The 2023 MDPI Annual Report has
been released!
 
22 pages, 5033 KiB  
Article
Impact of Thinning on the Yield and Quality of Eucalyptus grandis Wood at Harvest Time in Uruguay
by Fernando Resquin, Karen Baez, Sofia de Freitas, Diego Passarella, Ana Paula Coelho-Duarte and Cecilia Rachid-Casnati
Forests 2024, 15(5), 810; https://doi.org/10.3390/f15050810 (registering DOI) - 04 May 2024
Abstract
Understanding how thinning strategies impact wood quality and quantity for different purposes is of interest, given that plantation management is often based on parameters that require validation under varying growth conditions. Planted forests for solid purposes in the northern region of Urugay, western [...] Read more.
Understanding how thinning strategies impact wood quality and quantity for different purposes is of interest, given that plantation management is often based on parameters that require validation under varying growth conditions. Planted forests for solid purposes in the northern region of Urugay, western Argentina and South of Brazil are usually managed in initial stockings ranging from 800 to 1200 trees·ha−1 depending on the use of clones or seeds. Subsequent thinnings are applied (at plantation ages varying from 3 to 11 years) up to final stockings of around 200 trees·ha−1. This study evaluated contrasting thinning regimes applied early in the crop cycle, with an initial tree density of 840 trees·ha−1. Two thinning treatments were applied at 1.5 and 7.3 years, reducing tree densities to 700–400 and 400–100 trees·ha−1, respectively. Growth analyses were conducted from 1.5 to 20.8 years, considering total height, diameter at breast height, individual volume, total and commercial volume per hectare, mean annual increase, and current annual increase. At the final harvest, contrasting tree densities of 100, 250, and 400 trees·ha−1 were sampled to assess wood density and mechanical properties (bending and compression on small-scale clear samples). Individual growth and wood properties were related to a Stand Density Index to understand the effect of competition on these values. The results identified thinning regimes that resulted in the most significant individual and per-hectare growth (both in thinning and clear felling) and the optimal harvest time under specific growth conditions. We assessed the proportions of commercial logs for sawmill and pulp uses, providing valuable inputs for subsequent economic analyses of thinning regimes aiming for the most convenient combination of wood products. Wood’s physical and mechanical properties were relatively little affected by contrasting levels of competition between trees; therefore, the choice of silvicultural system will depend on production and economic criteria. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 2240 KiB  
Article
Wind Shear Operation-Based Competency Assessment Model for Civil Aviation Pilots
by Fan Li, Xuezhi Xu, Jiayuan Li, Huiyun Hu, Mingda Zhao and Hong Sun
Aerospace 2024, 11(5), 363; https://doi.org/10.3390/aerospace11050363 (registering DOI) - 04 May 2024
Abstract
Undesirable meteorological conditions are typical aviation flight safety threats. Although most meteorological radar and flight augmentation computers have avionic system wind shear alarms, the preferred approach is that pilots avoid unsafe wind shear events. Therefore, effective pilot competency evaluations are needed to assess [...] Read more.
Undesirable meteorological conditions are typical aviation flight safety threats. Although most meteorological radar and flight augmentation computers have avionic system wind shear alarms, the preferred approach is that pilots avoid unsafe wind shear events. Therefore, effective pilot competency evaluations are needed to assess pilots’ abilities to deal with these events. This study developed a wind shear operation competency model that includes observable behavior indicators, sub-task decomposition, and competency check items. An adapted competency model and a quantitative data-driven competency evaluation criteria optimization method were then developed using three-dimensional competency feature modeling, after which wind shear simulation flight training data were used to verify the effectiveness of the proposed method. The competency assessment grades were significantly correlated with the results from experienced examiners with a 93.33% evaluation accuracy. The proposed quantitative data-driven competency assessment method can provide effective pilot competency assessments for a range of aviation meteorological threats. Full article
Show Figures

Figure 1

24 pages, 1568 KiB  
Article
Novel Self-Organizing Probability Maps Applied to Classification of Concurrent Partial Discharges from Online Hydro-Generators
by Rodrigo M. S. de Oliveira, Filipe C. Fernandes and Fabrício J. B. Barros
Energies 2024, 17(9), 2208; https://doi.org/10.3390/en17092208 (registering DOI) - 04 May 2024
Abstract
In this paper, we present an unprecedented method based on Kohonen networks that is able to automatic recognize partial discharge (PD) classes from phase-resolved partial discharge (PRPD) diagrams with features of various simultaneous PD patterns. The PRPD diagrams were obtained from the stator [...] Read more.
In this paper, we present an unprecedented method based on Kohonen networks that is able to automatic recognize partial discharge (PD) classes from phase-resolved partial discharge (PRPD) diagrams with features of various simultaneous PD patterns. The PRPD diagrams were obtained from the stator windings of a real-world hydro-generator rotating machine. The proposed approach integrates classification probabilities into the Kohonen method, producing self-organizing probability maps (SOPMs). For building SOPMs, a group of PRPD diagrams, each containing a single PD pattern for training the Kohonen networks and single- and multiple-class-featured samples for obtaining final SOPMs, is used to calculate the probabilities of each Kohonen neuron to be associated with the various PD classes considered. At the end of this process, a self-organizing probability map is produced. Probabilities are calculated using distances, obtained in the space of features, between neurons and samples. The so-produced SOPM enables the effective classification of PRPD samples and provides the probability that a given PD sample is associated with a PD class. In this work, amplitude histograms are the features extracted from PRPDs maps. Our results demonstrate an average classification accuracy rate of approximately 90% for test samples. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

14 pages, 1842 KiB  
Article
Evaluation of Almond Hull and Shell Amendments across Organic Matter Management of Orchard Soils
by Leah Wolff Hartman, Ellie M. Andrews, Erini G. Galatis, Amélie C. M. Gaudin, Patrick H. Brown and Sat Darshan S. Khalsa
Soil Syst. 2024, 8(2), 51; https://doi.org/10.3390/soilsystems8020051 (registering DOI) - 04 May 2024
Abstract
Hulls and shells are an abundant by-product from almond production with potential as an organic matter amendment (OMA). A combination of incubation study and field research was conducted in 2019–2021 to evaluate the impacts of three practices in combination on orchard soils’ C [...] Read more.
Hulls and shells are an abundant by-product from almond production with potential as an organic matter amendment (OMA). A combination of incubation study and field research was conducted in 2019–2021 to evaluate the impacts of three practices in combination on orchard soils’ C and N cycling, including a 210-day period of laboratory incubation with hulls and shells, and field sampling of orchard soils with and without historic applications of green waste compost as an OMA; with hulls and shells and with and without off-ground harvest where orchard soils remain undisturbed year round. Hulls and shells increased microbial biomass carbon in the field study by 248 μg g−1 dry soil after one year (p < 0.001) and during incubation, and increased cumulative respiration in soils with and without historic OMA (p < 0.001). Historic OMA resulted in double the total soil organic carbon (SOC) and total nitrogen (TN) compared to soil without resulting in significantly higher respiration and N mineralization when amended with hulls and shells. The decomposition of hull and shell biomass following surface application progressed at similar rates in the laboratory and field (1.7 g kg−1 d−1 during incubation (R2 = 0.84) and 1.3 g kg−1 d−1 in the field trial (R2 = 0.91). Our results highlight the suitability of hulls and shells as a by-product source of OMA for improving soil health in orchards with historic OMA and transitioning to organic matter management. Full article
Show Figures

Figure 1

12 pages, 3140 KiB  
Article
Distinguishing the Uterine Artery, the Ureter, and Nerves in Laparoscopic Surgical Images Using Ensembles of Binary Semantic Segmentation Networks
by Norbert Serban, David Kupas, Andras Hajdu, Peter Török and Balazs Harangi
Sensors 2024, 24(9), 2926; https://doi.org/10.3390/s24092926 (registering DOI) - 04 May 2024
Abstract
Performing a minimally invasive surgery comes with a significant advantage regarding rehabilitating the patient after the operation. But it also causes difficulties, mainly for the surgeon or expert who performs the surgical intervention, since only visual information is available and they cannot use [...] Read more.
Performing a minimally invasive surgery comes with a significant advantage regarding rehabilitating the patient after the operation. But it also causes difficulties, mainly for the surgeon or expert who performs the surgical intervention, since only visual information is available and they cannot use their tactile senses during keyhole surgeries. This is the case with laparoscopic hysterectomy since some organs are also difficult to distinguish based on visual information, making laparoscope-based hysterectomy challenging. In this paper, we propose a solution based on semantic segmentation, which can create pixel-accurate predictions of surgical images and differentiate the uterine arteries, ureters, and nerves. We trained three binary semantic segmentation models based on the U-Net architecture with the EfficientNet-b3 encoder; then, we developed two ensemble techniques that enhanced the segmentation performance. Our pixel-wise ensemble examines the segmentation map of the binary networks on the lowest level of pixels. The other algorithm developed is a region-based ensemble technique that takes this examination to a higher level and makes the ensemble based on every connected component detected by the binary segmentation networks. We also introduced and trained a classic multi-class semantic segmentation model as a reference and compared it to the ensemble-based approaches. We used 586 manually annotated images from 38 surgical videos for this research and published this dataset. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 4159 KiB  
Article
Urban Land Surface Temperature Downscaling in Chicago: Addressing Ethnic Inequality and Gentrification
by Jangho Lee, Max Berkelhammer, Matthew D. Wilson, Natalie Love and Ralph Cintron
Remote Sens. 2024, 16(9), 1639; https://doi.org/10.3390/rs16091639 (registering DOI) - 04 May 2024
Abstract
In this study, we developed a XGBoost-based algorithm to downscale 2 km-resolution land surface temperature (LST) data from the GOES satellite to a finer 70 m resolution, using ancillary variables including NDVI, NDBI, and DEM. This method demonstrated a superior performance over the [...] Read more.
In this study, we developed a XGBoost-based algorithm to downscale 2 km-resolution land surface temperature (LST) data from the GOES satellite to a finer 70 m resolution, using ancillary variables including NDVI, NDBI, and DEM. This method demonstrated a superior performance over the conventional TsHARP technique, achieving a reduced RMSE of 1.90 °C, compared to 2.51 °C with TsHARP. Our approach utilizes the geostationary GOES satellite data alongside high-resolution ECOSTRESS data, enabling hourly LST downscaling to 70 m—a significant advancement over previous methodologies that typically measure LST only once daily. Applying these high-resolution LST data, we examined the hottest days in Chicago and their correlation with ethnic inequality. Our analysis indicated that Hispanic/Latino communities endure the highest LSTs, with a maximum LST that is 1.5 °C higher in blocks predominantly inhabited by Hispanic/Latino residents compared to those predominantly occupied by White residents. This study highlights the intersection of urban development, ethnic inequality, and environmental inequities, emphasizing the need for targeted urban planning to mitigate these disparities. The enhanced spatial and temporal resolution of our LST data provides deeper insights into diurnal temperature variations, crucial for understanding and addressing the urban heat distribution and its impact on vulnerable communities. Full article
(This article belongs to the Special Issue Remote Sensing for Land Surface Temperature and Related Applications)
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Few-Shot Federated Learning: A Federated Learning Model for Small-Sample Scenarios
by Junfeng Tian, Xinyao Chen and Shuo Wang
Appl. Sci. 2024, 14(9), 3919; https://doi.org/10.3390/app14093919 (registering DOI) - 04 May 2024
Abstract
Traditional federated learning relies heavily on mature datasets, which typically consist of large volumes of uniformly distributed data. While acquiring extensive datasets is relatively straightforward in academic research, it becomes prohibitively expensive in practical applications, especially in emerging or specialized medical fields characterized [...] Read more.
Traditional federated learning relies heavily on mature datasets, which typically consist of large volumes of uniformly distributed data. While acquiring extensive datasets is relatively straightforward in academic research, it becomes prohibitively expensive in practical applications, especially in emerging or specialized medical fields characterized by data scarcity. This poses a significant challenge. To address this issue, our study introduces a federated learning model that integrates few-shot learning techniques and is complemented by personalized knowledge distillation to further enhance the model’s classification accuracy. This innovative approach significantly reduces the dependence on large-scale datasets, enabling efficient model training under limited data conditions. Our experimental evaluations conducted on small-scale datasets, including Omniglot, FC100, and mini-ImageNet, indicate that our model surpasses existing state-of-the-art federated learning models in terms of accuracy, achieving a substantial improvement. Specifically, on the FC100 dataset, the classification accuracy of the conventional federated learning algorithm FedAvg was merely 19.6%, whereas the method proposed in this study achieved a classification accuracy of 41%, representing an improvement of more than double. This advancement not only highlights our model’s superiority in alleviating the challenges of limited data availability, but also expands the applicability of federated learning to a broader range of applications. Full article
Show Figures

Figure 1

20 pages, 3838 KiB  
Article
Defining a Water-Soluble Formulation of Arachidonic Acid as a Novel Ferroptosis Inducer in Cancer Cells
by Zoe I. Day, Alyce J. Mayfosh, Amy A. Baxter, Scott A. Williams, Joanne M. Hildebrand, Thomas F. Rau, Ivan K. H. Poon and Mark D. Hulett
Biomolecules 2024, 14(5), 555; https://doi.org/10.3390/biom14050555 (registering DOI) - 04 May 2024
Abstract
Here, we describe GS-9, a novel water-soluble fatty acid-based formulation comprising L-lysine and arachidonic acid, that we have shown to induce ferroptosis. GS-9 forms vesicle-like structures in solution and mediates lipid peroxidation, as evidenced by increased C11-BODIPY fluorescence and an accumulation of toxic [...] Read more.
Here, we describe GS-9, a novel water-soluble fatty acid-based formulation comprising L-lysine and arachidonic acid, that we have shown to induce ferroptosis. GS-9 forms vesicle-like structures in solution and mediates lipid peroxidation, as evidenced by increased C11-BODIPY fluorescence and an accumulation of toxic malondialdehyde, a downstream product of lipid peroxidation. Ferroptosis inhibitors counteracted GS-9-induced cell death, whereas caspase 3 and 7 or MLKL knock-out cell lines are resistant to GS-9-induced cell death, eliminating other cell death processes such as apoptosis and necroptosis as the mechanism of action of GS-9. We also demonstrate that through their role of sequestering fatty acids, lipid droplets play a protective role against GS-9-induced ferroptosis, as inhibition of lipid droplet biogenesis enhanced GS-9 cytotoxicity. In addition, Fatty Acid Transport Protein 2 was implicated in GS-9 uptake. Overall, this study identifies and characterises the mechanism of GS-9 as a ferroptosis inducer. This formulation of arachidonic acid offers a novel tool for investigating and manipulating ferroptosis in various cellular and anti-cancer contexts. Full article
11 pages, 843 KiB  
Article
Negative Aspects of Self-Imposed Evacuation among Mothers of Small Children Following Japan’s Fukushima Daiichi Nuclear Power Station Accident
by Hitomi Matsunaga
Int. J. Environ. Res. Public Health 2024, 21(5), 592; https://doi.org/10.3390/ijerph21050592 (registering DOI) - 04 May 2024
Abstract
This study clarified the negative aspects of the self-imposed evacuation of mothers of small children seeking to avoid radiation exposure from the Fukushima Daiichi Nuclear Power Station accident on 11 March 2011. We conducted semi-structured interviews with 27 mothers, employing open-ended inquiries based [...] Read more.
This study clarified the negative aspects of the self-imposed evacuation of mothers of small children seeking to avoid radiation exposure from the Fukushima Daiichi Nuclear Power Station accident on 11 March 2011. We conducted semi-structured interviews with 27 mothers, employing open-ended inquiries based on an interview guide. Our analysis of their responses using the Ka-Wakita-Jiro (KJ) method categorized the results into eight distinct groups comprising 142 labels. These categories included continued anxiety about the health effects of radiation, differences in risk perception, changes in spousal relationships, the inability to make friends and find support, living as a single parent, financial concerns, the unfamiliar feel of the area to which they evacuated, and uncertainty about the future. Despite their hardships, the mothers continued their self-imposed evacuation to avoid radioactivity. Our findings underscore that their anxieties about radiation exposure persisted even after self-imposed evacuation, leading to deteriorated relationships with key individuals who would have been involved in raising their children. These results offer valuable insights into the challenges experienced by the indirect victims of the nuclear accident, such as the mothers of small children. Full article
Show Figures

Figure 1

19 pages, 1681 KiB  
Article
Study of Physicochemical Quality and Organic Contamination in Algerian Honey
by Sofiane Derrar, Vincenzo Lo Turco, Ambrogina Albergamo, Benedetta Sgrò, Mohamed Amine Ayad, Federica Litrenta, Mohamed Said Saim, Angela Giorgia Potortì, Hebib Aggad, Rossana Rando and Giuseppa Di Bella
Foods 2024, 13(9), 1413; https://doi.org/10.3390/foods13091413 (registering DOI) - 04 May 2024
Abstract
Honey is a natural product extensively consumed in the world for its nutritional and healthy properties. However, residues of pesticides and environmental contaminants can compromise its quality. For this reason, the physicochemical parameters, and the organic contamination of monofloral and multifloral honey from [...] Read more.
Honey is a natural product extensively consumed in the world for its nutritional and healthy properties. However, residues of pesticides and environmental contaminants can compromise its quality. For this reason, the physicochemical parameters, and the organic contamination of monofloral and multifloral honey from three regions of Algeria (Tiaret, Laghouat, and Tindouf) were monitored to evaluate the quality of the honey and its safety for consumers. In general, the results obtained from the physicochemical analyses were in line with the EU standards. In terms of contamination, pesticides authorised and used in Algerian agriculture (metalaxyl-M and cyromazine), as well as a banned pesticide (carbaryl), were found in almost all the samples. However, only the concentration of cyromazine was higher than the relative EU maximum residue levels. PCB 180, PCB 189, anthracene, fluorene, and phenanthrene were mainly detected. All the honey shows traces of DiBP, DBP, DEHP, and DEHT, but no traces of bisphenols were found. Moreover, according to the dietary exposure assessment, a small amount of Algerian honey can be safely consumed. Overall, the data from this study should motivate the Algerian government to enhance their monitoring activities in beekeeping and to find solutions for implementing more sustainable agricultural practices harmonising with international legislation. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 8844 KiB  
Review
Condition Monitoring in Additive Manufacturing: A Critical Review of Different Approaches
by Khalil Khanafer, Junqian Cao and Hussein Kokash
J. Manuf. Mater. Process. 2024, 8(3), 95; https://doi.org/10.3390/jmmp8030095 (registering DOI) - 04 May 2024
Abstract
This critical review provides a comprehensive analysis of various condition monitoring techniques pivotal in additive manufacturing (AM) processes. The reliability and quality of AM components are contingent upon the precise control of numerous parameters and the timely detection of potential defects, such as [...] Read more.
This critical review provides a comprehensive analysis of various condition monitoring techniques pivotal in additive manufacturing (AM) processes. The reliability and quality of AM components are contingent upon the precise control of numerous parameters and the timely detection of potential defects, such as lamination, cracks, and porosity. This paper emphasizes the significance of in situ monitoring systems—optical, thermal, and acoustic—which continuously evaluate the integrity of the manufacturing process. Optical techniques employing high-speed cameras and laser scanners provide real-time, non-contact assessments of the AM process, facilitating the early detection of layer misalignment and surface anomalies. Simultaneously, thermal imaging techniques, such as infrared sensing, play a crucial role in monitoring complex thermal gradients, contributing to defect detection and process control. Acoustic monitoring methods augmented by advancements in audio analysis and machine learning offer cost-effective solutions for discerning the acoustic signatures of AM machinery amidst variable operational conditions. Finally, machine learning is considered an efficient technique for data processing and has shown great promise in feature extraction. Full article
Show Figures

Figure 1

15 pages, 4833 KiB  
Article
The Transcription Factor Mohawk Facilitates Skeletal Muscle Repair via Modulation of the Inflammatory Environment
by Cherie Alissa Lynch, Sofia A. Acosta, Douglas M. Anderson, Gavin E. Rogers, Jeanne Wilson-Rawls and Alan Rawls
Int. J. Mol. Sci. 2024, 25(9), 5019; https://doi.org/10.3390/ijms25095019 (registering DOI) - 04 May 2024
Abstract
Efficient repair of skeletal muscle relies upon the precise coordination of cells between the satellite cell niche and innate immune cells that are recruited to the site of injury. The expression of pro-inflammatory cytokines and chemokines such as TNFα, IFNγ, CXCL1, and CCL2, [...] Read more.
Efficient repair of skeletal muscle relies upon the precise coordination of cells between the satellite cell niche and innate immune cells that are recruited to the site of injury. The expression of pro-inflammatory cytokines and chemokines such as TNFα, IFNγ, CXCL1, and CCL2, by muscle and tissue resident immune cells recruits neutrophils and M1 macrophages to the injury and activates satellite cells. These signal cascades lead to highly integrated temporal and spatial control of muscle repair. Despite the therapeutic potential of these factors for improving tissue regeneration after traumatic and chronic injuries, their transcriptional regulation is not well understood. The transcription factor Mohawk (Mkx) functions as a repressor of myogenic differentiation and regulates fiber type specification. Embryonically, Mkx is expressed in all progenitor cells of the musculoskeletal system and is expressed in human and mouse myeloid lineage cells. An analysis of mice deficient for Mkx revealed a delay in postnatal muscle repair characterized by impaired clearance of necrotic fibers and smaller newly regenerated fibers. Further, there was a delay in the expression of inflammatory signals such as Ccl2, Ifnγ, and Tgfß. This was coupled with impaired recruitment of pro-inflammatory macrophages to the site of muscle damage. These studies demonstrate that Mkx plays a critical role in adult skeletal muscle repair that is mediated through the initial activation of the inflammatory response. Full article
(This article belongs to the Special Issue Research on Skeletal and Cardiac Muscle Regeneration Mechanisms)
Show Figures

Figure 1

18 pages, 5150 KiB  
Review
A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy
by Fabio Giudice, Severino Missori, Cristina Scolaro and Andrea Sili
J. Manuf. Mater. Process. 2024, 8(3), 96; https://doi.org/10.3390/jmmp8030096 (registering DOI) - 04 May 2024
Abstract
Dissimilar welds between ferritic and austenitic steels represent a good solution for exploiting the best performance of stainless steels at high and low temperatures and in aggressive environments, while minimizing costs. Therefore, they are widely used in nuclear and petrochemical plants; however, due [...] Read more.
Dissimilar welds between ferritic and austenitic steels represent a good solution for exploiting the best performance of stainless steels at high and low temperatures and in aggressive environments, while minimizing costs. Therefore, they are widely used in nuclear and petrochemical plants; however, due to the different properties of the steels involved, the welding process can be challenging. Fusion welding can be specifically applied to connect low-carbon or low-alloy steels with high-alloy steels, which have similar melting points. The welding of thick plates can be performed with an electric arc in multiple passes or in a single pass by means of laser beam equipment. Since the microstructure and, consequently, the mechanical properties of the weld are closely related to the composition, the choice of the filler metal and processing parameters, which in turn affect the dilution rate, plays a fundamental role. Numerous technical solutions have been proposed for welding dissimilar steels and much research has developed on welding metallurgy; therefore, this article is aimed at a review of the most recent scientific literature on issues relating to the fusion welding of ferritic/austenitic steels. Two specific sections are dedicated, respectively, to electric arc and laser beam welding; finally, metallurgical issues, related to dilution and thermal field are debated in the discussion section. Full article
Show Figures

Figure 1

13 pages, 275 KiB  
Article
Chemical Composition of Newborn Piglets with Different Weights at Birth in Sows with a High Reproductive Performance
by Carina Antonczyk, Christine Ratert, Cornelia Schwennen, Josef Kamphues and Amr Abd El-Wahab
Animals 2024, 14(9), 1380; https://doi.org/10.3390/ani14091380 (registering DOI) - 04 May 2024
Abstract
The present study aimed to quantify and update the data on the body composition (energy nutrients) of newborn piglets of different body weights at the time of birth, as well as of the placenta mass. Data were collected from newborn piglets (n [...] Read more.
The present study aimed to quantify and update the data on the body composition (energy nutrients) of newborn piglets of different body weights at the time of birth, as well as of the placenta mass. Data were collected from newborn piglets (n = 25) from modern genetic lines which were stillborn or died within the first 24 h of life after being crushed to death with various body weights at birth (<0.8 kg (n = 5); 0.8–1.2 kg (n = 5); >1.2–1.6 kg (common birth weight, n = 10) and >1.6 kg (n = 5)). The placenta (n = 20) of sows from a conventional breeding farm were collected, too. The body composition of newborns of “normal” (>1.2–1.6 kg) and even lighter (0.8–1.2) weights still indicated a “normal” composition. In the case of a lower body weight of piglets <0.8 kg at birth, the crude ash (24.1%) and crude protein (8.21%) contents were higher, but the crude fat (16.1%), carbohydrate (57.4%), and gross energy (3.60%) contents were lower. The placental composition in comparison to the piglet body composition was characterized by higher crude protein contents (24.3%) and lower crude ash (31.6%), crude fat (9.08%), and carbohydrate (55.6%) contents. In conclusion, the energy and protein accumulation in the total mass of fetuses and placentas increased by 75% and 64%, respectively, in comparison to times in which the litter size varied around 10–12 piglets, essentially as a result of the larger fetal mass and not of a different body composition. Full article
(This article belongs to the Special Issue Impact of Genetics and Feeding on Growth Performance of Pigs)
13 pages, 2929 KiB  
Article
Elucidating the Structural Features of Bis(arylimino)acenaphthene (Aryl-BIAN) Bismuth Complexes: A Combined Single-Crystal X-ray Diffraction and Hirshfeld Analysis Approach
by Beatriz P. Machado, Maria Celador-Garcia, Vitor Rosa and Clara S. B. Gomes
Inorganics 2024, 12(5), 135; https://doi.org/10.3390/inorganics12050135 (registering DOI) - 04 May 2024
Abstract
Dimeric bismuth(III) complexes bearing bis(aryl-imino)acenaphthene (Aryl-BIAN) donor ligands of the general formulae [(Dipp-BIAN)BiCl3]2 2, [(o-iPr-BIAN)BiCl3]2 3, and [(p-iPr-BIAN)BiCl3]2 4, where [...] Read more.
Dimeric bismuth(III) complexes bearing bis(aryl-imino)acenaphthene (Aryl-BIAN) donor ligands of the general formulae [(Dipp-BIAN)BiCl3]2 2, [(o-iPr-BIAN)BiCl3]2 3, and [(p-iPr-BIAN)BiCl3]2 4, where Dipp = diisopropyl, o-iPr = ortho-isopropyl and p-iPr = para-isopropyl, were prepared by reaction of the corresponding neutral BIAN ligand with BiCl3, under inert atmosphere conditions. X-ray studies were performed, and their molecular structures were determined. The individual contributions of intermolecular interactions to crystal packing have been quantified by means of Hirsfeld surface analysis. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

15 pages, 3451 KiB  
Article
Multiplex Detection of Fluorescent Chemokine Binding to CXC Chemokine Receptors by NanoBRET
by Justyna M. Adamska, Spyridon Leftheriotis, Reggie Bosma, Henry F. Vischer and Rob Leurs
Int. J. Mol. Sci. 2024, 25(9), 5018; https://doi.org/10.3390/ijms25095018 (registering DOI) - 04 May 2024
Abstract
NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of [...] Read more.
NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of the immune system, are associated with inflammatory diseases and cancer, and are seen as promising drug targets. The aim of this study was to optimize NanoBRET-based ligand binding to NLuc-ACKR3 and NLuc-CXCR4 using different fluorescently labeled chemokine CXCL12 analogs and their use in a multiplex NanoBRET binding assay of two chemokine receptors at the same time. The four fluorescent CXCL12 analogs (CXCL12-AZD488, -AZD546, -AZD594, -AZD647) showed high-affinity saturable binding to both NLuc-ACKR3 and NLuc-CXCR4, with relatively low levels of non-specific binding. Additionally, the binding of all AZDye-labeled CXCL12s to Nluc receptors was inhibited by pharmacologically relevant unlabeled chemokines and small molecules. The NanoBRET binding assay for CXCL10-AZD488 binding to Nluc-CXCR3 was also successfully established and successfully employed for the simultaneous measurement of the binding of unlabeled small molecules to NLuc-CXCR3 and NLuc-CXCR4. In conclusion, multiplexing the NanoBRET-based competition binding assay is a promising tool for testing unlabeled (small) molecules against multiple GPCRs simultaneously. Full article
(This article belongs to the Special Issue Advances in Luciferase)
Show Figures

Figure 1

22 pages, 7643 KiB  
Article
Experimental Investigations on the Electrical Conductivity and Complex Dielectric Permittivity of ZnxMn1−xFe2O4 (x = 0 and 0.4) Ferrites in a Low-Frequency Field
by Iosif Malaescu, Paula Sfirloaga, Catalin N. Marin, Madalin O. Bunoiu and Paulina Vlazan
Crystals 2024, 14(5), 437; https://doi.org/10.3390/cryst14050437 (registering DOI) - 04 May 2024
Abstract
Two samples of ZnxMn1−xFe2O4 (x = 0, sample A; and x = 0.4, sample B) were synthesized by the hydrothermal method. From complex impedance measurements in the range 100 Hz–2 MHz and for temperatures T between [...] Read more.
Two samples of ZnxMn1−xFe2O4 (x = 0, sample A; and x = 0.4, sample B) were synthesized by the hydrothermal method. From complex impedance measurements in the range 100 Hz–2 MHz and for temperatures T between 30 and 130 °C, the barrier energy between localized states ΔErelax was determined for the first time in these samples. For sample B, a single value of ΔErelax was highlighted (0.221 eV), whilst, for sample A, two values were obtained (0.012 eV and 0.283 eV, below 85 °C and above 85 °C, respectively), associated with two zones of different conductivities. Using the Mott’s VRH model and the CBH model, we determined for the first time both the bandgap energy barrier (Wm) and the hopping (crossover) frequency (ωh), at various temperatures. The results show that, for sample A, Wm has a maximum equal to 0.72 eV at a temperature between 70 and 80 °C, whilst, for sample B, Wm has a minimum equal to 0.28 eV at a temperature of 60 °C, the results being in good agreement with the temperature dependence of the static conductivity σDC(T) of the samples. By evaluating σDC and eliminating the conduction losses, we identified, using a novel approach, a dielectric relaxation phenomenon in the samples, characterized by the activation energy EA,rel. At various temperatures, we determined EA,rel, which ranged from 0.195 eV to 0.77 eV. These results are important, as understanding these electrical properties is crucial to various applications, especially in technologies where temperature variation is significant. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

12 pages, 3296 KiB  
Article
Glass-Forming Ability, Chemical Durability, and Structural Properties of Lead Dioxide-Silicate Glass System
by Mioara Zagrai, Radu Cristian Gavrea, Sergiu Macavei, Adriana Augusta Dehelean, Adriana Popa, Maria Loredana Soran and Raluca Anca Mereu
Crystals 2024, 14(5), 436; https://doi.org/10.3390/cryst14050436 (registering DOI) - 04 May 2024
Abstract
The present study aimed to test the solubility of SiO2 in a PbO2 host glass matrix. The new glass system with chemical composition xSiO2∙(100-x)∙PbO2 (in mol%) was obtained at low temperature using the melt-quenching technique. The method proposed [...] Read more.
The present study aimed to test the solubility of SiO2 in a PbO2 host glass matrix. The new glass system with chemical composition xSiO2∙(100-x)∙PbO2 (in mol%) was obtained at low temperature using the melt-quenching technique. The method proposed for the characterization of the glass system includes X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), inductively coupled plasma mass spectrometry (ICP-Ms), Fourier Transform Infrared (FTIR), and Electron Spin Resonance (ESR) spectroscopy. Understanding the relationship between the oxide composition, structure, chemical durability, and thermal characteristics of obtained materials is essential for further developing the new glass crystalline material (GCM) compositions with specific desired properties. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

13 pages, 1643 KiB  
Article
Quantitative 1H NMR Spectroscopy Method for Determination of Anthraquinone Derivatives in Extracts from Rubia tinctorum L. Roots and Rhizomes
by Vasilii Vasil’ev, Anzhelika Sheremeta, Vasilii Ivlev, Sergey Goriainov, Fadi Hajjar, Cesar Esparza, Evgeniy Platonov, Arkadiy Khromov, Alexandr Kolesnov, Victoria Romashchenko and Gennady Kalabin
Sci. Pharm. 2024, 92(2), 24; https://doi.org/10.3390/scipharm92020024 (registering DOI) - 04 May 2024
Abstract
The roots and rhizomes of Rubia tinctorum L. have been widely used both for industrial and medicinal purposes for centuries. The primary biologically active substances from Rubia tinctorum L. roots and rhizomes are anthraquinone derivatives such as ruberythric acid and lucidin-3-primeveroside. Their identification [...] Read more.
The roots and rhizomes of Rubia tinctorum L. have been widely used both for industrial and medicinal purposes for centuries. The primary biologically active substances from Rubia tinctorum L. roots and rhizomes are anthraquinone derivatives such as ruberythric acid and lucidin-3-primeveroside. Their identification and quantification are carried out by various analytical methods, requiring a complicated sample preparation as well as special reagents and reference samples. However, NMR spectroscopy has no limitations of this kind. In this work, we have developed and validated a new express and standard-free method for the qualitative and quantitative analysis of ruberythric acid and lucidin-3-primeveroside by 1H NMR spectroscopy in the extracts from the roots and rhizomes of Rubia tinctorum L. In this work, we have optimized the conditions of the sample preparation and registration of 1H NMR spectra, determined the optimal solvent and reference compound and confirmed the obtained results by HPLC-UV-MS. Full article
(This article belongs to the Topic Natural Products and Drug Discovery)
Show Figures

Figure 1

12 pages, 1513 KiB  
Brief Report
Characterization of the Common Genetic Variation in the Spanish Population of Navarre
by Alberto Maillo, Estefania Huergo, María Apellániz-Ruiz, Edurne Urrutia-Lafuente, María Miranda, Josefa Salgado, Sara Pasalodos-Sanchez, Luna Delgado-Mora, Óscar Teijido, Ibai Goicoechea, Rosario Carmona, Javier Perez-Florido, Virginia Aquino, Daniel Lopez-Lopez, María Peña-Chilet, Sergi Beltran, Joaquín Dopazo, Iñigo Lasa, Juan José Beloqui, NAGEN-Scheme, Ángel Alonso and David Gomez-Cabreroadd Show full author list remove Hide full author list
Genes 2024, 15(5), 585; https://doi.org/10.3390/genes15050585 (registering DOI) - 04 May 2024
Abstract
Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), [...] Read more.
Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nucleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain, IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in all other populations. We further corroborated this observation with a second regional cohort of 239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion, this study highlights the importance of population-specific characterization of genetic variation to improve allele frequency filtering in sequencing data analysis to identify disease-causing variants. Full article
Show Figures

Figure 1

13 pages, 1396 KiB  
Article
Effects on the Physical Functioning of Two Exercise Interventions in Patients with Multiple Myeloma: A Pilot Feasibility Study
by Jens Hillengass, Michaela Hillengass, Janine M. Joseph, Kristopher Attwood, Rikki Cannioto, Hillary Jacobson, Carolyn Miller, Bryan Wittmeyer and Kirsten Moysich
Cancers 2024, 16(9), 1774; https://doi.org/10.3390/cancers16091774 (registering DOI) - 04 May 2024
Abstract
Because of the high prevalence of bone destruction in patients with multiple myeloma (MM), physical exercise is oftentimes discouraged by healthcare providers. The goal of this prospective trial was to investigate the feasibility of two six-month exercise interventions in patients with MM ( [...] Read more.
Because of the high prevalence of bone destruction in patients with multiple myeloma (MM), physical exercise is oftentimes discouraged by healthcare providers. The goal of this prospective trial was to investigate the feasibility of two six-month exercise interventions in patients with MM (N = 42): a remotely prompted home-based walking intervention or a supervised strength training intervention. Physical function and pain were assessed with the Activity Measure for Post-Acute Care (AM-PAC) Basic Mobility Short Form raw score, a six-minute walk test (6 MWT), a 30-second sit-to-stand test (30 SST), a timed up-and-go (TUG) test, a visual analog scale (VAS) for pain, handheld dynamometer tests, heart rate at rest, blood oxygen saturation at rest, and body mass index. No intervention-related serious adverse events were observed. Adverse events mostly affected the musculoskeletal system. In the resistance training group (n = 24), patients showed significant improvements in AM-PAC, TUG, 6 MWT, and 30 SST, with all effects but the 6 MWT sustained six months after the intervention. The walking group (n = 18) saw improvements in the AM-PAC, TUG, 6 MWT, and 30 SST, with a sustained change in the AM-PAC and TUG. This trial shows the feasibility of both exercise interventions with a sustained beneficial effect on the physical functioning of a six-month strength training intervention and, to a lesser extent, a six-month unsupervised walking intervention. A larger study building on these findings is currently underway. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

15 pages, 6793 KiB  
Article
Consensus-Based Information Filtering in Distributed LiDAR Sensor Network for Tracking Mobile Robots
by Isabella Luppi, Neel Pratik Bhatt and Ehsan Hashemi
Sensors 2024, 24(9), 2927; https://doi.org/10.3390/s24092927 (registering DOI) - 04 May 2024
Abstract
A distributed state observer is designed for state estimation and tracking of mobile robots amidst dynamic environments and occlusions within distributed LiDAR sensor networks. The proposed novel framework enhances three-dimensional bounding box detection and tracking utilizing a consensus-based information filter and a region [...] Read more.
A distributed state observer is designed for state estimation and tracking of mobile robots amidst dynamic environments and occlusions within distributed LiDAR sensor networks. The proposed novel framework enhances three-dimensional bounding box detection and tracking utilizing a consensus-based information filter and a region of interest for state estimation of mobile robots. The framework enables the identification of the input to the dynamic process using remote sensing, enhancing the state prediction accuracy for low-visibility and occlusion scenarios in dynamic scenes. Experimental evaluations in indoor settings confirm the effectiveness of the framework in terms of accuracy and computational efficiency. These results highlight the benefit of integrating stationary LiDAR sensors’ state estimates into a switching consensus information filter to enhance the reliability of tracking and to reduce estimation error in the sense of mean square and covariance. Full article
Show Figures

Figure 1

11 pages, 3044 KiB  
Article
Lattice-Boltzmann-Method-Based Numerical Simulation for Heavy Metal Migration Process during Deep-Sea Mining
by Lei Yin, Dongdong Chen, Yunqi Yang, Xuedan Wei, Houping Dai, Juan Zeng and Hanxin Huo
Symmetry 2024, 16(5), 557; https://doi.org/10.3390/sym16050557 (registering DOI) - 04 May 2024
Abstract
During deep-sea mining, heavy metal pollutants can cause contamination in the marine environment. In this paper, the multiphasic coupling model is established to describe the heavy metal migration process during deep-sea mining, which takes the effects of the convection–diffusion, adsorption–desorption, and sedimentation–resuspension of [...] Read more.
During deep-sea mining, heavy metal pollutants can cause contamination in the marine environment. In this paper, the multiphasic coupling model is established to describe the heavy metal migration process during deep-sea mining, which takes the effects of the convection–diffusion, adsorption–desorption, and sedimentation–resuspension of heavy metals in the aquatic environment into full consideration. Due to the advantages of the Lattice Boltzmann method, it is adopted to numerically solve the multiphasic coupling model and achieve the simulation of the heavy metal migration process during deep-sea mining. In addition, taking cadmium as an example, the concentration variations are discussed and analyzed in detail. Based on the established model and Lattice Boltzmann method, the concentration distribution of heavy metals can be accurately described to provide the reasonable bases for the evaluation of marine environmental protection. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop