The 2023 MDPI Annual Report has
been released!
 
16 pages, 1577 KiB  
Article
Enhancing Growth and Gut Health in Squabs: The Impact of Fermented Mixed Feed
by Changfeng Xiao, Xin Li, Zhizhao Ding, Hongcai Zhang, Wenwei Lv, Changsuo Yang, Daqian He and Lihui Zhu
Animals 2024, 14(10), 1411; https://doi.org/10.3390/ani14101411 (registering DOI) - 08 May 2024
Abstract
The purpose of this study was to evaluate the effect of fermented mixed feed (FMF) (soybean meal–rapeseed meal–corn bran (6:3:1, m/m/m)) on the growth performance, intestinal microbial communities, and metabolomes of squabs. One hundred and eighty 1-day-old squabs [...] Read more.
The purpose of this study was to evaluate the effect of fermented mixed feed (FMF) (soybean meal–rapeseed meal–corn bran (6:3:1, m/m/m)) on the growth performance, intestinal microbial communities, and metabolomes of squabs. One hundred and eighty 1-day-old squabs were randomly allocated to two groups, each containing six replicates of fifteen squabs cared for by 60 pairs of breeding pigeons secreting crop milk. Each pair of breeding pigeons cared for three squabs. The control group was fed a basal diet, while the experimental group was fed the basal diet containing 5% FMF. The results showed that daily weight gain, carcass weight, villus height, and the mRNA level of ZO-1 in the ileum were increased in the birds fed FMF compared to the control squabs (p < 0.05). Greater abundances of beneficial bacteria such as Lactobacillus, Bifidobacteria, and Bacillus as well as fewer harmful bacteria (i.e., Enterococcus, Veillonella, and Corynebacterium) in the ilea of squabs fed FMF. Six differential metabolites were identified in the FMF-treated squabs; one metabolite was increased (ω-salicoyisalicin) and five were decreased (3-benzoyloxy-6-oxo-12-ursen-28-oic acid, estradiol-17-phenylpropionate, aminotriazole, phosphatidyl ethanolamine (22:6/0:0), and 1-arachidonoylglycerophosphoinositol). Positive correlations were observed between the abundance of Lactobacillus and villus height. Overall, FMF treatment improved both growth and intestinal health in pigeons, suggesting potential benefits for pigeon production. Full article
23 pages, 6957 KiB  
Article
Study on Early Identification of Rainfall-Induced Accumulation Landslide Hazards in the Three Gorges Reservoir Area
by Zhen Wu, Runqing Ye, Shishi Yang, Tianlong Wen, Jue Huang and Yao Chen
Remote Sens. 2024, 16(10), 1669; https://doi.org/10.3390/rs16101669 (registering DOI) - 08 May 2024
Abstract
The early identification of potential hazards is crucial for landslide early warning and prevention and is a key focus and challenging issue in landslide disaster research. The challenges of traditional investigation and identification methods include identifying potential hazards of landslides triggered by heavy [...] Read more.
The early identification of potential hazards is crucial for landslide early warning and prevention and is a key focus and challenging issue in landslide disaster research. The challenges of traditional investigation and identification methods include identifying potential hazards of landslides triggered by heavy rainfall and mapping areas susceptible to landslides based on rainfall conditions. This article focuses on the problem of early identification of rainfall-induced accumulation landslide hazards and an early identification method is proposed, which is “first identifying the accumulation that is prone to landslides and then determining the associated rainfall conditions”. This method is based on identifying the distribution and thickness of accumulation, analyzing the rainfall conditions that trigger landslides with varying characteristics, and establishing rainfall thresholds for landslides with different accumulation characteristics, ultimately aiming to achieve early identification of accumulation landslide hazards. In this study, we focus on the Zigui section of the Three Gorges Reservoir as study the area, and eight main factors that influence the distribution and thickness of accumulation are extracted from multi-source data, then the relative thickness information extraction model of accumulation is established by using the BP neural network method. The accumulation distribution and relative thickness map of the study area are generated, and the study area is divided into rocky area (less than 1 m), thin (1 to 5 m), medium (5 to 10 m), and thick area (thicker than 10 m) according to accumulation thickness. Rainfall is a significant trigger for landslide hazards. It increases the weight of the sliding mass and decreases the shear strength of soil and rock layers, thus contributing to landslide events. Data on 101 rainfall-induced accumulation landslides in the Three Gorges Reservoir area and rainfall data for the 10 days prior to each landslide event were collected. The critical rainfall thresholds corresponding to a 90% probability of landslide occurrence with different characteristics were determined using the I-D threshold curve method. Prediction maps of accumulation landslide hazards under various rainfall conditions were generated by analyzing the rainfall threshold for landslides in the Three Gorges Reservoir area, serving as a basis for early identification of rainfall-induced accumulation landslides in the region. The research provides a method for the early identification of landslides caused by heavy rainfall, delineating landslide hazards under different rainfall conditions, and providing a basis for scientific responses, work arrangements, and disaster prevention and mitigation of landslides caused by heavy rainfall. Full article
Show Figures

Figure 1

15 pages, 580 KiB  
Article
Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds
by Marta Sánchez, Tamara Bernal, Amanda Laca, Adriana Laca and Mario Díaz
Processes 2024, 12(5), 956; https://doi.org/10.3390/pr12050956 (registering DOI) - 08 May 2024
Abstract
Cocoa bean shell (CBS), a by-product from the chocolate industry, is an interesting source of bioactive compounds. In this work, the effects of time and pH on the hydrothermal hydrolysis of CBS were evaluated with the aim of maximizing the extraction of antioxidant [...] Read more.
Cocoa bean shell (CBS), a by-product from the chocolate industry, is an interesting source of bioactive compounds. In this work, the effects of time and pH on the hydrothermal hydrolysis of CBS were evaluated with the aim of maximizing the extraction of antioxidant and functional compounds from this biomass. In general, all treatments tested led to improvements in the extraction of bioactive compounds compared to untreated samples. The maximum values for antioxidant activity (187 µmol TE/g CBS dw) and phenolic compounds (14.5 mg GAE/g CBS dw) were obtained when CBS was treated at pH 4 for 10 min. In addition, maximum amounts of flavonoids (10.1 mg CE/g CBS dw), tannins (6.5 mg CE/g CBS dw) and methylxanthines (9 mg/g CBS dw) were obtained under mild pH conditions (4–5). It is noteworthy that these values are higher than those reported in the literature for other vegetable substrates, highlighting the potential of CBS to be valorized as a source of different value-adding products. Full article
22 pages, 1306 KiB  
Article
Design, Synthesis, and Biological Evaluation of the Quorum-Sensing Inhibitors of Pseudomonas aeruginosa PAO1
by Xinlin Yan, Shi Hou, Cheng Xing, Yuanyuan Zhang, Jiajia Chang, Junhai Xiao and Feng Lin
Molecules 2024, 29(10), 2211; https://doi.org/10.3390/molecules29102211 (registering DOI) - 08 May 2024
Abstract
Due to the resistance of Gram-negative bacteria Pseudomonas aeruginosa PAO1 to most clinically relevant antimicrobials, the use of traditional antibiotic treatments in hospitals is challenging. The formation of biofilms, which is regulated by the quorum-sensing (QS) system of Pseudomonas aeruginosa (PA), is an [...] Read more.
Due to the resistance of Gram-negative bacteria Pseudomonas aeruginosa PAO1 to most clinically relevant antimicrobials, the use of traditional antibiotic treatments in hospitals is challenging. The formation of biofilms, which is regulated by the quorum-sensing (QS) system of Pseudomonas aeruginosa (PA), is an important cause of drug resistance. There are three main QS systems in P. aeruginosa: the las system, the rhl system, and the pqs system. The inhibitors of the las system are the most studied. Previously, the compound AOZ-1 was found to have a certain inhibitory effect on the las system when screened. In this study, twenty-four compounds were designed and synthesized by modifying the Linker and Rings of AOZ-1. Using C. violaceum CV026 as a reporter strain, this study first assessed the inhibitory effects of new compounds against QS, and their SAR was investigated. Then, based on the SAR analysis of compound AOZ-1 derivatives, the parent core of AOZ-1 was replaced to explore the structural diversity. Then, nine new compounds were designed and synthesized with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one. The compound Y-31 (IC50 = 91.55 ± 3.35 µM) was found to inhibit the QS of C. violaceum CV026. Its inhibitory effect on C. violaceum CV026 was better than that of compound AOZ-1 (IC50 > 200 µM). Furthermore, biofilm formation is one of the important causes of Pseudomonas aeruginosa PAO1 resistance. In this study, it was found that compound Y-31, with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one, had the highest biofilm inhibition rate (40.44%). The compound Y-31 has a certain inhibitory effect on the production of PAO1 virulence factors (pyocyanin, rhamnolipid, and elastase) and swarming. When the concentration of compound Y-31 was 162.5 µM, the inhibition rates of pyocyanin, rhamnolipid, and elastase were 22.48%, 6.13%, and 22.67%, respectively. In vivo, the lifetime of wildtype Caenorhabditis elegans N2 infected with P. aeruginosa PAO1 was markedly extended by the new parent nucleus Y-31. This study also performed cytotoxicity experiments and in vivo pharmacokinetics experiments on the compound Y-31. In conclusion, this study identified a compound, Y-31, with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one, which is a potential agent for treating P. aeruginosa PAO1 that is resistant to antibiotics and offers a way to discover novel antibacterial medications. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
16 pages, 553 KiB  
Review
Applying Red Mud in Cadmium Contamination Remediation: A Scoping Review
by Jintao Li, Xuwei Li, Matthew Fischel, Xiaochen Lin, Shiqi Zhou, Lei Zhang, Lei Wang and Jiali Yan
Toxics 2024, 12(5), 347; https://doi.org/10.3390/toxics12050347 (registering DOI) - 08 May 2024
Abstract
Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties [...] Read more.
Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties which can effectively remove heavy metals through ion exchange, adsorption, and precipitation. Therefore, red mud is a valuable resource rather than a waste byproduct. In recent years, red mud has been increasingly studied for its potential in wastewater treatment and soil improvement. Red mud can effectively reduce the migration and impact of heavy metals in soils and water bodies. This paper reviews the research results from using red mud to mitigate cadmium pollution in water bodies and soils, discusses the environmental risks of red mud, and proposes key research directions for the future management of red mud in cadmium-contaminated environments. Full article
12 pages, 994 KiB  
Article
Effect of Fermentation and Extraction Techniques on the Physicochemical Composition of Copoazú Butter (Theobroma grandiflorum) as an Ingredient for the Cosmetic Industry
by Luisa L. Orduz-Díaz, Kimberly Lozano-Garzón, Willian Quintero-Mendoza, Raquel Díaz, Juliana E. C. Cardona-Jaramillo, Marcela P. Carrillo, Diana Carolina Guerrero and Maria Soledad Hernández
Cosmetics 2024, 11(3), 77; https://doi.org/10.3390/cosmetics11030077 (registering DOI) - 08 May 2024
Abstract
The Copoazú is a Theobroma species of Amazonian origin, and its derived products have a high content of lipids valuable for both the cosmetic and food industries. The composition of the butter extracted from its seeds can vary depending on the postharvest process [...] Read more.
The Copoazú is a Theobroma species of Amazonian origin, and its derived products have a high content of lipids valuable for both the cosmetic and food industries. The composition of the butter extracted from its seeds can vary depending on the postharvest process and the diverse extraction techniques employed. In this study, the composition of this butter processed with and without seed fermentation was analyzed using two extraction techniques: expeller pressing and hydraulic pressing. Parameters such as lipid profile, quality indexes, melting point, and the content of phytosterols and glyceric compounds were compared with a highly sought-after commercial raw material assessed through standardized volumetric and spectroscopic methodologies. The results showed that non-fermentation and cold-pressing conditions preserved the properties of the butter. This analysis is the first step in a standardized process for developing high-quality cosmetic ingredients derived from Copoazú butter. Full article
21 pages, 8140 KiB  
Article
Analysis of Characteristics and Driving Mechanisms of Non-Grain Production of Cropland in Mountainous Areas at the Plot Scale—A Case Study of Lechang City
by Zhaojun Wu, Shengfa Li, Dafang Wu, Jun Song, Tong Lin and Ziya Gao
Foods 2024, 13(10), 1459; https://doi.org/10.3390/foods13101459 (registering DOI) - 08 May 2024
Abstract
With the continuous advancement of urbanization and industrialization, non-grain production on cropland (NGPCL) is gradually becoming more widespread. This phenomenon will compress the space for grain production and trigger a global food crisis. How to scientifically understand and effectively control NGPCL has become [...] Read more.
With the continuous advancement of urbanization and industrialization, non-grain production on cropland (NGPCL) is gradually becoming more widespread. This phenomenon will compress the space for grain production and trigger a global food crisis. How to scientifically understand and effectively control NGPCL has become a scientific issue. This study, conducted at the plot scale, establishes a measurement index for NGPCL and further explores the characteristics and driving mechanisms of NGPCL in mountainous areas. The results indicate the following: (1) Compared to plots for food-growing, plots for non-grain production tend to be more dispersed, with terraces showing the most significant dispersion, while plains exhibit the highest degree of aggregation. (2) In terms of irrigation conditions, irrigated land and dry land are more likely to undergo NGPCL. In terms of topography, slope croplands have the highest probability of being used for NGPCL. (3) Regions with steeper slopes, higher elevations, greater differences in altitude from the settlement, farther distances from settlements and roads, yet closer proximity to forests, are more likely to engage in NGPCL. (4) Different plot characteristics have varying impacts on NGPCL. Plot characteristics primarily affect the costs and returns of grain production, driving farmers to change their production patterns and triggering NGPCL. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

16 pages, 1006 KiB  
Article
Tobacco Farmers’ Perceptions of Unsafe Tobacco Cultivation and Its Effect on Health and Environment: A Case of Chittagong Hill Tracts, Bangladesh
by Niamah Atya Mim, Shaikh Shamim Hasan, Muhammad Ziaul Hoque, Minhaz Ahmed and Prabin Chakma
Clean Technol. 2024, 6(2), 586-601; https://doi.org/10.3390/cleantechnol6020031 (registering DOI) - 08 May 2024
Abstract
As the environment is severely harmed by tobacco (like growing, processing, production, and disposal), the study was set forth to determine the tobacco cultivation status and perceptions of the tobacco farmers toward the environmental and health hazards of tobacco farmers due to tobacco [...] Read more.
As the environment is severely harmed by tobacco (like growing, processing, production, and disposal), the study was set forth to determine the tobacco cultivation status and perceptions of the tobacco farmers toward the environmental and health hazards of tobacco farmers due to tobacco cultivation. We conducted the study in Lama Upazila, Bandarban Hill District, Bangladesh. The survey method was applied to collect the necessary data, utilizing a pre-structured interview schedule, from 242 tobacco farmers who were selected randomly. The study’s results portrayed that the average tobacco cultivation farming experience of the farmers was about 10 years, and the farmers occupied about 0.97 acres of land for cultivating tobacco, while 81% of the tobacco farmers utilized the plain lands for cultivating tobacco, although the study area was a hilly one. A huge amount of fuel wood (average 5390 kg) was required for the curing of tobacco leaves. The farmers produced about 2 MT of tobacco per year and earned about BDT 89,066 (USD 810) from this production. Given that 77% of the tobacco farmers in the research area felt that tobacco production increased the risks to the environment and tobacco farmers health, their opinions ranged from somewhat to highly favorable, which meant they were concerned about the environment and health hazards. The research’s findings provide useful background knowledge on the detrimental effects of Bangladesh’s tobacco farming. Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Figure 1

16 pages, 883 KiB  
Article
Seasonal and Spatial Distribution Characteristics of Sepia esculenta in the East China Sea Region: Transfer of the Central Distribution from 29° N to 28° N
by Min Xu, Linlin Yang, Zunlei Liu, Yi Zhang and Hui Zhang
Animals 2024, 14(10), 1412; https://doi.org/10.3390/ani14101412 (registering DOI) - 08 May 2024
Abstract
The golden cuttlefish (Sepia esculenta) is an important cephalopod species with a lifespan of approximately one year. The species plays a crucial role in marine ecological support services and is commercially valuable in fisheries. In the seas around China, this species [...] Read more.
The golden cuttlefish (Sepia esculenta) is an important cephalopod species with a lifespan of approximately one year. The species plays a crucial role in marine ecological support services and is commercially valuable in fisheries. In the seas around China, this species has emerged as the main target for cuttlefish fisheries, replacing Sepiella maindroni since the 1990s. Variations in oceanographic conditions associated with global warming could significantly impact the temporal-spatial distribution of the species. In this study, we performed bottom trawling surveys with four cruises during 2018–2019 in the East China Sea region to determine the current resource status and seasonal-spatial variations in S. esculenta. We found that the average individual weight (AIW) values were 4.87 and 519.00 g/ind at stations located at 30.50° N, 124.00° E and 30.50° N, 124.50° E, respectively, with the aggregation of larvae and parent groups in spring. The species was not distributed north of 32.00° N in summer. The catch per unit effort by weight (CPUEw) value decreased in the order of 2772.50→2575.20→503.29→124.36 g/h, corresponding to latitudes of 34.50° N→34.00° N→33.50° N→32.50° N 121.50° E in autumn. The most suitable fishing areas were the south of the East China Sea region in spring; the south of the East China Sea region extending to the center and outer parts of the East China Sea region in summer; the south of the Yellow Sea close to the Haizhou Bay fishing ground and the forbidden fishing line region of the Lusi and Dasha fishing grounds in autumn; and the south and center of the East China Sea region in winter. The most suitable sea bottom temperature (SBT) values from spring to winter were 14.76–20.53 °C, 19.54–22.98 °C, 11.79–17.64 °C, and 16.94–20.36 °C, respectively. The most suitable sea bottom salinity (SBS) values were 31.53–34.80‰ in spring, 32.95–34.68‰ in summer, 31.51–34.77‰ in autumn, and 33.82–34.51‰ in winter. We concluded the following: (1) the southern and northern areas of the East China Sea region are spawning and nursery grounds, respectively, in spring; (2) the central distribution is located at a latitude of 28.00° N in autumn and winter; and (3) the southern area of the Yangtze River to the north is a spawning ground in spring, and the areas located at 29.00–34.50° N, 124.00–124.50° E, and 28.00–30.50° N, 125.50–126.50° E are nursery grounds. The results of this study provide useful guidance for appropriate fisheries management, thereby avoiding a collapse in the S. esculenta population, which has been experienced in other species in this area. Full article
21 pages, 869 KiB  
Review
Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship
by Alina-Teodora Nicu, Ileana Paula Ionel, Ileana Stoica, Liliana Burlibasa and Viorel Jinga
Biomedicines 2024, 12(5), 1041; https://doi.org/10.3390/biomedicines12051041 (registering DOI) - 08 May 2024
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15–45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15–45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis and the treatment itself pose a great threat to patients’ fertility. Despite extensive research concerning genetic and environmental risk factors, little is known about TGCT etiology. However, epigenetics has recently come into the spotlight as a major factor in TGCT initiation, progression, and even resistance to treatment. As such, recent studies have been focusing on epigenetic mechanisms, which have revealed their potential in the development of novel, non-invasive biomarkers. As the most studied epigenetic mechanism, DNA methylation was the first revelation in this particular field, and it continues to be a main target of investigations as research into its association with TGCT has contributed to a better understanding of this type of cancer and constantly reveals novel aspects that can be exploited through clinical applications. In addition to biomarker development, DNA methylation holds potential for developing novel treatments based on DNA methyltransferase inhibitors (DNMTis) and may even be of interest for fertility management in cancer survivors. This manuscript is structured as a literature review, which comprehensively explores the pivotal role of DNA methylation in the pathogenesis, progression, and treatment resistance of TGCTs. Full article
Show Figures

Figure 1

20 pages, 2487 KiB  
Article
Biochemical, Hematological, Inflammatory, and Gut Permeability Biomarkers in Patients with Alcohol Withdrawal Syndrome with and without Delirium Tremens
by Mark M. Melamud, Daria V. Bobrik, Polina I. Brit, Ilia S. Efremov, Valentina N. Buneva, Georgy A. Nevinsky, Elvina A. Akhmetova, Azat R. Asadullin and Evgeny A. Ermakov
J. Clin. Med. 2024, 13(10), 2776; https://doi.org/10.3390/jcm13102776 (registering DOI) - 08 May 2024
Abstract
Background: Delirium Tremens (DT) is known to be a serious complication of alcohol withdrawal syndrome (AWS). Neurotransmitter abnormalities, inflammation, and increased permeability are associated with the pathogenesis of AWS and DT. However, the biomarkers of these conditions are still poorly understood. Methods: In [...] Read more.
Background: Delirium Tremens (DT) is known to be a serious complication of alcohol withdrawal syndrome (AWS). Neurotransmitter abnormalities, inflammation, and increased permeability are associated with the pathogenesis of AWS and DT. However, the biomarkers of these conditions are still poorly understood. Methods: In this work, biochemical, hematologic, inflammatory, and gut permeability biomarkers were investigated in the following three groups: healthy controls (n = 75), severe AWS patients with DT (n = 28), and mild/moderate AWS without DT (n = 97). Blood sampling was performed after resolution of the acute condition (on 5 ± 1 day after admission) to collect clinical information from patients and to investigate associations with clinical scales. Biomarker analysis was performed using automated analyzers and ELISA. Inflammatory biomarkers included the erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (hsCRP), and platelet-to-lymphocyte ratio (PLR). Results: Among the biochemical biomarkers, only glucose, total cholesterol, and alanine aminotransferase (ALT) changed significantly in the analyzed groups. A multiple regression analysis showed that age and ALT were independent predictors of the CIWA-Ar score. Hematologic biomarker analysis showed an increased white blood cell count, and the elevated size and greater size variability of red blood cells and platelets (MCV, RDWc, and PDWc) in two groups of patients. Gut permeability biomarkers (FABP2, LBP, and zonulin) did not change, but were associated with comorbid pathologies (alcohol liver disease and pancreatitis). The increase in inflammatory biomarkers (ESR and PLR) was more evident in AWS patients with DT. Cluster analysis confirmed the existence of a subgroup of patients with evidence of high inflammation, and such a subgroup was more frequent in DT patients. Conclusions: These findings contribute to the understanding of biomarker variability in AWS patients with and without DT and support the heterogeneity of patients by the level of inflammation. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

14 pages, 2241 KiB  
Article
Integrated Approach of Historical Landscape Characterisation Techniques and Remote Sensing for the Definition of Predictive Models and Scenario Analysis in the Planning of Archaeological Areas
by Giuliana Quattrone
Heritage 2024, 7(5), 2444-2457; https://doi.org/10.3390/heritage7050116 (registering DOI) - 08 May 2024
Abstract
This study explores the synergistic integration of remote sensing (RS) and Historical Landscape Characterisation (HLC) methodology as an innovative, multi-scalar and holistic approach to enhance archaeological planning. The goal is to maximize the effectiveness of the investigations, optimizing data collection and improving the [...] Read more.
This study explores the synergistic integration of remote sensing (RS) and Historical Landscape Characterisation (HLC) methodology as an innovative, multi-scalar and holistic approach to enhance archaeological planning. The goal is to maximize the effectiveness of the investigations, optimizing data collection and improving the contextual understanding of the sites. In fact, these methodologies can significantly contribute to the documentation, conservation, planning and valorisation of archaeological areas. By integrating RS data with features detected by HLC, a complete picture is obtained that facilitates a deeper understanding of the landscape and historical dynamics. This article will explain the combined approach of RS and HLC, presenting some methodologies key to improving the precision and effectiveness of archaeological planning. This integration facilitates the sustainable preservation of archaeological resources and contributes to the conscious management of cultural heritage in the context of contemporary development. The paper demonstrates, through a case study, how the application of the two methodologies (RS and HLC) in an integrated form can provide an exhaustive interpretation of the territory in which the archaeological area is located, which can represent an exhaustive knowledge base on which to set up effective processes for the strategic territorial planning of archaeological areas. Full article
(This article belongs to the Section Archaeological Heritage)
16 pages, 1714 KiB  
Article
Healthcare in the Time of COVID-19: An Environmental Perspective on the Pandemic’s Impact on Hospitals
by Vanesa Jiménez-Lacarra, Eduardo Martínez-Cámara, Jacinto Santamaría-Peña, Emilio Jiménez-Macías and Julio Blanco-Fernández
Appl. Sci. 2024, 14(10), 4007; https://doi.org/10.3390/app14104007 (registering DOI) - 08 May 2024
Abstract
Hospitals have demonstrated their enormous capacity to adapt to the rapidly changing situation imposed by the pandemic: increasing the number of intensive care units and intermediate and inpatient beds, with the corresponding human resources, services and facilities required. Internationally, the enormous demand to [...] Read more.
Hospitals have demonstrated their enormous capacity to adapt to the rapidly changing situation imposed by the pandemic: increasing the number of intensive care units and intermediate and inpatient beds, with the corresponding human resources, services and facilities required. Internationally, the enormous demand to manage the COVID-19 pandemic has challenged hospitals in terms of staffing, supplies and equipment. This article analyses the effect of the COVID-19 pandemic on hospital activities, from the perspective of its environmental impact. It compares a year of normal hospital activities, 2019, with data on hospital activities from 2020. The aim of this research is to analyse the changes produced by the pandemic in the regular activities of the hospital and to determine the environmental impact, which allows reflecting on the exceptional situation generated. The results show that the hospital’s environmental impact increased significantly in 2020 compared to 2019, with a 17.2% increase in overall environmental efficiency indices. The main contributors to this increase were waste generation and medical gas consumption, which are critical aspects of hospital activities during the pandemic. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

21 pages, 3465 KiB  
Article
Total Least Squares Estimation in Hedonic House Price Models
by Wenxi Zhan, Yu Hu, Wenxian Zeng, Xing Fang, Xionghua Kang and Dawei Li
ISPRS Int. J. Geo-Inf. 2024, 13(5), 159; https://doi.org/10.3390/ijgi13050159 (registering DOI) - 08 May 2024
Abstract
In real estate valuation using the Hedonic Price Model (HPM) estimated via Ordinary Least Squares (OLS) regression, subjectivity and measurement errors in the independent variables violate the Gauss–Markov theorem assumption of a non-random coefficient matrix, leading to biased parameter estimates and incorrect precision [...] Read more.
In real estate valuation using the Hedonic Price Model (HPM) estimated via Ordinary Least Squares (OLS) regression, subjectivity and measurement errors in the independent variables violate the Gauss–Markov theorem assumption of a non-random coefficient matrix, leading to biased parameter estimates and incorrect precision assessments. In this contribution, the Errors-in-Variables model equipped with Total Least Squares (TLS) estimation is proposed to address these issues. It fully considers random errors in both dependent and independent variables. An iterative algorithm is provided, and posterior accuracy estimates are provided to validate its effectiveness. Monte Carlo simulations demonstrate that TLS provides more accurate solutions than OLS, significantly improving the root mean square error by over 70%. Empirical experiments on datasets from Boston and Wuhan further confirm the superior performance of TLS, which consistently yields a higher coefficient of determination and a lower posterior variance factor, which shows its more substantial explanatory power for the data. Moreover, TLS shows comparable or slightly superior performance in terms of prediction accuracy. These results make it a compelling and practical method to enhance the HPM. Full article
Show Figures

Figure 1

17 pages, 611 KiB  
Article
Validation of A New Scoring Method to Assess the Efficacy of Rapid Initiation and Titration of Combination Pharmacotherapy for Patients Hospitalized with Acute Decompensated Heart Failure with Reduced and Mildly Reduced Ejection Fraction
by Takaaki Asano, Yoshio Maeno, Masataka Nakano, Masataka Taguri, Masaki Miyasaka, Daisuke Nakai, Itaru Miyazaki, Takahito Nasu, Shuzou Tanimoto, Naoki Masuda, Yoshihiro Morino, Takaaki Isshiki and Nobuhiko Ogata
J. Clin. Med. 2024, 13(10), 2775; https://doi.org/10.3390/jcm13102775 (registering DOI) - 08 May 2024
Abstract
Background: Despite the encouragement of early initiation and titration of guideline-di-rected medical therapy (GDMT) for the treatment of heart failure (HF), most patients do not receive an adequate type and dose of pharmacotherapy in the real world. Objectives: This study aimed to determine [...] Read more.
Background: Despite the encouragement of early initiation and titration of guideline-di-rected medical therapy (GDMT) for the treatment of heart failure (HF), most patients do not receive an adequate type and dose of pharmacotherapy in the real world. Objectives: This study aimed to determine the efficacy of titrating composite GDMT in patients with HF with reduced and mildly reduced ejection fraction and to identify patient conditions that may benefit from titration of GDMT. Methods: This was a two-center, retrospective study of consecutive patients hospitalized with acute decompensated heart failure (ADHF). Patients were classified into two groups according to a scoring scale determined by combination and doses of four types of HF agents (ACEis/ARBs/ARNis, BBs, MRAs, and SGLT2is) at discharge. A score of 5 or greater was defined as titrated GDMT, and a score of 4 or less was regarded as sub-optimal medical therapy (MT). Results: A total of 979 ADHF patients were screened. After 553 patients were excluded based on exclusion criteria, 426 patients (90 patients in the titrated GDMT group and 336 patients in the sub-optimal MT group) were enrolled for the analysis. The median follow-up period was 612 (453–798) days. Following statistical adjustment using the propensity score weighting method, the 2-year composite endpoint (composite of cardiac death and HF rehospitalization) rate was significantly lower in the titrated GDMT group, at 19%, compared with the sub-optimal MT group: 31% (score 3–4 points) and 43% (score 0–2 points). Subgroup analysis indicated a marked benefit of titrated GDMT in particular patient subgroups: age < 80 years, BMI 19.0–24.9, eGFR > 20 mL/min/1.73 m2, and serum potassium level ≤ 5.5 mmol/L. Conclusions: Prompt initiation and dose adjustment of multiple HF medications, with careful monitoring of the patient’s physiologic and laboratory values, is a prerequisite for improving the prognosis of patients with heart failure. Full article
(This article belongs to the Special Issue Current Advances in Optimal Medical Therapy for Heart Failure)
16 pages, 418 KiB  
Article
The Efficiency of Kinesiotherapy versus Physical Modalities on Pain and Other Common Complaints in Fibromyalgia
by Daniela Matei, Rodica Trăistaru, Vlad Pădureanu, Taina Elena Avramescu, Daniela Neagoe, Amelia Genunche and Anca Amzolini
Life 2024, 14(5), 604; https://doi.org/10.3390/life14050604 (registering DOI) - 08 May 2024
Abstract
Due to its variety of signs and symptoms, there have been numerous attempts to treat fibromyalgia (FM), but a cure has yet to be established. The aim of this study was to evaluate the effects of a complex kinetic therapy program and a [...] Read more.
Due to its variety of signs and symptoms, there have been numerous attempts to treat fibromyalgia (FM), but a cure has yet to be established. The aim of this study was to evaluate the effects of a complex kinetic therapy program and a combined physical modality program on pain and other common symptoms of FM. Patients and methods: A total of 78 female patients were included in this study; 39 subjects underwent a kinesiotherapy (KT) intervention (combining aerobic and Pilates exercises), and 39 participated in a physical modality (PM) program (including electrotherapy (TENS and low-laser therapy) and thermotherapy). Results: Regarding the parameter of pain assessment, kinesiotherapy demonstrated its superiority both during the treatment period and in the evaluation 3 months after therapy cessation. Both in terms of patient-reported pain (inter-group comparisons: p = 0.000 at T3) and the examination of tender points (inter-group comparisons: p = 0.000 at T3), as well as the algometric assessment, pain was alleviated by the two forms of applied kinetic therapy. The observed functional impairment was statistically significantly influenced (p = 0.001) at the end of the kinetic program application, while for the perceived functional impairment, neither therapy proved superiority over the other at any point of evaluation (inter-group comparisons: p = 0.715 at T3). Regarding the influence of the emotional consequences implied by fibromyalgia, neither the forms of kinesiotherapy nor the chosen physical modalities proved superiority at any point of evaluation (HAQ anxiety inter-group comparisons: p = 0.000 at T3). In conclusion, even though kinesiotherapy had superior influences on fibromyalgia pain in the studied group, the current research lends credence to the significance of non-pharmacological therapy in managing fibromyalgia. Participants demonstrated positive advancements in subjective and objective pain assessments, as well as improvements in functional and emotional well-being. Full article
(This article belongs to the Special Issue Effects of Exercise Training on Muscle Function)
18 pages, 1440 KiB  
Article
Experimental Study on the Strength and Microstructure of Red Mud-Based Silty Sand Modified with Lime–Fly Ash
by Song Yin, Pan Yan, Xinming Li, Yulong Wang, Xianwei Zhang, Yuzhou Sun and Cheng Chen
Buildings 2024, 14(5), 1336; https://doi.org/10.3390/buildings14051336 (registering DOI) - 08 May 2024
Abstract
This study aimed to assess the viability of utilizing lime–fly ash (LF) and red mud (RM) in the modification of silty soil (LF-RMS) for subgrade filling. The primary objective of this research was to analyze the mechanical characteristics and examine the curing mechanisms [...] Read more.
This study aimed to assess the viability of utilizing lime–fly ash (LF) and red mud (RM) in the modification of silty soil (LF-RMS) for subgrade filling. The primary objective of this research was to analyze the mechanical characteristics and examine the curing mechanisms associated with said modified materials. Different curing times were utilized in the analysis of mechanical properties (e.g., via unconfined compression testing), microstructure (via scanning electron microscopy, X-ray diffraction, and thermogravimetric-differential thermal analysis), and environmental indices (via assessment of corrosivity, heavy metal concentration, and radioactivity) with various dosages of red mud (DRM) and Lime–fly ash (DLF). Analyses of the curing mechanisms, failure modes, microstructures, and degrees of environmental impact associated with LF-RMS were also undertaken. The tests indicated that the unconfined compressive strength (UCS) exhibited an initial increase followed by a decrease as the DRM and DLF levels increased. Additionally, the strength of LF-RMS increased with an increase in curing time. It is worth noting that the specimen composed of 20% LF and 23% RM (D20%LF+23%RM) demonstrated a maximum UCS value of 4.72 MPa after 90 days of curing, which indicates that it has the strongest ability to resist deformation. The strength of the specimen cured for 90 days was 1.4 times higher than that of the specimen cured for 7 days (1.97 MPa). Furthermore, the toxic concentration and radionuclide index of LF-RMS were significantly reduced compared to those of pure RM. The overall concentration of heavy metals in the D20%LF+23%RM specimen decreased by more than 60% after curing for 28 days. The internal irradiation index and the external irradiation index decreased by 1.63 and 1.69, respectively. The hydration products in LF-RMS play a key role in the solidification of heavy metals, and the alkaline environment provided by RM also contributes to the precipitation and replacement of heavy metals. In this study, red mud, fly ash and lime were used to modify silty soil. The central tenets of sustainable development may be achieved through the reuse of RM as a road filler. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
21 pages, 1755 KiB  
Article
Research on Slurry Flowability and Mechanical Properties of Cemented Paste Backfill: Effects of Cement-to-Tailings Mass Ratio and Mass Concentration
by Yan Li, Jianxin Fu, Jiguang Yang and Jie Wang
Materials 2024, 17(10), 2222; https://doi.org/10.3390/ma17102222 (registering DOI) - 08 May 2024
Abstract
The flowability and mechanical properties are increasingly crucial in the filling process of deep metal mines with mining depths exceeding 1000 m. The rheological properties of filling slurry in the pipeline were analyzed through rheological tests, L-tube self-flow tests, and semi-industrial loop tests. [...] Read more.
The flowability and mechanical properties are increasingly crucial in the filling process of deep metal mines with mining depths exceeding 1000 m. The rheological properties of filling slurry in the pipeline were analyzed through rheological tests, L-tube self-flow tests, and semi-industrial loop tests. The results revealed that with an increase in the cement-to-tailings mass ratio (c/t ratio) and mass concentration, the slurry exhibited a higher flow resistance and decreased stowing gradient. During slurry transportation, the pressure loss in the straight pipe was positively correlated with the slurry flow rate, c/t ratio, and mass concentration. A uniaxial compressive strength (UCS) test was conducted to analyze the mechanical properties of the cemented paste backfill containing BMC (CCPB) in both standard and deep-underground curing environments. The UCS of the CCPB showed an increasing trend with the rise in curing age, mass concentration, and the c/t ratio. The comprehensive analysis concluded that when the c/t ratio is 1:4, and the mass concentration is approximately 74%, and parameters such as the slump, bleeding rate, and flowability of the filling slurry meet the criteria for conveying and goaf filling, resulting in a high-strength filling body. Full article
(This article belongs to the Special Issue Sustainable and Advanced Cementitious Materials)
18 pages, 6147 KiB  
Article
Analysis of the Near-Ground Wind Field Characteristics during Typhoon Soulik
by Xu Wang, Zhilan Yao, Yun Guo and Yongguang Li
Appl. Sci. 2024, 14(10), 4001; https://doi.org/10.3390/app14104001 (registering DOI) - 08 May 2024
Abstract
In 2013, during Typhoon Soulik, wind data were collected at various heights above the ground (15, 27, 53, 67, and 82 m) on the 550 kV 52# pole transmission tower in Ningde City, Fujian Province. The wind speed profile, turbulence intensity, gust factor, [...] Read more.
In 2013, during Typhoon Soulik, wind data were collected at various heights above the ground (15, 27, 53, 67, and 82 m) on the 550 kV 52# pole transmission tower in Ningde City, Fujian Province. The wind speed profile, turbulence intensity, gust factor, crest factor, and power spectrum were analyzed using 10 min interval wind speed records. The results show the following: (1) the average wind velocity of Typhoon Soulik varies in accordance with both the power law and the logarithmic law, but the Deaves–Harris model exhibits significant discrepancies; (2) the turbulence intensity in u, v, and w orientations decreases with the average wind velocity at each height. Exponential fitting is conducted on the strength of turbulence and gust factor profiles in each direction based on the standards of different countries, resulting in the derivation of empirical expressions; (3) the integral scale components of turbulence in u, v, and w orientations exhibit a positive correlation with both average wind velocity and height. The turbulence integral scale ratios in the longitudinal, transverse, and vertical directions at heights of 15, 53, and 82 m are 1:0.68:0.11, 1:0.67:0.27, and 1:0.67:0.30, respectively; (4) the Von Karman empirical spectrum and the modified Kaimal cross-spectrum model closely match the observed wind power spectrum of Typhoon Soulik. The presented results contribute to furthering references for wind-resistant design of structures in typhoon-prone areas and prevention of typhoon-related disasters. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

19 pages, 6712 KiB  
Article
Self-Diagnostic Opportunities for Battery Systems in Electric and Hybrid Vehicles
by Szabolcs Kocsis Szürke, Gergő Sütheö, Péter Őri and István Lakatos
Machines 2024, 12(5), 324; https://doi.org/10.3390/machines12050324 (registering DOI) - 08 May 2024
Abstract
The number of battery systems is also growing significantly along with the rise in electric and hybrid car sales. Different vehicles use different types and numbers of batteries. Furthermore, the layout and operation of the control and protection electronics units may also differ. [...] Read more.
The number of battery systems is also growing significantly along with the rise in electric and hybrid car sales. Different vehicles use different types and numbers of batteries. Furthermore, the layout and operation of the control and protection electronics units may also differ. The research aims to develop an approach that can autonomously detect and localize the weakest cells. The method was validated by testing the battery systems of three different VW e-Golf electric vehicles. A wide-range discharge test was performed to examine the condition assessment and select the appropriate state of charge (SoC) for all three vehicles. On the one hand, the analysis investigated the cell voltage deviations from the average; the tests cover deviations of 0 mV, 12 mV, 60 mV, 120 mV, and 240 mV. On the other hand, the mean value calculation was used to filter out possible erroneous values. Another important aspect was examining the relationship between the state of charges (SoC) and the deviations. Therefore, the 10% step changes were tested to see which SoC level exhibited more significant voltage deviations. Based on the results, it was observed that there are differences between the cases, and the critical range is not necessarily at the lowest SoC level. Furthermore, the load rate (current) and time of its occurrence play an important role in the search for a faulty cell. An additional advantage of this approach is that the process currently being tested on the VW e-Golf can be relatively simply transferred to other types of vehicles. It can also be a very useful addition for autonomous vehicles, as it can self-test the cells in the system at low power consumption. Full article
(This article belongs to the Section Vehicle Engineering)
14 pages, 1506 KiB  
Article
A Microactuator Array Based on Ionic Electroactive Artificial Muscles for Cell Mechanical Stimulation
by Jing Gu, Zixing Zhou, Yang Xie, Xiaobin Zhu, Guoyou Huang and Zuoqi Zhang
Biomimetics 2024, 9(5), 281; https://doi.org/10.3390/biomimetics9050281 (registering DOI) - 08 May 2024
Abstract
Mechanical stimulation is prevalent within organisms, and appropriate regulation of such stimulation can significantly enhance cellular functions. Consequently, the in vitro construction and simulation of mechanical stimulation have emerged as a research hotspot in biomechanics. In recent years, a class of artificial muscles [...] Read more.
Mechanical stimulation is prevalent within organisms, and appropriate regulation of such stimulation can significantly enhance cellular functions. Consequently, the in vitro construction and simulation of mechanical stimulation have emerged as a research hotspot in biomechanics. In recent years, a class of artificial muscles named electroactive polymers (EAPs), especially ionic EAPs, have shown promising applications in biomechanics. While several techniques utilizing ionic EAPs for cell mechanical stimulation have been reported, further research is needed to advance and enhance their practical applications. Here, we prepared a microactuator array based on ionic EAP artificial muscles for cell mechanical stimulation. As a preliminary effort, we created a 5 × 5 microactuator array on a supporting membrane by employing laser cutting. We evaluated the electro-actuation performance of the microactuators through experimental testing and numerical simulations, affirming the potential use of the microactuator array for cell mechanical stimulation. The devised approach could inspire innovative design concepts in the development of miniaturized intelligent electronic devices, not only in biomechanics and biomimetics but also in other related fields. Full article
(This article belongs to the Special Issue Biomechanics and Biomimetics in Engineering Design)
19 pages, 2546 KiB  
Article
Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues
by Anusha W. Mudyanselage, Buddhika C. Wijamunige, Artur Kocoń, Ricky Turner, Denise McLean, Benito Morentin, Luis F. Callado and Wayne G. Carter
Antioxidants 2024, 13(5), 580; https://doi.org/10.3390/antiox13050580 (registering DOI) - 08 May 2024
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells [...] Read more.
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0‒200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease)
25 pages, 4514 KiB  
Article
Modeling, Analysis and Evaluation of a Novel Compact 6-DoF 3-RRRS Needle Biopsy Robot
by Jiangnan Wang, Ruiqi Xiang, Jindong Xiang, Baichuan Wang, Xiyun Wu, Mingzhen Cai, Zhijie Pan, Mengtang Li and Xun Li
Mathematics 2024, 12(10), 1461; https://doi.org/10.3390/math12101461 (registering DOI) - 08 May 2024
Abstract
Robot-assisted surgical systems have been widely applied for minimally invasive needle biopsies thanks to their excellent accuracy and superior stability compared to manual surgical operations, which lead to possible fatigue and misoperation due to long procedures. Current needle biopsy robots are normally customed [...] Read more.
Robot-assisted surgical systems have been widely applied for minimally invasive needle biopsies thanks to their excellent accuracy and superior stability compared to manual surgical operations, which lead to possible fatigue and misoperation due to long procedures. Current needle biopsy robots are normally customed designed for specific application scenarios, and only position-level kinematics are derived, preventing advanced speed control or singularity analysis. As a step forward, this paper aims to design a universal needle biopsy robot platform which features 6 DoF 3-RRRS (Revolute–Revolute–Revolute–Spherical) parallel structure. The analytical solutions to its nonlinear kinematic problems, including forward kinematics, inverse kinematics, and differential kinematics are derived, allowing fast and accurate feedback control calculations. A multibody simulation platform and a first-generation prototype are established next to provide comprehensive verifications for the derived robotic model. Finally, simulated puncture experiments are carried out to illustrate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Mathematical Modeling in Nonlinear Control and Robotics)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop