The 2023 MDPI Annual Report has
been released!
 
19 pages, 10507 KiB  
Article
Triaxial Test and Discrete Element Numerical Simulation of Geogrid-Reinforced Clay Soil
by Xi Wang, Qizhi Hu, Yiming Liu and Gaoliang Tao
Buildings 2024, 14(5), 1422; https://doi.org/10.3390/buildings14051422 (registering DOI) - 15 May 2024
Abstract
Indoor triaxial tests on geogrid-reinforced clay elucidate the macroscopic changes in soil strength indices post-reinforcement, yet the underlying mechanisms of strength enhancement require further investigation. By conducting indoor triaxial tests and establishing a corresponding discrete element numerical model, we can delve into the [...] Read more.
Indoor triaxial tests on geogrid-reinforced clay elucidate the macroscopic changes in soil strength indices post-reinforcement, yet the underlying mechanisms of strength enhancement require further investigation. By conducting indoor triaxial tests and establishing a corresponding discrete element numerical model, we can delve into the fine-scale mechanisms of geogrid-reinforced soil. This includes analyzing changes in fine-scale parameters such as porosity, the coordination number, and contact stress between soil particles. The findings suggest that an increase in the number of geogrid reinforcement layers leads to a more pronounced improvement in peak strength and cohesion, albeit with minimal impact on the internal friction angle of the specimens. Furthermore, analysis of the triaxial test curves of reinforced soils indicates that the stress–strain relationship adheres to the Duncan–Chang model. Parameters derived from this model have been validated against experimental data, confirming their accuracy. The discrete element model was used to analyze the variations in fine-scale parameters such as porosity and coordination number. It revealed that reinforcement reduces the fluctuation amplitude of porosity and significantly increases the number of particle contacts, resulting in a denser soil structure. Further analysis of the change in contact stress between particles in the discrete element model revealed that the contact force between particles increased significantly after reinforcement and that the reinforcement played a role in restraining the soil particles and dispersing the reinforcement stress, which explains the increase in the strength of the mesh-reinforced clays from another perspective. This further elucidates the strength enhancement mechanism in geogrid-reinforced clay, offering a new perspective on the mechanical behavior and strength development of such materials. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 4565 KiB  
Article
Novel Acetamide-Based HO-1 Inhibitor Counteracts Glioblastoma Progression by Interfering with the Hypoxic–Angiogenic Pathway
by Agata Grazia D’Amico, Grazia Maugeri, Luca Vanella, Valeria Consoli, Valeria Sorrenti, Francesca Bruno, Concetta Federico, Antonino Nicolò Fallica, Valeria Pittalà and Velia D’Agata
Int. J. Mol. Sci. 2024, 25(10), 5389; https://doi.org/10.3390/ijms25105389 (registering DOI) - 15 May 2024
Abstract
Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible [...] Read more.
Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes. Full article
(This article belongs to the Special Issue Molecular Progression of Genome-Related Diseases)
Show Figures

Figure 1

17 pages, 7523 KiB  
Article
In Vitro Evaluation of Mechanical, Surface, and Optical Properties of Restorative Materials Applied with Different Techniques
by Merve Nezir and Suat Özcan
J. Funct. Biomater. 2024, 15(5), 128; https://doi.org/10.3390/jfb15050128 (registering DOI) - 15 May 2024
Abstract
(1) Background: currently, the advantages of bulk-fill resin composite and high-viscosity glass ionomer materials have increased their use in dentistry; accordingly, their mechanical, surface, and optical properties have become more important. This study aimed to evaluate the mechanical, surface, and optical properties of [...] Read more.
(1) Background: currently, the advantages of bulk-fill resin composite and high-viscosity glass ionomer materials have increased their use in dentistry; accordingly, their mechanical, surface, and optical properties have become more important. This study aimed to evaluate the mechanical, surface, and optical properties of three different restorative materials (a high-viscosity bulk-fill resin composite (TNC), a flowable bulk-fill resin composite (EBF), and a high-viscosity glass ionomer (FIX)) after application using different techniques (control, heat application, and ultrasonic activation). (2) Methods: specimens were prepared to assess the color stability and surface roughness (n = 12). The specimens were immersed in two different solutions for 14 days. For the compressive strength test, specimens were prepared using a Teflon mold (n = 12). (3) Results: among the specimens applied according to the manufacturer’s instructions and immersed in distilled water, it was observed that the surface roughness values of FIX on the 7th day were statistically significantly higher than the other materials (p < 0.05). The compressive strength values of EBF applied using ultrasonic activation were significantly lower than those of EBF applied using the other techniques (p < 0.05). (4) Conclusions: coffee can negatively affect the color stability of restorative materials, but discoloration may vary depending on differences in the content of the material. All materials evaluated in this study exhibited clinically acceptable surface roughness values. It can be concluded that flowable bulk-fill resin composite is the most durable material in terms of compressive strength, so it can be used in the restoration of posterior teeth, especially those exposed to intensive stress. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

22 pages, 6656 KiB  
Article
Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions
by Ruben Epping, Jan Lisec and Matthias Koch
J. Fungi 2024, 10(5), 354; https://doi.org/10.3390/jof10050354 (registering DOI) - 15 May 2024
Abstract
The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, [...] Read more.
The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. Full article
(This article belongs to the Special Issue New Perspectives on Tuber Fungi)
Show Figures

Graphical abstract

21 pages, 4311 KiB  
Review
Biochar: From Laboratory to Industry Scale—An Overview of Scientific and Industrial Advances, Opportunities in the Brazilian Context, and Contributions to Sustainable Development
by Fernando Duarte Prochnow, Matheus Cavali, Aline Perin Dresch, Igor Marcon Belli, Nelson Libardi, Junior and Armando Borges de Castilhos, Junior
Processes 2024, 12(5), 1006; https://doi.org/10.3390/pr12051006 (registering DOI) - 15 May 2024
Abstract
Waste treatment and valorization have become crucial for sustainable development towards a circular economy. As an alternative, biochar production is a promising process to convert wastes into a valuable product that presents several potential applications to cope with environmental problems. Biochar in recent [...] Read more.
Waste treatment and valorization have become crucial for sustainable development towards a circular economy. As an alternative, biochar production is a promising process to convert wastes into a valuable product that presents several potential applications to cope with environmental problems. Biochar in recent years has been the subject of many studies, which have leveraged the number of patents and the industrial interest in this process. Against this background, this overview aimed: (i) to identify the advances in biochar research; (ii) to assess the number of patents on biochar over the years; (iii) to look at the industrial production of biochar worldwide; (iv) to detect the potential for biochar production in Brazil regarding waste biomass availability; and (v) to discuss the potential of biochar in contributing to reach some Sustainable Development Goals (SDGs). The holistic analysis presented here suggests that progress has been made in research, patent development, and industrial implementation of biochar, and that its potential role in achieving certain SDGs is noteworthy. Therefore, this overview can be useful in guiding future research about biochar to improve the knowledge of the different branches in this field. Full article
(This article belongs to the Special Issue High-Value Products from Biomass and Wastes)
Show Figures

Figure 1

20 pages, 10406 KiB  
Article
A Simplified Model to Predict the Repeated Shear Strain during the Cyclic Triaxial Test by Using an Elastic Coefficient-Damping Ratio System
by Darn-Horng Hsiao, Yao-Wen Liang and Chia-Sheng Hsieh
Appl. Sci. 2024, 14(10), 4178; https://doi.org/10.3390/app14104178 (registering DOI) - 15 May 2024
Abstract
Some researchers in past years have tried to develop a simplified method for analyzing soil liquefaction. However, the correctness of the pore water pressure in the model will affect the results. In addition, the formulas derived are not easy, and the exact parameters [...] Read more.
Some researchers in past years have tried to develop a simplified method for analyzing soil liquefaction. However, the correctness of the pore water pressure in the model will affect the results. In addition, the formulas derived are not easy, and the exact parameters of the model are difficult to obtain. This study used a mass-spring-damping system to simulate the repeated strain of liquefaction cyclic triaxial tests. Because the model is simple and the parameters are easy to understand and obtain, it also shows the extensibility of this model. During the parameter study, damping coefficient c and spring coefficient k parameters decreased with the increasing cyclic number. Preliminary results of the research show that this model can further simulate the repeated strain obtained by cyclic triaxial tests without considering the variation of effective stress during cyclic loading. Four samples were used to verify the model’s correctness, and their boring sites were found in Yunlin areas, Taiwan. Simulation results show that the spring-damping system is feasible for simulated cyclic triaxial tests because the simulated results correlate to the testing results in trend. Generally, the first cycle number simulation will be less accurate because the pore water pressure of the specimen changes rapidly when the performance has just started. In contrast, the increase in subsequent cycles may be biased due to cyclic stress variation and soil plasticity during simulation. In the future, pure sand specimens created in the laboratory will be suggested for simulation. Full article
(This article belongs to the Special Issue Soil Liquefaction in Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 3398 KiB  
Article
Interactions between Root Hair Development and Arbuscular Mycorrhizal Fungal Colonization in Trifoliate Orange Seedlings in Response to P Levels
by Xiu Cao, Yu Zhao, Ren-Xue Xia, Qiang-Sheng Wu, Abeer Hashem and Elsayed Fathi Abd_Allah
Agriculture 2024, 14(5), 763; https://doi.org/10.3390/agriculture14050763 (registering DOI) - 15 May 2024
Abstract
Both arbuscular mycorrhizal (AM) fungi and root hairs are crucial in facilitating plant uptake of phosphorus (P), while it is unclear whether and how they respond to varying P supplies. In order to explore how AM fungal colonization and root hair development are [...] Read more.
Both arbuscular mycorrhizal (AM) fungi and root hairs are crucial in facilitating plant uptake of phosphorus (P), while it is unclear whether and how they respond to varying P supplies. In order to explore how AM fungal colonization and root hair development are affected by substrate P supply, trifoliate orange (Poncirus trifoliata) seedlings were inoculated with AM fungus Rhizophagus intraradices and grown under low, moderate, and high P conditions; then, root hair morphological features and AM fungal colonization were measured. Following 120 days of AM fungal inoculation, root hair density, root hair length, AM fungal colonization rate, arbuscule colonization rate, and AM fungal colonization frequency all increased significantly under P-deficient conditions but decreased under high P conditions. Moreover, the colonization of AM fungi had a major impact on root hair formation by altering the expression of related genes and the growth of epidermal cells. The effect of AM fungi was dependent on P supply levels, as evidenced by the fact that root hair density and length increased at high P levels but decreased at low P levels. As a result, root hairs may serve as a preferential site for AM fungal colonization, and their morphology could influence the early stage of AM symbiosis establishment. Full article
(This article belongs to the Special Issue Arbuscular Mycorrhiza in Cropping Systems)
Show Figures

Figure 1

13 pages, 544 KiB  
Review
Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes
by Mark Jesus M. Magbanua, Wen Li and Laura J. van ’t Veer
Cancers 2024, 16(10), 1879; https://doi.org/10.3390/cancers16101879 (registering DOI) - 15 May 2024
Abstract
Biomarkers for evaluating tumor response to therapy and estimating the risk of disease relapse represent tremendous areas of clinical need. To evaluate treatment efficacy, tumor response is routinely assessed using different imaging modalities like positron emission tomography/computed tomography or magnetic resonance imaging. More [...] Read more.
Biomarkers for evaluating tumor response to therapy and estimating the risk of disease relapse represent tremendous areas of clinical need. To evaluate treatment efficacy, tumor response is routinely assessed using different imaging modalities like positron emission tomography/computed tomography or magnetic resonance imaging. More recently, the development of circulating tumor DNA detection assays has provided a minimally invasive approach to evaluate tumor response and prognosis through a blood test (liquid biopsy). Integrating imaging- and circulating tumor DNA-based biomarkers may lead to improvements in the prediction of patient outcomes. For this mini-review, we searched the scientific literature to find original articles that combined quantitative imaging and circulating tumor DNA biomarkers to build prediction models. Seven studies reported building prognostic models to predict distant recurrence-free, progression-free, or overall survival. Three discussed building models to predict treatment response using tumor volume, pathologic complete response, or objective response as endpoints. The limited number of articles and the modest cohort sizes reported in these studies attest to the infancy of this field of study. Nonetheless, these studies demonstrate the feasibility of developing multivariable response-predictive and prognostic models using regression and machine learning approaches. Larger studies are warranted to facilitate the building of highly accurate response-predictive and prognostic models that are generalizable to other datasets and clinical settings. Full article
Show Figures

Figure 1

12 pages, 390 KiB  
Article
Understanding the Impact of the Nurse Manager’s Vocation for Leadership on the Healthcare Workplace Environments in Mexico: A Grounded Theory Approach
by Angeles Yañez-Lozano and Manuel Lillo-Crespo
Nurs. Rep. 2024, 14(2), 1224-1235; https://doi.org/10.3390/nursrep14020093 (registering DOI) - 15 May 2024
Abstract
Background: Leadership in any managerial position that a nurse may hold appears to be closely connected to fostering positive and productive work environments within healthcare settings. However, not all nurse managers are characterized by leadership, and not all nurse leaders are nurse managers. [...] Read more.
Background: Leadership in any managerial position that a nurse may hold appears to be closely connected to fostering positive and productive work environments within healthcare settings. However, not all nurse managers are characterized by leadership, and not all nurse leaders are nurse managers. In countries, such as Mexico, those who occupy these roles have barely sufficient training in management, are mainly characterized by their experience in one clinical specialty and their vocation for leadership is not a requirement. Our study aims to understand how the leadership vocation that some nurse managers have in their daily practice could impact the work environments of healthcare organizations in Mexico. Methods: A qualitative design was carried out through a grounded theory approach based on Corbin & Strauss, interviewing individually 13 nurse managers with representative experience in Mexican public sector hospitals. Results: According to the interviewees, the meaning of vocation is based mainly on the love for their profession, on the vocation of being a nurse and caring for people, as well as on the development of their own natural leadership potential for decision-making in practice. This situation produces positive feedback on themselves by generating productive effects in the work environment, consequently strengthening them to better organize professional resources and therefore producing improvements. Conclusions: The nurse manager’s vocation of leadership derives from both the vocation of being a practicing nurse and the vocation for being a leader, positively impacting and productively contributing to the improvement of the work environment. Consequently, nurse managers with vocation for leadership should be the gold standard role in any healthcare organization. This study was retrospectively registered with the (registros-OSF-bmyvz-v1) on the (26 July 2023) registration number (10.17605/OSF.IO/BMYVZ). Full article
Show Figures

Figure 1

14 pages, 994 KiB  
Systematic Review
Botulinum Toxin for Axial Postural Abnormalities in Parkinson’s Disease: A Systematic Review
by Marialuisa Gandolfi, Carlo Alberto Artusi, Gabriele Imbalzano, Serena Camozzi, Mauro Crestani, Leonardo Lopiano, Michele Tinazzi and Christian Geroin
Toxins 2024, 16(5), 228; https://doi.org/10.3390/toxins16050228 (registering DOI) - 15 May 2024
Abstract
Axial postural abnormalities (APAs), characterized by their frequency, disabling nature, and resistance to pharmacological treatments, significantly impact Parkinson’s disease and atypical Parkinsonism patients. Despite advancements in diagnosing, assessing, and understanding their pathophysiology, managing these complications remains a significant challenge. Often underestimated by healthcare [...] Read more.
Axial postural abnormalities (APAs), characterized by their frequency, disabling nature, and resistance to pharmacological treatments, significantly impact Parkinson’s disease and atypical Parkinsonism patients. Despite advancements in diagnosing, assessing, and understanding their pathophysiology, managing these complications remains a significant challenge. Often underestimated by healthcare professionals, these disturbances can exacerbate disability. This systematic review assesses botulinum toxin treatments’ effectiveness, alone and with rehabilitation, in addressing APAs in Parkinson’s disease, utilizing MEDLINE (PubMed), Web of Science, and SCOPUS databases for source material. Of the 1087 records retrieved, 16 met the selection criteria. Most research has focused on botulinum toxin (BoNT) as the primary treatment for camptocormia and Pisa syndrome, utilizing mostly observational methods. Despite dose and injection site variations, a common strategy was using electromyography-guided injections, occasionally enhanced with ultrasound. Patients with Pisa syndrome notably saw consistent improvements in APAs and pain. However, studies on the combined effects of botulinum toxin and rehabilitation are limited, and antecollis is significantly under-researched. These findings recommend precise BoNT injections into hyperactive muscles in well-selected patients by skilled clinicians, avoiding compensatory muscles, and underscore the necessity of early rehabilitation. Rehabilitation is crucial in a multidisciplinary approach to managing APAs, highlighting the importance of a multidisciplinary team of experts. Full article
Show Figures

Figure 1

21 pages, 1935 KiB  
Article
Consumption-Based Energy Footprints in Iceland: High and Equally Distributed
by Anna Kristín Einarsdóttir, Gereon tho Pesch, Kevin Joseph Dillman, Marta Rós Karlsdóttir and Jukka Heinonen
Energies 2024, 17(10), 2375; https://doi.org/10.3390/en17102375 (registering DOI) - 15 May 2024
Abstract
With the urgent global need to limit warming to 2 °C as well as a localized need in our case study to address rising energy demand amid electrical and thermal network limitations, a critical examination of demand-side energy reductions and the concept of [...] Read more.
With the urgent global need to limit warming to 2 °C as well as a localized need in our case study to address rising energy demand amid electrical and thermal network limitations, a critical examination of demand-side energy reductions and the concept of energy sufficiency is needed. This paper contributes to the sparse literature on bottom-up analysis by utilizing Iceland—a leader in renewable energy generation—as a case study to explore the socio-economic factors influencing energy footprints. Our findings reveal significant energy footprints across various consumption domains, particularly housing and mobility, influenced by income levels, urbanization, and lifestyle choices. The study highlights the paradox of a high renewable energy supply leading to potential misconceptions regarding abundant and low-cost energy, resulting in substantial energy consumption-related environmental impacts. Using detailed household consumption survey data, this research provides insights crucial for developing sustainable energy policies that not only target technological advancements but also address the need for a reduction in energy demand and a shift towards energy sufficiency. This work marks a contribution to the literature through the provision of a case study of low income inequality and high energy footprints in a highly renewable energy system context. Further, this work is useful for Icelandic and international policymakers to understand in such high-demand contexts which consumption domains would be most relevant for sufficiency policies. This comprehensive analysis opens pathways for future research to further explore the intersections of energy consumption, socio-economic factors, and well-being, offering a nuanced understanding necessary for crafting sufficiency and demand-side policies aimed at a sustainable energy future. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

11 pages, 578 KiB  
Article
Antimalarial Activity of Aqueous Extracts of Nasturtium (Tropaeolum majus L.) and Benzyl Isothiocyanate
by Ana Maria Pintão, Tiago Santos and Fátima Nogueira
Molecules 2024, 29(10), 2316; https://doi.org/10.3390/molecules29102316 (registering DOI) - 15 May 2024
Abstract
Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To [...] Read more.
Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 − GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 − GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC’s GI was comparable to chloroquine’s. BITC’s IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery. Full article
(This article belongs to the Special Issue The Design, Synthesis, and Biological Activity of New Drug Candidates)
Show Figures

Figure 1

30 pages, 6129 KiB  
Review
Comprehensive Review of RF MEMS Switches in Satellite Communications
by Bingqian Shao, Chengjian Lu, Yinjie Xiang, Feixiong Li and Mingxin Song
Sensors 2024, 24(10), 3135; https://doi.org/10.3390/s24103135 (registering DOI) - 15 May 2024
Abstract
The miniaturization and low power consumption characteristics of RF MEMS (Radio Frequency Microelectromechanical System) switches provide new possibilities for the development of microsatellites and nanosatellites, which will play an increasingly important role in future space missions. This paper provides a comprehensive review of [...] Read more.
The miniaturization and low power consumption characteristics of RF MEMS (Radio Frequency Microelectromechanical System) switches provide new possibilities for the development of microsatellites and nanosatellites, which will play an increasingly important role in future space missions. This paper provides a comprehensive review of RF MEMS switches in satellite communication, detailing their working mechanisms, performance optimization strategies, and applications in reconfigurable antennas. It explores various driving mechanisms (electrostatic, piezoelectric, electromagnetic, thermoelectric) and contact mechanisms (capacitive, ohmic), highlighting their advantages, challenges, and advancements. The paper emphasizes strategies to enhance switch reliability and RF performance, including minimizing the impact of shocks, reducing driving voltage, improving contacts, and appropriate packaging. Finally, it discusses the enormous potential of RF MEMS switches in future satellite communications, addressing their technical advantages, challenges, and the necessity for further research to optimize design and manufacturing for broader applications and increased efficiency in space missions. The research findings of this review can serve as a reference for further design and improvement of RF MEMS switches, which are expected to play a more important role in future aerospace communication systems. Full article
Show Figures

Figure 1

8 pages, 7792 KiB  
Article
Visualization of Effectiveness: The Use of a Set of Colored Cleaning Wipes for Visible Disinfection of Ultrasound Probes
by Christian Kühnel and Falk Gühne
Hygiene 2024, 4(2), 189-196; https://doi.org/10.3390/hygiene4020015 (registering DOI) - 15 May 2024
Abstract
The German health authorities’ guidelines for medical devices in 2012 highlighted the importance of cleaning ultrasound probes, emphasizing their validation and reliability. In addition to automated and validated options, alternative manual methods such as wipe disinfection have gained traction due to their independence [...] Read more.
The German health authorities’ guidelines for medical devices in 2012 highlighted the importance of cleaning ultrasound probes, emphasizing their validation and reliability. In addition to automated and validated options, alternative manual methods such as wipe disinfection have gained traction due to their independence from additional hardware. The study examines the effectiveness of a manual cleaning process using wipes, addressing concerns raised by the Robert Koch Institute regarding the lack of validation for wipe disinfection of semi-critical devices. The EQUINOS colored wipe disinfection kit identified wetting gaps in all cleanings across four probes tested. The results indicate significant challenges in ensuring complete surface wetting, particularly in complex device parts such as clip-on areas and fixtures for additional biopsy attachments, suggesting that manual methods alone may not adequately mitigate the risk of infection transmission (p value < 0.0001). The study concludes that while manual disinfection methods are a commonly used alternative to automated reprocessing, there is a critical need for enhanced training and potentially the development of more effective manual disinfection techniques or colored wipes to ensure patient safety and compliance with healthcare hygiene standards. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

12 pages, 5899 KiB  
Article
Common Spontaneous Tumors and Tumor-like Lesions in 70 Pet Rodents and Negative MMTV Detection in Mammary Tumors
by Ya-Mei Chen, Jia-Ling Wu and Wei-Hao Lin
Animals 2024, 14(10), 1469; https://doi.org/10.3390/ani14101469 (registering DOI) - 15 May 2024
Abstract
Compared to the number of studies on the neoplasms of laboratory rodents, fewer studies have focused on spontaneous neoplasms in pet rodents. Notably, the mouse mammary tumor virus (MMTV) is associated with mammary tumors in rodents. In this study, 77 tumors and tumor-like [...] Read more.
Compared to the number of studies on the neoplasms of laboratory rodents, fewer studies have focused on spontaneous neoplasms in pet rodents. Notably, the mouse mammary tumor virus (MMTV) is associated with mammary tumors in rodents. In this study, 77 tumors and tumor-like lesions of biopsy samples were collected from 70 pet rodents, including hamsters (n = 47), guinea pigs (n = 16), unknown species (n = 4), rats (n = 2), and a gerbil. Fifty tumors were collected from 47 hamsters, in which the most common tumors were mammary tumors (13/50), followed by fibrosarcoma (9/50), mast cell tumors (4/50), and squamous cell carcinoma (4/50). The collected subtypes of mammary tumors in hamsters included tubular carcinoma (n = 5), tubular adenoma (n = 4), carcinoma and malignant myoepithelioma (n = 1), simple tubular carcinoma (n = 1), adenosquamous carcinoma (n = 1), and tubulopapillary adenoma (n = 1). In addition, twenty tumors were collected from guinea pigs, in which the most common tumor was lipoma (6/20), followed by adenocarcinoma of the mammary gland (4/20), trichofolliculoma (2/20), and collagenous hamartomas (2/20). In guinea pigs, the subtypes of mammary gland tumors were tubular carcinoma (n = 2), tubular and solid carcinoma (n = 1), and tubulopapillary carcinoma (n = 1). In 20 cases of mammary tumors, MMTV was not detected, implicating no evidence of MMTV infection in mammary oncogenesis in pet rodents in Taiwan. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

18 pages, 1618 KiB  
Article
Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring
by Cole A. Bleke, Eric M. Gese, Juan J. Villalba, Shane B. Roberts and Susannah S. French
Animals 2024, 14(10), 1468; https://doi.org/10.3390/ani14101468 (registering DOI) - 15 May 2024
Abstract
Monitoring vital rates allows managers to estimate trends in growth rates of ungulate populations. However, connecting the influence of nutrition on ungulate demography is challenging. Noninvasive sampling offers a low-cost, low-effort alternative for measuring nutritional indices, allowing for an increased understanding of the [...] Read more.
Monitoring vital rates allows managers to estimate trends in growth rates of ungulate populations. However, connecting the influence of nutrition on ungulate demography is challenging. Noninvasive sampling offers a low-cost, low-effort alternative for measuring nutritional indices, allowing for an increased understanding of the mechanistic relationships between environmental factors, nutrition, and specific population vital rates. We examined the temporal influence of intrinsic and extrinsic factors on pronghorn (Antilocapra americana) fawn recruitment. We collected fresh fecal samples from adult female pronghorn in five subpopulations spanning three sampling periods associated with critical maternal life-history stages (late gestation, early lactation, breeding season) for 2 years to investigate both intra- and interannual influences. Intrinsic factors were fecal glucocorticoid metabolites (FGMs), nutritional indices (fecal nitrogen (FN) and 2,6-diaminopimelic acid (DAPA)), and dietary composition (protein intake of forbs, graminoids, legumes, other, shrubs), while the extrinsic factor was vegetative greenness (normalized difference vegetation index (NDVI)). We found variations in DAPA, protein intake of forbs, variation in forb protein intake, and protein intake of legumes during late gestation positively influenced fawn recruitment. Fecal nitrogen during early lactation showed the strongest positive influence on the recruitment of any measured parameter. Finally, breeding season NDVI and the variation in DAPA values positively influenced the subsequent year’s fawn recruitment. Our longitudinal study enabled us to investigate which parameter was most important to specific periods of fawn development and recruitment. We combined the results across five subpopulations, but interpretation and subsequent management decisions should be made at the subpopulation level such that pronghorn subpopulations with low recruitment can be positively influenced by increasing nitrogen on the landscape available to adult females during the early lactation period. As the use of noninvasive monitoring methods continues to expand, we believe our methodologies and results can be broadly applied to other ungulate monitoring programs. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

25 pages, 9166 KiB  
Article
Molecular Mechanism of Phosphorylation-Mediated Impacts on the Conformation Dynamics of GTP-Bound KRAS Probed by GaMD Trajectory-Based Deep Learning
by Jianzhong Chen, Jian Wang, Wanchun Yang, Lu Zhao, Juan Zhao and Guodong Hu
Molecules 2024, 29(10), 2317; https://doi.org/10.3390/molecules29102317 (registering DOI) - 15 May 2024
Abstract
The phosphorylation of different sites produces a significant effect on the conformational dynamics of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations were combined with deep learning (DL) to explore the molecular mechanism of the phosphorylation-mediated effect on conformational dynamics of the GTP-bound KRAS. [...] Read more.
The phosphorylation of different sites produces a significant effect on the conformational dynamics of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations were combined with deep learning (DL) to explore the molecular mechanism of the phosphorylation-mediated effect on conformational dynamics of the GTP-bound KRAS. The DL finds that the switch domains are involved in obvious differences in conformation contacts and suggests that the switch domains play a key role in the function of KRAS. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of pY32, pY64, and pY137 leads to more disordered states of the switch domains than the wild-type (WT) KRAS and induces conformational transformations between the closed and open states. The results from principal component analysis (PCA) indicate that principal motions PC1 and PC2 are responsible for the closed and open states of the phosphorylated KRAS. Interaction networks were analyzed and the results verify that the phosphorylation alters interactions of GTP and magnesium ion Mg2+ with the switch domains. It is concluded that the phosphorylation pY32, pY64, and pY137 tune the activity of KRAS through changing conformational dynamics and interactions of the switch domains. We anticipated that this work could provide theoretical aids for deeply understanding the function of KRAS. Full article
Show Figures

Figure 1

18 pages, 10156 KiB  
Article
Reinforcement of DC Electrified Railways by a Modular Battery Energy Storage System
by Erick Matheus da Silveira Brito, Philippe Ladoux, Joseph Fabre and Benoit Sonier
Electronics 2024, 13(10), 1933; https://doi.org/10.3390/electronics13101933 (registering DOI) - 15 May 2024
Abstract
DC railway electrification was deployed at the beginning of the 20th century in several countries in Europe. Today, this power system is no longer adapted to the demands of increased rail traffic. Due to the relatively low voltage level, the current consumed by [...] Read more.
DC railway electrification was deployed at the beginning of the 20th century in several countries in Europe. Today, this power system is no longer adapted to the demands of increased rail traffic. Due to the relatively low voltage level, the current consumed by the trains reaches several kAs. So, in the worst case, the locomotives cannot operate at their rated power due to the voltage drop along the contact line. Conventional solutions to reduce the voltage drop consist of increasing the cross-section of overhead lines or reducing the length of sectors by installing additional substations. Nevertheless, these solutions are expensive and not always feasible. The implementation of a Modular Battery Energy Storage System (MBESS) can be an alternative solution to reinforce the railway power supply. This paper first presents an MBESS based on elementary blocks associating Full-SiC Isolated DC-DC converter and battery racks. The electrical models of a railway sector and an elementary block are described, and simulations are performed considering real railroad traffic on two sectors of the French National Rail Network, electrified at 1.5 kV. The results show that the installation of an MBESS in the railway sector boosts the locomotive’s voltage while also increasing overall system efficiency. Full article
(This article belongs to the Special Issue Railway Traction Power Supply, 2nd Edition)
Show Figures

Figure 1

19 pages, 4804 KiB  
Article
Mapping Bovine Tuberculosis in Colombia, 2001–2019
by D. Katterine Bonilla-Aldana, S. Daniela Jiménez-Diaz, Carlos Lozada-Riascos, Kenneth Silva-Cajaleon and Alfonso J. Rodríguez-Morales
Vet. Sci. 2024, 11(5), 220; https://doi.org/10.3390/vetsci11050220 (registering DOI) - 15 May 2024
Abstract
Introduction: Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease’s behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise [...] Read more.
Introduction: Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease’s behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise it; as such, we developed this study to describe the temporal–spatial distribution of bovine tuberculosis in Colombia over a period of 19 years. Methods: A retrospective cross-sectional descriptive study, based on reports by the Colombian Agricultural Institute (ICA), surveillance of tuberculosis on cattle farms in Colombia from 2001 to 2019 was carried out. The data were converted into databases using Microsoft Access 365®, and multiple epidemiological maps were generated with the QGIS® version 3.36 software coupled to shape files of all the country’s departments. Results: During the study period, 5273 bovine tuberculosis cases were identified in multiple different departments of Colombia (with a mean of 278 cases/year). Regarding its temporal distribution, the number of cases varied from a maximum of 903 cases (17.12% of the total) in 2015 to a minimum of 0 between 2001 and 2004 and between 2017 and 2019 (between 2005 and 2016, the minimum was 46 cases, 0.87%). Conclusions: GIS are essential for understanding the temporospatial behaviour of zoonotic diseases in Colombia, as is the case for bovine tuberculosis, with its potential implications for the Human and One Health approaches. Full article
(This article belongs to the Special Issue Spotlight on Tuberculosis and Mycoplasmosis in Cattle)
Show Figures

Figure 1

14 pages, 2979 KiB  
Article
Tumor-Intrinsic Enhancer of Zeste Homolog 2 Controls Immune Cell Infiltration, Tumor Growth, and Lung Metastasis in a Triple-Negative Breast Cancer Model
by Lenore Monterroza, Maria M. Parrilla, Sarah G. Samaranayake, Dormarie E. Rivera-Rodriguez, Sung Bo Yoon, Ramireddy Bommireddy, Justin Hosten, Luisa Cervantes Barragan, Adam Marcus, Brian S. Dobosh, Periasamy Selvaraj and Rabindra Tirouvanziam
Int. J. Mol. Sci. 2024, 25(10), 5392; https://doi.org/10.3390/ijms25105392 (registering DOI) - 15 May 2024
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and highly metastatic type of tumor. TNBC is often enriched in tumor-infiltrating neutrophils (TINs), which support cancer growth in part by counteracting tumor-infiltrating lymphocytes (TILs). Prior studies identified the enhancer of zeste homolog 2 (EZH2) as [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive and highly metastatic type of tumor. TNBC is often enriched in tumor-infiltrating neutrophils (TINs), which support cancer growth in part by counteracting tumor-infiltrating lymphocytes (TILs). Prior studies identified the enhancer of zeste homolog 2 (EZH2) as a pro-tumor methyltransferase in primary and metastatic TNBCs. We hypothesized that EZH2 inhibition in TNBC cells per se would exert antitumor activity by altering the tumor immune microenvironment. To test this hypothesis, we used CRISPR to generate EZH2 gene knockout (KO) and overexpressing (OE) lines from parent (wild-type—WT) 4T1 cells, an established murine TNBC model, resulting in EZH2 protein KO and OE, respectively. In vitro, EZH2 KO and OE cells showed early, transient changes in replicative capacity and invasiveness, and marked changes in surface marker profile and cytokine/chemokine secretion compared to WT cells. In vivo, EZH2 KO cells showed significantly reduced primary tumor growth and a 10-fold decrease in lung metastasis compared to WT cells, while EZH2 OE cells were unchanged. Compared to WT tumors, TIN:TIL ratios were greatly reduced in EZH2 KO tumors but unchanged in EZH2 OE tumors. Thus, EZH2 is key to 4T1 aggressiveness as its tumor-intrinsic knockout alters their in vitro secretome and in vivo primary tumor growth, TIN/TIL poise, and metastasis. Full article
(This article belongs to the Special Issue Advances and Mechanisms in Breast Cancer)
Show Figures

Figure 1

5 pages, 181 KiB  
Book Review
Book Review: Powdyel, T.S. My Green School: An Outline; 2020; ISBN-13: 979-8677417979
by Anh-Tuan Hoang and Tzu-Bin Lin
Sustainability 2024, 16(10), 4131; https://doi.org/10.3390/su16104131 (registering DOI) - 15 May 2024
Abstract
The Green School—An outline reflects on the author’s vision of a holistic approach to the education system as a leading arrow for human beings and social prosperity. It is a needed book, an education of choice, conviction, and passion by Thakur S. Powdyel, [...] Read more.
The Green School—An outline reflects on the author’s vision of a holistic approach to the education system as a leading arrow for human beings and social prosperity. It is a needed book, an education of choice, conviction, and passion by Thakur S. Powdyel, former Minister of Education, Royal Government of Bhutan a long with several studies in terms of reflections on Gross National Happiness in the education context and globalization, and context of development. Thus, Powdyel’s Green School conducts all the fundamentals as well as many other crucial aspects related to greenery concepts in the entire school as a whole-green school approach for future education. Full article
26 pages, 8045 KiB  
Article
Improving Wheat Leaf Nitrogen Concentration (LNC) Estimation across Multiple Growth Stages Using Feature Combination Indices (FCIs) from UAV Multispectral Imagery
by Xiangxiang Su, Ying Nian, Hu Yue, Yongji Zhu, Jun Li, Weiqiang Wang, Yali Sheng, Qiang Ma, Jikai Liu, Wenhui Wang and Xinwei Li
Agronomy 2024, 14(5), 1052; https://doi.org/10.3390/agronomy14051052 (registering DOI) - 15 May 2024
Abstract
Leaf nitrogen concentration (LNC) is a primary indicator of crop nitrogen status, closely related to the growth and development dynamics of crops. Accurate and efficient monitoring of LNC is significant for precision field crop management and enhancing crop productivity. However, the biochemical properties [...] Read more.
Leaf nitrogen concentration (LNC) is a primary indicator of crop nitrogen status, closely related to the growth and development dynamics of crops. Accurate and efficient monitoring of LNC is significant for precision field crop management and enhancing crop productivity. However, the biochemical properties and canopy structure of wheat change across different growth stages, leading to variations in spectral responses that significantly impact the estimation of wheat LNC. This study aims to investigate the construction of feature combination indices (FCIs) sensitive to LNC across multiple wheat growth stages, using remote sensing data to develop an LNC estimation model that is suitable for multiple growth stages. The research employs UAV multispectral remote sensing technology to acquire canopy imagery of wheat during the early (Jointing stage and Booting stage) and late (Early filling and Late filling stages) in 2021 and 2022, extracting spectral band reflectance and texture metrics. Initially, twelve sensitive spectral feature combination indices (SFCIs) were constructed using spectral band information. Subsequently, sensitive texture feature combination indices (TFCIs) were created using texture metrics as an alternative to spectral bands. Machine learning algorithms, including partial least squares regression (PLSR), random forest regression (RFR), support vector regression (SVR), and Gaussian process regression (GPR), were used to integrate spectral and texture information, enhancing the estimation performance of wheat LNC across growth stages. Results show that the combination of Red, Red edge, and Near-infrared bands, along with texture metrics such as Mean, Correlation, Contrast, and Dissimilarity, has significant potential for LNC estimation. The constructed SFCIs and TFCIs both enhanced the responsiveness to LNC across multiple growth stages. Additionally, a sensitive index, the Modified Vegetation Index (MVI), demonstrated significant improvement over NDVI, correcting the over-saturation concerns of NDVI in time-series analysis and displaying outstanding potential for LNC estimation. Spectral information outperforms texture information in estimation capability, and their integration, particularly with SVR, achieves the highest precision (coefficient of determination (R2) = 0.786, root mean square error (RMSE) = 0.589%, and relative prediction deviation (RPD) = 2.162). In conclusion, the sensitive FCIs developed in this study improve LNC estimation performance across multiple growth stages, enabling precise monitoring of wheat LNC. This research provides insights and technical support for the construction of sensitive indices and the precise management of nitrogen nutrition status in field crops. Full article
Show Figures

Figure 1

17 pages, 4692 KiB  
Article
Genomic and Transcriptome Analysis Reveals the Biosynthesis Network of Cordycepin in Cordyceps militaris
by Linshan Chai, Jianmei Li, Lingling Guo, Shuyu Zhang, Fei Chen, Wanqin Zhu and Yu Li
Genes 2024, 15(5), 626; https://doi.org/10.3390/genes15050626 (registering DOI) - 15 May 2024
Abstract
Cordycepin is the primary active compound of Cordyceps militaris. However, the definitive genetic mechanism governing cordycepin synthesis in fruiting body growth and development remains elusive, necessitating further investigation. This study consists of 64 C. militaris strains collected from northeast China. The high-yielding [...] Read more.
Cordycepin is the primary active compound of Cordyceps militaris. However, the definitive genetic mechanism governing cordycepin synthesis in fruiting body growth and development remains elusive, necessitating further investigation. This study consists of 64 C. militaris strains collected from northeast China. The high-yielding cordycepin strain CMS19 was selected for the analysis of cordycepin production and the genetic basis of cordycepin anabolism. First, the whole-genome sequencing of CMS19 yielded a final size of 30.96 Mb with 8 contigs and 9781 protein-coding genes. The genome component revealed the presence of four additional secondary metabolite gene clusters compared with other published genomes, suggesting the potential for the production of new natural products. The analyses of evolutionary and genetic differentiation revealed a close relationship between C. militaris and Beauveria bassiana. The population of strains distributed in northeast China exhibited the significant genetic variation. Finally, functional genes associated with cordycepin synthesis were identified using a combination of genomic and transcriptomic analyses. A large number of functional genes associated with energy and purine metabolism were significantly enriched, facilitating the reconstruction of a hypothetical cordycepin metabolic pathway. Therefore, our speculation of the cordycepin metabolism pathway involved 24 genes initiating from the glycolysis and pentose phosphate pathways, progressing through purine metabolism, and culminating in the core region of cordycepin synthesis. These findings could offer fundamental support for scientific utilizations of C. militaris germplasm resources and standardized cultivation for cordycepin production. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop