elongation changes were tracked for cross-ply (CP) and quasi-isotropic (QI) stacking sequences with two thicknesses. In the tensile load direction for OHT and FHT cases, CP showed a greater hole elongation than QI. However, the opposite trend was observed in the transverse direction. In OB joints, bypass loads contributed more to the hole elongation than bearing action. In HBB joints, it has been observed that the adhesive significantly reduces hole elongation, particularly for CP configurations. Moreover, it was found that in HBB joints, hole elongation was independent of laminate lay-up, while it was very determinative in OB joints. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

24 pages, 6271 KiB  
Article
miRNA Expression Profiles In Isolated Ventricular Cardiomyocytes: Insights into Doxorubicin-Induced Cardiotoxicity
by Yohana Domínguez Romero, Gladis Montoya Ortiz, Susana Novoa Herrán, Jhon Osorio Mendez and Luis A. Gomez Grosso
Int. J. Mol. Sci. 2024, 25(10), 5272; https://doi.org/10.3390/ijms25105272 (registering DOI) - 12 May 2024
Abstract
Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of [...] Read more.
Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3β. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3β molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases)
Show Figures

Figure 1

19 pages, 6791 KiB  
Article
Hypermethylation of the Gene Body in SRCIN1 Is Involved in Breast Cancer Cell Proliferation and Is A Potential Blood-Based Biomarker for Early Detection and A Poor Prognosis
by Hsieh-Tsung Shen, Chin-Sheng Hung, Clilia Davis, Chih-Ming Su, Li-Min Liao, Hsiu-Ming Shih, Kuan-Der Lee, Muhamad Ansar and Ruo-Kai Lin
Biomolecules 2024, 14(5), 571; https://doi.org/10.3390/biom14050571 (registering DOI) - 12 May 2024
Abstract
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To [...] Read more.
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients. Full article
(This article belongs to the Special Issue DNA Methylation in Human Diseases)
Show Figures

Graphical abstract

17 pages, 788 KiB  
Article
Carbapenem-Resistant NDM and OXA-48-like Producing K. pneumoniae: From Menacing Superbug to a Mundane Bacteria; A Retrospective Study in a Romanian Tertiary Hospital
by Dragos Stefan Lazar, Maria Nica, Amalia Dascalu, Corina Oprisan, Oana Albu, Daniel Romeo Codreanu, Alma Gabriela Kosa, Corneliu Petru Popescu and Simin Aysel Florescu
Antibiotics 2024, 13(5), 435; https://doi.org/10.3390/antibiotics13050435 (registering DOI) - 12 May 2024
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (Cr-Kpn) is becoming a growing public health problem through the failure of adequate treatment. This study’s objectives are to describe the sources of Cr-Kpn in our hospital over 22 months, associating factors with the outcome of Cr-Kpn-positive patients, especially [...] Read more.
Background: Carbapenem-resistant Klebsiella pneumoniae (Cr-Kpn) is becoming a growing public health problem through the failure of adequate treatment. This study’s objectives are to describe the sources of Cr-Kpn in our hospital over 22 months, associating factors with the outcome of Cr-Kpn-positive patients, especially those with NDM+OXA-48-like (New Delhi Metallo-β-Lactamase and oxacillinase-48), and the effectiveness of the treatments used. Methods: A retrospective observational cohort study including all hospitalized patients with Cr-Kpn isolates. We reported data as percentages and identified independent predictors for mortality over hospital time through multivariate analysis. Results: The main type of carbapenemases identified were NDM+OXA-48-like (49.4%). The statistical analysis identified that diabetes and co-infections with the Gram-negative, non-urinary sites of infection were factors of unfavorable evolution. The Cox regression model identified factors associated with a poor outcome: ICU admission (HR of 2.38), previous medical wards transition (HR of 4.69), and carbapenemase type NDM (HR of 5.98). We did not find the superiority of an antibiotic regimen, especially in the case of NDM+OXA-48-like. Conclusions: The increase in the incidence of Cr-Kpn infections, especially with NDM+OXA-48-like pathogens, requires a paradigm shift in both the treatment of infected patients and the control of the spread of these pathogens, which calls for a change in public health policy regarding the use of antibiotics and the pursuit of a One Health approach. Full article
Show Figures

Figure 1

28 pages, 2437 KiB  
Article
Design and Analysis of a Base Bleed Unit for the Drag Reduction of a High-Power Rocket Operating at Transonic Speeds
by Petros Famellos, Athanasios Skevas, Asterios Koutsiadis, Christos Koutsouras and Pericles Panagiotou
Aerospace 2024, 11(5), 385; https://doi.org/10.3390/aerospace11050385 (registering DOI) - 12 May 2024
Abstract
In the present study, a passive flow device is considered for drag reduction purposes through implementation in a transonic high-power rocket. The high-power rocket serves as a reference platform that, apart from the operating conditions, enforces several constraints in terms of available volume [...] Read more.
In the present study, a passive flow device is considered for drag reduction purposes through implementation in a transonic high-power rocket. The high-power rocket serves as a reference platform that, apart from the operating conditions, enforces several constraints in terms of available volume and placement locations. A step-by-step methodology is suggested, where the unit is initially broken down into an inlet and an outlet component. The flow field is investigated by means of computational modeling (CFD), where the Reynolds-averaged Navier–Stokes equations are solved coupled with turbulence models that vary depending on the design phase and the individual component. In the first design phase, the best alternative configuration is selected for each component by comparing mass flow rates and discharge coefficients. In the second design phase, each component is analyzed in greater detail based on the first phase results. Indicatively, the protruding inlet diffuser-type channel is converted into a protruding inlet nozzle-type channel to avoid choked flow phenomena, and a nozzle geometry is selected as the outlet amongst the other considered scenarios. The two components are eventually integrated into a common base bleed unit and a final assessment is made. The computational results are used to predict the performance and trajectory of the rocket through a well-established trajectory software. The overall methodology is validated against full-scale test flight data. The results show that the base bleed unit developed in the framework of this study yields a drag reduction of approximately 15% at transonic speeds without impacting the rocket mass and stability. Full article
(This article belongs to the Section Aeronautics)
15 pages, 3761 KiB  
Article
Study on the Anti-Progressive Collapse Behavior of Steel Frame Structures under Close-Range Blast Loading
by Changren Ke, Huihui Long and Junling Jiang
Buildings 2024, 14(5), 1387; https://doi.org/10.3390/buildings14051387 (registering DOI) - 12 May 2024
Abstract
The steel frame structure plays an important role in strategic deployments and is widely used in heavy machinery, metallurgy, military, and other important industries. To study the impact of explosive loads on the anti-progressive collapse performance of steel structures, this paper proposes to [...] Read more.
The steel frame structure plays an important role in strategic deployments and is widely used in heavy machinery, metallurgy, military, and other important industries. To study the impact of explosive loads on the anti-progressive collapse performance of steel structures, this paper proposes to establish the vulnerability characteristics of steel frame structures and provides a method for calculating vulnerability characterization indicators. A finite element model is used to analyze the dynamic response of steel frame structures under the action of close-range explosive loads, and factors influencing the anti-progressive collapse of steel frame structures are proposed, including the number of stories and diagonal bracing. A comparison is made between the various column types of steel structures under explosive loads, such as corner columns, long-edge middle columns, short-edge middle columns, inner columns, also in various coupling conditions. The results show that the progressive collapse of steel frame structures is greatly influenced by the position of the explosion and less affected by the amount of explosive material. The simultaneous failure of corner columns and long-edge middle columns is more likely to cause overall structural failure. The addition of diagonal bracing significantly improves the anti-progressive collapse ability and prevents the lateral displacement of steel frame structures; increasing the number of stories provides more alternative load transfer paths for steel frame structures, thereby preventing their collapse. Full article
Show Figures

Figure 1

19 pages, 4156 KiB  
Article
Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model
by Anass Bouchnita and Vitaly Volpert
Computation 2024, 12(5), 99; https://doi.org/10.3390/computation12050099 (registering DOI) - 12 May 2024
Abstract
In injured arteries, platelets adhere to the subendothelium and initiate the coagulation process. They recruit other platelets and form a plug that stops blood leakage. The formation of the platelet plug depends on platelet activation, a process that is regulated by intracellular calcium [...] Read more.
In injured arteries, platelets adhere to the subendothelium and initiate the coagulation process. They recruit other platelets and form a plug that stops blood leakage. The formation of the platelet plug depends on platelet activation, a process that is regulated by intracellular calcium signaling. Using an improved version of a previous multiscale model, we study the effects of changes in calcium signaling on thrombus growth. This model utilizes the immersed boundary method to capture the interplay between platelets and the flow. Each platelet can attach to other platelets, become activated, express proteins on its surface, detach, and/or become non-adhesive. Platelet activation is captured through a specific calcium signaling model that is solved at the intracellular level, which considers calcium activation by agonists and contacts. Simulations reveal a contact-dependent activation threshold necessary for the formation of the thrombus core. Next, we evaluate the effect of knocking out the P2Y and PAR receptor families. Further, we show that blocking P2Y receptors reduces platelet numbers in the shell while slightly increasing the core size. An analysis of the contribution of P2Y and PAR activation to intraplatelet calcium signaling reveals that each of the ADP and thrombin agonists promotes the activation of platelets in different regions of the thrombus. Finally, the model predicts that the heterogeneity in platelet size reduces the overall number of platelets recruited by the thrombus. The presented framework can be readily used to study the effect of antiplatelet therapy under different physiological and pathological blood flow, platelet count, and activation conditions. Full article
(This article belongs to the Special Issue 10th Anniversary of Computation—Computational Biology)
15 pages, 1366 KiB  
Article
Unplanned Resections of Soft Tissue Sarcomas—Necessity of Re-Resection?
by Julian Fromm, Alexander Klein, Franziska Mentrup, Lars H. Lindner, Silke Nachbichler, Boris Michael Holzapfel, Sophia Samira Goller, Thomas Knösel and Hans Roland Dürr
Cancers 2024, 16(10), 1851; https://doi.org/10.3390/cancers16101851 (registering DOI) - 12 May 2024
Abstract
Background: In soft tissue sarcomas, unplanned resections, or so-called Whoops procedures, do occur quite frequently, thus primarily owing to the abundant presence of benign lesions. Whether re-resection reduces local recurrence or improves overall survival remains a topic of ongoing debate. The principle [...] Read more.
Background: In soft tissue sarcomas, unplanned resections, or so-called Whoops procedures, do occur quite frequently, thus primarily owing to the abundant presence of benign lesions. Whether re-resection reduces local recurrence or improves overall survival remains a topic of ongoing debate. The principle objective of this study was to analyze the outcomes of patients with soft tissue sarcomas of the extremities or trunk wall after an incidental marginal resection by comparing re-resections to individuals who declined the procedure. Methods: A total of 185 patients who underwent unplanned resection were included. These patients were stratified into two groups: Group A (n = 156) underwent re-excision, while Group B (n = 29) was treated conservatively. Depending on the clinical scenario, radio- or chemotherapy was either administered in a neoadjuvant or an adjuvant setting. The presence of residual tumor and metastatic disease was documented. Clinical outcomes, specifically local recurrence (LR), local recurrence-free survival (LRFS) and overall survival (OS), were utilized for evaluation. Results: Group B exhibited significantly larger tumors (p < 0.0001) and a higher mean age than Group A. Among the patients in Group A, 11 (5.9%) had contaminated resection margins (R1), and residual disease (RD) was observed in 93 (59.6%) of the resected specimens. In group B, 10 patients received adjuvant radiotherapy alone, 5 received chemotherapy alone, and 13 underwent a combined approach consisting of both radio- and chemotherapy. In Group A, 8% (n = 12) of the patients developed local recurrence (LR) during the observation period. Conversely, in Group B, this amount was 14% (n = 4) (n.s.). Of the 12 LR in Group A, 10 were found in the subgroup with residual disease. Overall survival and local recurrence-free survival were not significantly different between the groups. A total of 15% (n = 24) of the patients in Group A developed metastatic disease, while 10% (n = 3) in Group B developed metastatic disease (n.s.). Conclusions: Following the reresection of unplanned resected STS, there was no statistically significant difference observed in overall survival or LR compared to patients who did not undergo re-resection. However, within the subgroup of patients with residual disease in the re-resected specimen, the OS was compromised, and the LR rate was higher. Particularly for low-grade lesions, adopting a more conservative approach seems to be justified. Full article
15 pages, 5978 KiB  
Article
Electromagnetic Torque Components Analysis of Ultra-High-Speed Permanent-Magnet Synchronous Motor for Fuel Cell Air Compressor
by Jiaming Zhou, Jinming Zhang, Fengyan Yi, Donghai Hu, Caizhi Zhang, Yanzhao Li, Zhiming Zhang, Guangping Wu and Jinxiang Song
Actuators 2024, 13(5), 184; https://doi.org/10.3390/act13050184 (registering DOI) - 12 May 2024
Abstract
The ultra-high-speed electric air compressor (UHSEAC) is affected by the electromagnetic torque components of the ultra-high-speed permanent magnet synchronous motor (UHSPMSM) during wide-range speed regulation, resulting in intense speed fluctuation. Electromagnetic torque components are generated by the effects of permanent magnet field harmonics, [...] Read more.
The ultra-high-speed electric air compressor (UHSEAC) is affected by the electromagnetic torque components of the ultra-high-speed permanent magnet synchronous motor (UHSPMSM) during wide-range speed regulation, resulting in intense speed fluctuation. Electromagnetic torque components are generated by the effects of permanent magnet field harmonics, stator slotting, and current harmonics. It is very important to conduct simulation comparisons and theoretical descriptions of different sources of pulsation factors. In this paper, firstly, the electromagnetic torque model of UHSPMSM with a rated speed of 80,000 rpm is constructed and verified by an experimental bench. Secondly, the electromagnetic torque components of UHSPMSM are extracted on the basis of the electromagnetic torque model. Finally, the electromagnetic torque components’ characteristic law is investigated under different ultra-high-speed operating conditions. The results show that under ultra-high-speed operation, the frequency and amplitude of electromagnetic torque components become larger with increasing speed. And the amplitude of electromagnetic torque components becomes larger with increasing torque. This paper constructs the observation object of the high-frequency state observer and does the preliminaries for the design of the UHSEAC controller. Full article
Show Figures

Figure 1

22 pages, 1123 KiB  
Article
Research and Application of the Simulation Method for Product Development Process Based on System Dynamics
by Fupeng Yin, Qi Gao and Jiakun Sun
Systems 2024, 12(5), 172; https://doi.org/10.3390/systems12050172 (registering DOI) - 12 May 2024
Abstract
Product development is a complex process involving intricate components, dynamics and constantly evolving internal and external environments, as well as numerous influencing factors. In order to accurately simulate and predict the effectiveness of the development process, this paper proposes a system dynamics simulation [...] Read more.
Product development is a complex process involving intricate components, dynamics and constantly evolving internal and external environments, as well as numerous influencing factors. In order to accurately simulate and predict the effectiveness of the development process, this paper proposes a system dynamics simulation method based on information maturity. Different types of development processes are simulated, and the discussion includes the impact of activity information correlation, information evolution coefficient, start time, and other parameters on the dynamic behavior of the process. This study examines a specific mold development process as a case study to validate the method’s feasibility, accurately predicting the duration and cost of the process. It also investigates dynamic fluctuations resulting from uncertain events such as changes in customer demand and resource shortages. The method provides support for process optimization and resource scheduling. Full article
22 pages, 2522 KiB  
Article
Screening of Wheat Genotypes for Water Stress Tolerance Using Soil–Water Relationships and Multivariate Statistical Approaches
by Mohamed H. Sheta, Mostafa M. A. Hasham, Kholoud Z. Ghanem, Hala M. Bayomy, Abdel-Nasser A. El-Sheshtawy, Rasha S. El-Serafy and Eman Naif
Agronomy 2024, 14(5), 1029; https://doi.org/10.3390/agronomy14051029 (registering DOI) - 12 May 2024
Abstract
Drought stress constricts crop production around the world. Employing high-yielding cultivars with drought tolerance might be the ideal professional approach to coping with its detrimental outcomes. As a result, the current study was performed to investigate the sensitivity and tolerance of nine wheat [...] Read more.
Drought stress constricts crop production around the world. Employing high-yielding cultivars with drought tolerance might be the ideal professional approach to coping with its detrimental outcomes. As a result, the current study was performed to investigate the sensitivity and tolerance of nine wheat genotypes to drought stress. In a randomized block design experiment, nine wheat genotypes were subjected to four water treatments: 100%, 85%, 70%, and 55% of the available water (AW). Four water regimes in two growing seasons were counted as eight environmental zones. The leaf’s water relations and photosynthetic pigment were estimated, as well as growth and yield parameters. Univariate and multivariate statistical approaches, including the new method of multi-trait genotype–ideotype distance (MGIDI), were used for evaluation. The analysis of variance revealed that genotype, environment, and their interactions had a highly significant effect on all traits. The same trend was shown by the additive main effects and multiplicative interaction (AMMI) analysis of variance for grain yield across the environments. The AMMI biplot study indicated that the G8 genotype is the most stable in terms of water stress. The G7 genotype can withstand droughts up to 55% of the available water, while the G8 and G3 genotypes can withstand droughts up to 70% of the available water. Based on all examined traits, this index was used to identify the stable genotypes G7, G8, and G3, which can therefore be suggested for cultivation during drought conditions. Furthermore, we found a positive correlation between the MGIDI, ANOVA, and tolerance index results, indicating that the same desirable genotypes of G7 and G8 were identified by these procedures as being highly tolerant and stable across a range of soil moisture conditions. Based on MGIDI analysis, we can recommend that the G7 genotype exhibits higher grain yield and yield-related traits with the best drought-tolerant indices. Full article
(This article belongs to the Special Issue Advances in Data, Models, and Their Applications in Agriculture)
Show Figures

Figure 1

23 pages, 3468 KiB  
Article
On Embedding Implementations in Text Ranking and Classification Employing Graphs
by Nikitas-Rigas Kalogeropoulos, Dimitris Ioannou, Dionysios Stathopoulos and Christos Makris
Electronics 2024, 13(10), 1897; https://doi.org/10.3390/electronics13101897 (registering DOI) - 12 May 2024
Abstract
This paper aims to enhance the Graphical Set-based model (GSB) for ranking and classification tasks by incorporating node and word embeddings. The model integrates a textual graph representation with a set-based model for information retrieval. Initially, each document in a collection is transformed [...] Read more.
This paper aims to enhance the Graphical Set-based model (GSB) for ranking and classification tasks by incorporating node and word embeddings. The model integrates a textual graph representation with a set-based model for information retrieval. Initially, each document in a collection is transformed into a graph representation. The proposed enhancement involves augmenting the edges of these graphs with embeddings, which can be pretrained or generated using Word2Vec and GloVe models. Additionally, an alternative aspect of our proposed model consists of the Node2Vec embedding technique, which is applied to a graph created at the collection level through the extension of the set-based model, providing edges based on the graph’s structural information. Core decomposition is utilized as a method for pruning the graph. As a byproduct of our information retrieval model, we explore text classification techniques based on our approach. Node2Vec embeddings are generated by our graphs and are applied in order to represent the different documents in our collections that have undergone various preprocessing methods. We compare the graph-based embeddings with the Doc2Vec and Word2Vec representations to elaborate on whether our approach can be implemented on topic classification problems. For that reason, we then train popular classifiers on the document embeddings obtained from each model. Full article
29 pages, 5363 KiB  
Article
On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy)
by Antonella Amoruso, Adriano Gualandi and Luca Crescentini
Remote Sens. 2024, 16(10), 1717; https://doi.org/10.3390/rs16101717 (registering DOI) - 12 May 2024
Abstract
The densely inhabited area of Naples (Italy), between the Campi Flegrei and Vesuvio volcanoes, is one of the most hazardous regions in the world. After two decades of sustained subsidence, Campi Flegrei has been experiencing an accelerating uplift since 2005. The uplift is [...] Read more.
The densely inhabited area of Naples (Italy), between the Campi Flegrei and Vesuvio volcanoes, is one of the most hazardous regions in the world. After two decades of sustained subsidence, Campi Flegrei has been experiencing an accelerating uplift since 2005. The uplift is currently associated with unusual seismicity and increased degassing. To try to identify the cause of the shift from subsidence to uplift and explore any connection between Campi Flegrei and Vesuvio, we analysed the ground displacement time series of the two volcanoes from 1993 to 2010, obtained from ERS/ENVISAT Synthetic Aperture Radar imagery. To distinguish between the various sources of deformation, we used simple scatter plots and a blind source separation technique called variational Bayesian independent component analysis (vbICA). We obtained consistent results using both approaches. Specifically, with vbICA, we identified two significant independent components (ICs). IC1 describes the subsidence that occurred at Campi Flegrei prior to 2000, including the mini-uplifts of 2000 and 2005, and part of the post-2005 uplift. The expansion and contraction of two volumes beneath Campi Flegrei satisfy IC1: a sill-shaped volume at a depth of approximately 3 km and a small volume at a depth of 1–2 km, respectively. The two sources of deformation reproduce the large-scale deformation in the Campi Flegrei area and the local deformation in the Solfatara area, respectively. In the Campi Flegrei area, IC2 exhibits primarily uplift, which is concentrated in the eastern part of the caldera. The deformation pattern is complex and difficult to interpret. If we model it using simple spheroidal deformation sources, the pattern suggests that two volumes at depths of approximately 9 and 8 km are experiencing opposite activity, namely contraction (beneath the southwestern part of the caldera) and expansion (beneath the central part of the caldera). In the Vesuvio area, IC2 is consistent with the deformation induced by the contraction of a volume at a depth of around 9 km. The contraction beneath Vesuvio is smaller in magnitude than the expansion/contraction beneath Campi Flegrei. The correlation observed after 2002 between uplift at Campi Flegrei and subsidence at Vesuvio suggests the transfer of magma and/or magmatic fluids between the two plumbing systems at 8–9 km depth. This implies that part of the ongoing unrest at Campi Flegrei may have been promoted by mass transfer from below Vesuvio. Full article
23 pages, 2306 KiB  
Article
Study on the Fracture of a Shield Segment in a Fully Excavated Hard Rock Section under the Influence of Construction Loads
by Cheng Zhu, Bin Zheng, Guoping Ren, Tugen Feng, Xiaochun Zhong and Siyuan Huang
Appl. Sci. 2024, 14(10), 4102; https://doi.org/10.3390/app14104102 (registering DOI) - 12 May 2024
Abstract
In this paper, the initiation of the fracture of a segment caused by the pressure of the jack and other factors during shield construction is discussed. Based on the Rots model in the finite element software Diana 10.4 , the fracture width is [...] Read more.
In this paper, the initiation of the fracture of a segment caused by the pressure of the jack and other factors during shield construction is discussed. Based on the Rots model in the finite element software Diana 10.4 , the fracture width is solved. Combined with in situ measurements, the mechanisms of concrete fracturing of a segment under external loads, such as the jack thrust deflection angle and uneven jack thrust caused by the changes in the segment due to the upward buoyancy and shield attitude, are studied; additionally, the occurrence conditions and engineering control measures for segment fracture are summarized. The results show that when the attitudes of the shield and segment are identical, the total thrust of the shield is recommended not to exceed 21,000 kN, and is strictly limited to 24,000 kN. When the attitude inclination angle between the shield machine and the segment is less than 1°, the impact on the segment quality is small. When the inclination angle reaches 2°, the total thrust of the shield is recommended not to exceed 16,000 kN, and is strictly limited to 18,000 kN. When the inclination reaches 3°, a fracture is easily produced. When the total thrust is 19,000 kN, it is recommended that the loading increase or decrease in the left and right four grippers should not exceed 20%, and they are prohibited to exceed 30%. The fracture width increases exponentially with the increase in misalignment between adjacent segment rings. These research results provide a theoretical basis for jack pressure control during shield construction. Full article
11 pages, 228 KiB  
Article
Drinking While Stressed and Drinking to Cope Differentially Relate to Mental Health
by Carley Vornlocher and Michelle N. Shiota
Behav. Sci. 2024, 14(5), 402; https://doi.org/10.3390/bs14050402 (registering DOI) - 12 May 2024
Abstract
Excessive alcohol use, as well as drinking to manage distress, are known to undermine mental health. The current study examined the unique associations of simply consuming alcohol while stressed, versus using alcohol to cope with distress, with mental health during the early stages [...] Read more.
Excessive alcohol use, as well as drinking to manage distress, are known to undermine mental health. The current study examined the unique associations of simply consuming alcohol while stressed, versus using alcohol to cope with distress, with mental health during the early stages of COVID-19. Participants (N = 264) reported their alcohol use and use of alcohol/substances to cope with stress daily for 22 days and completed measures of mental health at baseline and every 7 days thereafter. Hierarchical regression models were tested to predict drinking while stressed, drinking to cope, and mental health. At baseline, drinking while stressed was not significantly associated with mental health when coping motives were accounted for. However, drinking to cope was significantly associated with greater stress, anxiety, depression, and loneliness. Drinking while stressed was significantly predicted by baseline stress and loneliness, while drinking to cope was significantly predicted by baseline anxiety. Drinking while stressed was not a significant predictor of change in mental health when coping motives were accounted for. Drinking to cope was a significant predictor of increases in depression but not of change in stress, anxiety, or loneliness. The motivation to manage distress appears to be driving the negative effects of alcohol use on mental health. Full article
(This article belongs to the Special Issue Stress and Drinking)
24 pages, 9159 KiB  
Article
Unsupervised Image Segmentation Parameters Evaluation for Urban Land Use/Land Cover Applications
by Guy Blanchard Ikokou and Kate Miranda Malale
Geomatics 2024, 4(2), 149-172; https://doi.org/10.3390/geomatics4020009 (registering DOI) - 12 May 2024
Abstract
Image segmentation plays an important role in object-based classification. An optimal image segmentation should result in objects being internally homogeneous and, at the same time, distinct from one another. Strategies that assess the quality of image segmentation through intra- and inter-segment homogeneity metrics [...] Read more.
Image segmentation plays an important role in object-based classification. An optimal image segmentation should result in objects being internally homogeneous and, at the same time, distinct from one another. Strategies that assess the quality of image segmentation through intra- and inter-segment homogeneity metrics cannot always predict possible under- and over-segmentations of the image. Although the segmentation scale parameter determines the size of the image segments, it cannot synchronously guarantee that the produced image segments are internally homogeneous and spatially distinct from their neighbors. The majority of image segmentation assessment methods largely rely on a spatial autocorrelation measure that makes the global objective function fluctuate irregularly, resulting in the image variance increasing drastically toward the end of the segmentation. This paper relied on a series of image segmentations to test a more stable image variance measure based on the standard deviation model as well as a more robust hybrid spatial autocorrelation measure based on the current Moran’s index and the spatial autocorrelation coefficient models. The results show that there is a positive and inversely proportional correlation between the inter-segment heterogeneity and the intra-segment homogeneity since the global heterogeneity measure increases with a decrease in the image variance measure. It was also found that medium-scale parameters produced better quality image segments when used with small color weights, while large-scale parameters produced good quality segments when used with large color factor weights. Moreover, with optimal segmentation parameters, the image autocorrelation measure stabilizes and follows a near horizontal fluctuation while the image variance drops to values very close to zero, preventing the heterogeneity function from fluctuating irregularly towards the end of the image segmentation process. Full article
(This article belongs to the Topic Urban Land Use and Spatial Analysis)
Show Figures

Figure 1

10 pages, 965 KiB  
Review
Microglial Dyshomeostasis: A Common Substrate in Neurodevelopmental and Neurodegenerative Diseases
by Vada Andree Furlan, Daria MacAuslan, Khiem Ha, Nitish Patel, Shawn Adam, Beylem Zanagar and Sharmila Venugopal
Neuroglia 2024, 5(2), 119-128; https://doi.org/10.3390/neuroglia5020009 (registering DOI) - 12 May 2024
Abstract
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are clinically distinct, yet share synaptic dysfunction as a common brain pathophysiology. Neurodegenerative diseases such as Huntington’s disease (HD) entail a neuroinflammatory cascade of molecular and cellular events which can [...] Read more.
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are clinically distinct, yet share synaptic dysfunction as a common brain pathophysiology. Neurodegenerative diseases such as Huntington’s disease (HD) entail a neuroinflammatory cascade of molecular and cellular events which can contribute to the death of neurons. Emerging roles for supportive glial cells such as microglia and astrocytes in the ongoing regulation of neural synapses and brain excitability raise the possibility that some of the synaptic pathology and/or inflammatory events could be a direct consequence of malfunctioning glial cells. Focusing on microglia, we cross-examined 12 recently published studies in which microglial dysfunction was induced/identified in a cell-autonomous manner and its functional consequence on neural development, brain volume, functional connectivity, inflammatory response and synaptic regulation were evaluated; in many cases, the onset of symptoms relevant to all three neurodevelopmental disorders were assessed behaviorally. Challenging the classic notion of microglial activation as an inflammatory response to neuropathology, our compilation clarifies that microglial dyshomeostasis itself can consequently disrupt neural homeostasis, leading to neuropathology and symptom onset. This further warranted defining the molecular signatures of context-specific microglial pathology relevant to human diseases. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop