The 2023 MDPI Annual Report has
been released!
 
15 pages, 2662 KiB  
Article
Iron Oxide-Activated Carbon Composites for Enhanced Microwave-Assisted Pyrolysis of Hardwood
by Amine Lataf, Andrew E. Khalil Awad, Bjorn Joos, Robert Carleer, Jan Yperman, Sonja Schreurs, Jan D’Haen, Ann Cuypers and Dries Vandamme
Environments 2024, 11(5), 102; https://doi.org/10.3390/environments11050102 (registering DOI) - 15 May 2024
Abstract
A commercial activated carbon (AC) was modified through iron oxide incorporation to obtain microwave absorbers (MWAs) for microwave-assisted pyrolysis. The influence of iron oxide content (5 and 20 wt% Fe3O4) and the modification methods were tested as follows: (1) [...] Read more.
A commercial activated carbon (AC) was modified through iron oxide incorporation to obtain microwave absorbers (MWAs) for microwave-assisted pyrolysis. The influence of iron oxide content (5 and 20 wt% Fe3O4) and the modification methods were tested as follows: (1) in situ co-precipitation + washing step with Milli-Q; (2) in situ co-precipitation + washing step with Milli-Q/ethanol; and (3) physical iron oxide blending. The resulting MWAs were evaluated on the microwave-assisted pyrolysis of hardwood in a Milestone Flexiwave microwave reactor. The biochar yield varied from 24 wt% to 89 wt% and was influenced by the modification method rather than the iron oxide addition. The MWAs with physically blended iron oxide resulted in biochar yields comparable to conventional biochar (450 °C). Furthermore, the addition of iron oxide-activated carbon composites during the microwave-assisted pyrolysis caused a significant decrease in the biochar’s 16 EPA polycyclic aromatic hydrocarbons, mainly by reducing the amount of pyrene in the biochar. Full article
(This article belongs to the Special Issue Thermochemical Treatments of Biomass)
Show Figures

Graphical abstract

11 pages, 3144 KiB  
Article
Oxidation Study and Mechanism Analysis of Desulfurization Ash in Dense-Phase Tower
by Gang Lu, Hao Li, Hongzhi Ma and Tingshuang Leng
Processes 2024, 12(5), 1008; https://doi.org/10.3390/pr12051008 (registering DOI) - 15 May 2024
Abstract
Dense-phase-tower desulfurization technology is an emerging semi-dry flue-gas desulfurization ash process, i.e., the flue gas is allowed to enter the desulfurization tower from the bottom up and, at the same time, is sprayed with a desulfurizing agent that undergoes an acid–base reaction with [...] Read more.
Dense-phase-tower desulfurization technology is an emerging semi-dry flue-gas desulfurization ash process, i.e., the flue gas is allowed to enter the desulfurization tower from the bottom up and, at the same time, is sprayed with a desulfurizing agent that undergoes an acid–base reaction with the flue gas in the ascent process. The calcium sulfite and calcium sulfate produced by the reaction and the part of the desulfurization agent that is not involved in the reaction will enter the subsequent dust removal system, and what is retained is the by-product desulfurization ash. This desulfurization ash contains a large amount of calcium sulfite, which leads to its unstable nature; it is easily oxidized and expands in volume, and, if used in the field of building materials, it will lead to cracking and other problems, so it is difficult to effectively use it. In order to solve this problem, XRF, XRD, and iodometric and other analytical methods were used to determine the specific composition of desulfurization ash, and the muffle furnace and vertical tube furnace were used to study the thermal oxidative modification of calcium sulfite in desulfurization ash, to investigate the effects of the oxygen content, reaction temperature, medium flow rate, and chloride content on the oxidation of calcium sulfite, and to analyze the thermodynamics in the high-temperature oxidation reaction. The results showed that the oxidation rate of calcium sulfite increased with higher reaction temperatures. Increased oxygen content promoted the oxidation rate, particularly at low oxygen levels. The oxidation rate of calcium sulfite correlated positively with the medium flow rate until a rate of 75 mL·min was reached. At a reaction temperature of 420 °C and a gas flow rate of 85 mL·min−1, the oxidation conversion efficiency exceeded 89%. Chloride content significantly reduced the oxidation rate of calcium sulfite, although this inhibition weakened at temperatures above 500 °C. Kinetic analysis suggested that the oxidation reaction of calcium sulfite predominantly occurred below 500 °C. These findings have both theoretical and practical implications for the thermal oxidation treatment and disposal of desulfurization ash. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 8905 KiB  
Article
Orbital Stability Study of the Taiji Space Gravitational Wave Detector
by Yu-Yang Zhang, Geng Li and Bo Wen
Universe 2024, 10(5), 219; https://doi.org/10.3390/universe10050219 (registering DOI) - 15 May 2024
Abstract
Space-based gravitational wave detection is extremely sensitive to disturbances. The Keplerian configuration cannot accurately reflect the variations in spacecraft configuration. Planetary gravitational disturbances are one of the main sources. Numerical simulation is an effective method to investigate the impact of perturbation on spacecraft [...] Read more.
Space-based gravitational wave detection is extremely sensitive to disturbances. The Keplerian configuration cannot accurately reflect the variations in spacecraft configuration. Planetary gravitational disturbances are one of the main sources. Numerical simulation is an effective method to investigate the impact of perturbation on spacecraft orbits. This study shows that, in the context of the Taiji project, Earth’s gravity is an essential factor in the change in heliocentric formation configuration, contributing to the relative acceleration between spacecrafts in the order of O(106)m·s2. Considering 00:00:00 on 27 October 2032 as the initial orbiting moment, under the influence of Earth’s gravitational perturbation, the maximum relative change in armlengths and variation rates of armlengths for Taiji is 1.6×105km, 32m·s1, respectively, compared with the unperturbed Keplerian orbit. Additionally, by considering the gravitational perturbations of Venus and Jupiter, the armlength and relative velocity for Taiji are reduced by 16.01% and 17.45%, respectively, compared with when only considering that of Earth. The maximum amplitude of the formation motion indicator changes with the orbit entry time. Results show that the relative velocity increase between the spacecrafts is minimal when the initial orbital moment occurs in July. Moreover, the numerical simulation results are inconsistent when using different ephemerides. The differences between ephemerides DE440 and DE430 are smaller than those between DE440 and DE421. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

13 pages, 1076 KiB  
Article
A Workplace Health Promotion Program for a Predominantly Military Population: Associations with General Health, Mental Well-Being and Sustainable Employability
by Rebecca Bogaers, Diewertje Sluik, Pieter Helmhout and Fenna Leijten
Int. J. Environ. Res. Public Health 2024, 21(5), 625; https://doi.org/10.3390/ijerph21050625 (registering DOI) - 15 May 2024
Abstract
Due to the globally increasing life expectancies, many countries are raising their official retirement age to prevent labor shortages and sustain retirement systems. This trend emphasizes the need for sustainable employability. Unhealthy lifestyles pose a risk to sustainable employability as they contribute to [...] Read more.
Due to the globally increasing life expectancies, many countries are raising their official retirement age to prevent labor shortages and sustain retirement systems. This trend emphasizes the need for sustainable employability. Unhealthy lifestyles pose a risk to sustainable employability as they contribute to chronic diseases and decreased productivity. Workplace Health Promotion (WHP) programs have gained attention as a strategy to enhance employee health and well-being. The Netherlands Armed Forces, a unique employer with demanding psychological and physical requirements, was used as a case study to investigate the associations of a WHP Program with workers health and sustainable employability. The program offered tailor-made guidance to participants (N = 341) through individual coaching trajectories. The program’s impact was evaluated by measuring self-reported health, mental well-being, and sustainable employability over a 6-month period. Results indicated significant improvements across all these dimensions after participation in the program. This study provides valuable insights into the benefits of tailor-made WHP programs. While this was an observational study without a control group, this study supports the importance of incorporating individualized approaches in WHP initiatives to foster positive outcomes in health and sustainable employability. Full article
(This article belongs to the Special Issue Exercise and Physical Activity in Health Promotion)
Show Figures

Figure 1

14 pages, 3841 KiB  
Article
Synthesis of Submicron CaCO3 Particles in 3D-Printed Microfluidic Chips Supporting Advection and Diffusion Mixing
by Ivan Reznik, Ekaterina Kolesova, Anna Pestereva, Konstantin Baranov, Yury Osin, Kirill Bogdanov, Jacobus Swart, Stanislav Moshkalev and Anna Orlova
Micromachines 2024, 15(5), 652; https://doi.org/10.3390/mi15050652 (registering DOI) - 15 May 2024
Abstract
Microfluidic technology provides a solution to the challenge of continuous CaCO3 particle synthesis. In this study, we utilized a 3D-printed microfluidic chip to synthesize CaCO3 micro- and nanoparticles in vaterite form. Our primary focus was on investigating a continuous one-phase synthesis [...] Read more.
Microfluidic technology provides a solution to the challenge of continuous CaCO3 particle synthesis. In this study, we utilized a 3D-printed microfluidic chip to synthesize CaCO3 micro- and nanoparticles in vaterite form. Our primary focus was on investigating a continuous one-phase synthesis method tailored for the crystallization of these particles. By employing a combination of confocal and scanning electron microscopy, along with Raman spectroscopy, we were able to thoroughly evaluate the synthesis efficiency. This evaluation included aspects such as particle size distribution, morphology, and polymorph composition. The results unveiled the existence of two distinct synthesis regimes within the 3D-printed microfluidic chips, which featured a channel cross-section of 2 mm2. In the first regime, which was characterized by chaotic advection, particles with an average diameter of around 2 μm were produced, thereby displaying a broad size distribution. Conversely, the second regime, marked by diffusion mixing, led to the synthesis of submicron particles (approximately 800–900 nm in diameter) and even nanosized particles (70–80 nm). This research significantly contributes valuable insights to both the understanding and optimization of microfluidic synthesis processes, particularly in achieving the controlled production of submicron and nanoscale particles. Full article
(This article belongs to the Special Issue Microfluidics and 3D Printing for Biomedical Applications)
Show Figures

Figure 1

19 pages, 18505 KiB  
Article
Density Functional Study of Electrocatalytic Carbon Dioxide Reduction in Fourth-Period Transition Metal–Tetrahydroxyquinone Organic Framework
by Yufeng Wen, Xianshi Zeng, Yanan Xiao, Wen Ruan, Kai Xiong and Zhangli Lai
Molecules 2024, 29(10), 2320; https://doi.org/10.3390/molecules29102320 (registering DOI) - 15 May 2024
Abstract
This study investigates the utilisation of organometallic network frameworks composed of fourth-period transition metals and tetrahydroxyquinone (THQ) in electrocatalytic CO2 reduction. Density functional theory (DFT) calculations were employed in analysing binding energies, as well as the stabilities of metal atoms within the [...] Read more.
This study investigates the utilisation of organometallic network frameworks composed of fourth-period transition metals and tetrahydroxyquinone (THQ) in electrocatalytic CO2 reduction. Density functional theory (DFT) calculations were employed in analysing binding energies, as well as the stabilities of metal atoms within the THQ frameworks, for transition metal TM-THQs ranging from Y to Cd. The findings demonstrate how metal atoms could be effectively dispersed and held within the THQ frameworks due to sufficiently high binding energies. Most TM-THQ frameworks exhibited favourable selectivity towards CO2 reduction, except for Tc and Ru, which experienced competition from hydrogen evolution reaction (HER) and required solution environments with pH values greater than 5.716 and 8.819, respectively, to exhibit CO2RR selectivity. Notably, the primary product of Y, Ag, and Cd was HCOOH; Mo produced HCHO; Pd yielded CO; and Zr, Nb, Tc, Ru, and Rh predominantly generated CH4. Among the studied frameworks, Zr-THQ displayed values of 1.212 V and 1.043 V, corresponding to the highest limiting potential and overpotential, respectively, while other metal–organic frameworks displayed relatively low ranges of overpotentials from 0.179 V to 0.949 V. Consequently, it is predicted that the TM-THQ framework constructed using a fourth-period transition metal and tetrahydroxyquinone exhibits robust electrocatalytic reduction of CO2 catalytic activity. Full article
Show Figures

Figure 1

13 pages, 1371 KiB  
Article
Combined Ultrasound and Fluoroscopy versus Ultrasound versus Fluoroscopy-Guided Caudal Epidural Steroid Injection for the Treatment of Unilateral Lower Lumbar Radicular Pain: A Retrospective Comparative Study
by Dong yuk Lee, Yongbum Park, Jun Hyeong Song, Jaeki Ahn, Kyung Hwan Cho and Suyeon Kim
Medicina 2024, 60(5), 809; https://doi.org/10.3390/medicina60050809 - 15 May 2024
Abstract
Background and Objectives: This study aimed to evaluate the mid-term effectiveness and safety of a combined ultrasound (US) and fluoroscopy (FL)-guided approach in comparison to US-guided and FL-guided caudal epidural steroid injections (CESI) for treating unilateral lower lumbar radicular pain. Materials and [...] Read more.
Background and Objectives: This study aimed to evaluate the mid-term effectiveness and safety of a combined ultrasound (US) and fluoroscopy (FL)-guided approach in comparison to US-guided and FL-guided caudal epidural steroid injections (CESI) for treating unilateral lower lumbar radicular pain. Materials and Methods: A total of 154 patients who underwent CESI between 2018 and 2022 were included. Patients were categorized into three groups based on the guidance method: combined US and FL (n = 51), US-guided (n = 51), and FL-guided (n = 52). The study design was retrospective case-controlled, utilizing patient charts and standardized forms to assess clinical outcomes, adverse events, complications during the procedures. Results: In all groups, Oswestry Disability Index and Verbal Numeric Scale scores improved at 1, 3, and 6 months after the last injection, with no significant differences between groups (p < 0.05). The treatment success rate at all time points was also similar among the groups. Logistic regression analysis showed that injection method, cause, sex, age, number of injections, and pain duration did not independently predict treatment success. Blood was aspirated before injection in 2% (n = 1), 13.5% (n = 7), and 4% (n = 2) of patients in the combined US and FL groups, FL-guided groups, and US-guided groups, respectively. Intravascular contrast spread was detected in one patient in the combined method groups and seven in the FL-guided groups. Conclusions: When comparing pain reduction and functional improvement, there was no significant difference between the three methods. The combined method took less time compared to using FL alone. The combined approach also showed a lower occurrence of intravascular injection compared to using FL alone. Moreover, blood vessels at the injection site can be identified with an ultrasound using the combined method. Given these advantages, it might be advisable to prioritize the combined US- and FL-guided therapy when administering CESI for patients with unilateral lumbar radicular pain. Full article
(This article belongs to the Special Issue Persistent Pain: Advances in Diagnosis and Management)
Show Figures

Figure 1

10 pages, 837 KiB  
Article
Towards Comprehensive Newborn Hearing and Genetic Screening in Russia: Perspectives of Implementation
by Svetlana Chibisova, Tatiana Markova, Evgenia Tsigankova and George Tavartkiladze
J. Otorhinolaryngol. Hear. Balance Med. 2024, 5(1), 6; https://doi.org/10.3390/ohbm5010006 - 15 May 2024
Abstract
The universal newborn hearing screening (NHS) program was implemented in Russia in 2008 to replace the high-risk newborn hearing screening. More than 95% coverage and significant improvement in early detection and intervention is achieved. Meanwhile, it was shown that current OAE-based hearing screening [...] Read more.
The universal newborn hearing screening (NHS) program was implemented in Russia in 2008 to replace the high-risk newborn hearing screening. More than 95% coverage and significant improvement in early detection and intervention is achieved. Meanwhile, it was shown that current OAE-based hearing screening missed 13% of newborns with genetically ascertained hereditary sensorineural hearing loss (SNHL). The aim of the study is to assess the results of genetic investigation and NHS in a large cohort of Russian children with bilateral SNHL and to study the feasibility of implementation of combined hearing and genetic screening in Russia. Genetic, audiological and NHS data of 1292 pediatric patients with bilateral SNHL born in 2008–2021 were analyzed. GJB2 sequencing was performed for all subjects, 644 patients had pathological GJB2 genotype, 406 of them were homozygous for c.35delG variant. The group of 155 GJB2-negative patients were searched for other SNHL genes, The pathological genotypes were identified at 87 patients. The most frequent genes were STRC (21.8%), USH2A (16.1%), OTOF (8%) and SLC26A4 (6.9%). Children with confirmed genetic etiology passed NHS in 21% of cases. The perspectives of implementation of national comprehensive newborn hearing and genetic screening including whole exome sequencing technologies are discussed. Full article
Show Figures

Figure 1

27 pages, 1287 KiB  
Article
Exploring Trust Dynamics in Online Social Networks: A Social Network Analysis Perspective
by Stavroula Kridera and Andreas Kanavos
Math. Comput. Appl. 2024, 29(3), 37; https://doi.org/10.3390/mca29030037 - 15 May 2024
Abstract
This study explores trust dynamics within online social networks, blending social science theories with advanced machine-learning (ML) techniques. We examine trust’s multifaceted nature—definitions, types, and mechanisms for its establishment and maintenance—and analyze social network structures through graph theory. Employing a diverse array of [...] Read more.
This study explores trust dynamics within online social networks, blending social science theories with advanced machine-learning (ML) techniques. We examine trust’s multifaceted nature—definitions, types, and mechanisms for its establishment and maintenance—and analyze social network structures through graph theory. Employing a diverse array of ML models (e.g., KNN, SVM, Naive Bayes, Gradient Boosting, and Neural Networks), we predict connection strengths on Facebook, focusing on model performance metrics such as accuracy, precision, recall, and F1-score. Our methodology, executed in Python using the Anaconda distribution, unveils insights into trust formation and sustainability on social media, highlighting the potent application of ML in understanding these dynamics. Challenges, including the complexity of modeling social behaviors and ethical data use concerns, are discussed, emphasizing the need for continued innovation. Our findings contribute to the discourse on trust in social networks and suggest future research directions, including the application of our methodologies to other platforms and the study of online trust over time. This work not only advances the academic understanding of digital social interactions but also offers practical implications for developers, policymakers, and online communities. Full article
Show Figures

Figure 1

10 pages, 1615 KiB  
Article
Malaria during COVID-19 Travel Restrictions in Makkah, Saudi Arabia
by Sami Melebari, Abdul Hafiz, Kamal H. Alzabeedi, Abdullah A. Alzahrani, Yehya Almalki, Renad J. Jadkarim, Fadel Qabbani, Rowaida Bakri, Naif A. Jalal, Hutaf Mashat, Aisha Alsaadi, Ashwaq Hakim, Feras Hashim Malibari, Ahmed Alkhyami and Othman Fallatah
Trop. Med. Infect. Dis. 2024, 9(5), 112; https://doi.org/10.3390/tropicalmed9050112 - 15 May 2024
Abstract
Malaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus Plasmodium and is transmitted by female Anopheles mosquitoes. Saudi [...] Read more.
Malaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus Plasmodium and is transmitted by female Anopheles mosquitoes. Saudi Arabia is in the elimination phase of malaria control. Several parts of Saudi Arabia report cases of imported malaria among travelers and visitors. The city of Makkah in Saudi Arabia has a population of about 2.3 million. Moreover, over 6 million religious visitors from different parts of the world visit Makkah annually. During the COVID-19 outbreak, travel restrictions were enforced in Makkah to contain the spread of COVID-19. We compare the total reported cases of malaria in Makkah before, during, and after COVID-19 travel restrictions in this retrospective cross-sectional study. Data on demographics, clinical data, and laboratory parameters were collected from the medical records of the Ministry of Health, Saudi Arabia. The annual malaria incidence rates in Makkah were 29.13/million people (2018), 37.82/million people (2019), 15.65/million people (2020), 12.61/million people (2021), and 48.69/million people (2022). Most of the malaria cases in Makkah were caused by Plasmodium falciparum, followed by P. vivax. Sudan, Nigeria, Yamen, Pakistan, and India are the top five countries contributing to malaria cases in Makkah. Weekly malaria case analyses revealed that COVID-19-related travel restrictions resulted in zero malaria cases in Makkah, indicating the magnitude of the travel-related malaria burden in the city. Full article
(This article belongs to the Special Issue Epidemiology, Detection and Treatment of Malaria)
Show Figures

Figure 1

11 pages, 987 KiB  
Review
The Emerging Role of Silk Fibroin for the Development of Novel Drug Delivery Systems
by Mauro Pollini and Federica Paladini
Biomimetics 2024, 9(5), 295; https://doi.org/10.3390/biomimetics9050295 - 15 May 2024
Abstract
In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials [...] Read more.
In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo. Full article
(This article belongs to the Special Issue Silk-Based Bioinspired Materials: Design and Applications)
Show Figures

Figure 1

12 pages, 2037 KiB  
Review
Clinical Application of Unidirectional Porous Hydroxyapatite to Bone Tumor Surgery and Other Orthopedic Surgery
by Toshiyuki Kunisada, Eiji Nakata, Tomohiro Fujiwara, Toshiaki Hata, Kohei Sato, Haruyoshi Katayama, Ayana Kondo and Toshifumi Ozaki
Biomimetics 2024, 9(5), 294; https://doi.org/10.3390/biomimetics9050294 - 15 May 2024
Abstract
Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of [...] Read more.
Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of bone tumors. Excellent bone formation within and around the implant was observed in all patients treated with intralesional resection and UDPHAp implantation for benign bone tumors. The absorption of UDPHAp and remodeling of the bone marrow space was observed in 45% of the patients at a mean of 17 months postoperatively and was significantly more common in younger patients. Preoperative cortical thinning was completely regenerated in 84% of patients at a mean of 10 months postoperatively. No complications related to the implanted UDPHAp were observed. In a pediatric patient with bone sarcoma, when the defect after fibular resection was filled with UDPHAp implants, radiography showed complete resorption of the implant and clear formation of cortex and marrow in the resected part of the fibula. The patient could walk well without crutches and participate in sports activities. UDPHAp is a useful bone graft substitute for the treatment of benign bone tumors, and the use of this material has a low complication rate. We also review and discuss the potential of UDPHAp as a bone graft substitute in the clinical setting of orthopedic surgery. Full article
(This article belongs to the Special Issue Advances in Bioceramics for Bone Regeneration)
Show Figures

Figure 1

14 pages, 3603 KiB  
Article
Xyloglucan–Cellulose Nanocrystals Mixtures: A Case Study of Nanocolloidal Hydrogels and Levers for Tuning Functional Properties
by Géraldine Rangel, Céline Moreau, Ana Villares, Christophe Chassenieux and Bernard Cathala
Gels 2024, 10(5), 334; https://doi.org/10.3390/gels10050334 - 15 May 2024
Abstract
The development of fully biobased hydrogels obtained by simple routes and in the absence of toxic or environmentally harmful reagents is a major challenge in meeting new societal demands. In this work, we discuss the development of hydrogels made from cellulose nanocrystals (CNCs) [...] Read more.
The development of fully biobased hydrogels obtained by simple routes and in the absence of toxic or environmentally harmful reagents is a major challenge in meeting new societal demands. In this work, we discuss the development of hydrogels made from cellulose nanocrystals (CNCs) and xyloglucan (XG), two non-toxic, renewable, and biobased components. We present three strategies to fine-tune the functional properties. The first one consists in varying the XG/CNC ratio that leads to the modulation of the mechanical properties of hydrogels as well as a better comprehension of the gel mechanism formation. The second relies on tuning the XG chains’ interaction by enzymatic modification to achieve thermoresponsive systems. Finally, the third one is based on the increase in the hydrogel solid content by osmotic concentration. The high-solid-content gels were found to have very high mechanical properties and self-healing properties that can be used for molding materials. Overall, these approaches are a case study of potential modifications and properties offered by biobased nanocolloidal hydrogels. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

14 pages, 3735 KiB  
Article
The MnO2/GelMA Composite Hydrogels Improve the ROS Microenvironment of Annulus Fibrosus Cells by Promoting the Antioxidant and Autophagy through the SIRT1/NRF2 Pathway
by Bohan Xu, Mingxuan Huang, Jiaying Li, Qingchen Meng, Jie Hu, Qianglong Chen, Hui He, Hao Jiang, Fengxuan Han, Bin Meng and Ting Liang
Gels 2024, 10(5), 333; https://doi.org/10.3390/gels10050333 - 15 May 2024
Abstract
Intervertebral disc degeneration (IVDD) is a worldwide disease that causes low back pain and reduces quality of life. Biotherapeutic strategies based on tissue engineering alternatives, such as intervertebral disc scaffolds, supplemented by drug-targeted therapy have brought new hope for IVDD. In this study, [...] Read more.
Intervertebral disc degeneration (IVDD) is a worldwide disease that causes low back pain and reduces quality of life. Biotherapeutic strategies based on tissue engineering alternatives, such as intervertebral disc scaffolds, supplemented by drug-targeted therapy have brought new hope for IVDD. In this study, to explore the role and mechanism of MnO2/GelMA composite hydrogels in alleviating IVDD, we prepared composite hydrogels with MnO2 and methacrylate gelatin (GelMA) and characterized them using compression testing and transmission electron microscopy (TEM). Annulus fibrosus cells (AFCs) were cultured in the composite hydrogels to verify biocompatibility by live/dead and cytoskeleton staining. Cell viability assays and a reactive oxygen species (ROS) probe were used to analyze the protective effect of the composite hydrogels under oxidative damage. To explore the mechanism of improving the microenvironment, we detected the expression levels of antioxidant and autophagy-related genes and proteins by qPCR and Western blotting. We found that the MnO2/GelMA composite hydrogels exhibited excellent biocompatibility and a porous structure, which promoted cell proliferation. The addition of MnO2 nanoparticles to GelMA cleared ROS in AFCs and induced the expression of antioxidant and cellular autophagy through the common SIRT1/NRF2 pathway. Therefore, the MnO2/GelMA composite hydrogels, which can improve the disc microenvironment through scavenging intracellular ROS and resisting oxidative damage, have great application prospects in the treatment of IVDD. Full article
Show Figures

Figure 1

15 pages, 1546 KiB  
Article
Mapping the Burden of Fungal Diseases in the United Arab Emirates
by Fatima Al Dhaheri, Jens Thomsen, Dean Everett and David W. Denning
J. Fungi 2024, 10(5), 353; https://doi.org/10.3390/jof10050353 - 15 May 2024
Abstract
The United Arab Emirates has very little data on the incidence or prevalence of fungal diseases. Using total and underlying disease risk populations and likely affected proportions, we have modelled the burden of fungal disease for the first time. The most prevalent serious [...] Read more.
The United Arab Emirates has very little data on the incidence or prevalence of fungal diseases. Using total and underlying disease risk populations and likely affected proportions, we have modelled the burden of fungal disease for the first time. The most prevalent serious fungal conditions are recurrent vulvovaginitis (~190,000 affected) and fungal asthma (~34,000 affected). Given the UAE’s low prevalence of HIV, we estimate an at-risk population of 204 with respect to serious fungal infections with cryptococcal meningitis estimated at 2 cases annually, 15 cases of Pneumocystis pneumonia (PCP) annually, and 20 cases of esophageal candidiasis in the HIV population. PCP incidence in non-HIV patients is estimated at 150 cases annually. Likewise, with the same low prevalence of tuberculosis in the country, we estimate a total chronic pulmonary aspergillosis prevalence of 1002 cases. The estimated annual incidence of invasive aspergillosis is 505 patients, based on local data on rates of malignancy, solid organ transplantation, and chronic obstructive pulmonary disease (5.9 per 100,000). Based on the 2022 annual report of the UAE’s national surveillance database, candidaemia annual incidence is 1090 (11.8/100,000), of which 49.2% occurs in intensive care. Fungal diseases affect ~228,695 (2.46%) of the population in the UAE. Full article
Show Figures

Figure 1

18 pages, 6433 KiB  
Article
Genome Characteristics of the Endophytic Fungus Talaromyces sp. DC2 Isolated from Catharanthus roseus (L.) G. Don
by Nguyen Duc Quan, Ngoc-Lan Nguyen, Tran Thi Huong Giang, Nguyen Thi Thanh Ngan, Nguyen Thanh Hien, Nguyen Van Tung, Nguyen Hoang Thanh Trang, Nguyen Thi Kim Lien and Huy Hoang Nguyen
J. Fungi 2024, 10(5), 352; https://doi.org/10.3390/jof10050352 - 15 May 2024
Abstract
Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes the PacBio Sequel technology to completely sequence the whole genome of [...] Read more.
Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes the PacBio Sequel technology to completely sequence the whole genome of Talaromyces sp. DC2The genome study revealed that DC2 contains a total of 34.58 Mb spanned by 156 contigs, with a GC content of 46.5%. The identification and prediction of functional protein-coding genes, tRNA, and rRNA were comprehensively predicted and highly annotated using various BLAST databases, including non-redundant (Nr) protein sequence, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Carbohydrate-Active Enzymes (CAZy) databases. The genome of DC2 has a total of 149, 227, 65, 153, 53, and 6 genes responsible for cellulose, hemicellulose, lignin, pectin, chitin, starch, and inulin degradation, respectively. The Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analyses revealed that strain DC2 possesses 20 biosynthetic gene clusters responsible for producing secondary metabolites. The strain DC2 has also been found to harbor the DDC gene encoding aromatic L-amino acid decarboxylase enzyme. Conclusively, this study has provided a comprehensive understanding of the processes involved in secondary metabolites and the ability of the Talaromyces sp. DC2 strain to degrade plant cell walls. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

16 pages, 502 KiB  
Review
Treating Depression in Dementia Patients: A Risk or Remedy—A Narrative Review
by Sadia Sultan
Geriatrics 2024, 9(3), 64; https://doi.org/10.3390/geriatrics9030064 - 15 May 2024
Abstract
Background: The diagnosis of depression in dementia patients leads to an increase in the burden of the disease. To treat depression in this patient group, antidepressants are frequently used; however, there is not any proof of their therapeutic effectiveness, and their use may [...] Read more.
Background: The diagnosis of depression in dementia patients leads to an increase in the burden of the disease. To treat depression in this patient group, antidepressants are frequently used; however, there is not any proof of their therapeutic effectiveness, and their use may be potentially harmful. This narrative review aims to summarize the existing evidence regarding the role of antidepressants in treating depression in dementia patients. Main text: A search was conducted in the PubMed, Excerpta Medica database (EMBASE), and Cochrane databases for randomized controlled trials and meta-analyses wherein antidepressants were given to dementia sufferers to address depression. Fifteen randomized controlled trials and seven meta-analyses were identified. Most well-designed blinded placebo-controlled trials reported a lack of effectiveness of antidepressants in treating depression in dementia patients. Among the seven metanalyses, two reported good efficacy of Selective serotonin reuptake inhibitors (SSRIs). However, two major Cochrane reviews reported little or no effectiveness and increased side effects of antidepressants in dementia patients. Conclusion: There is robust evidence regarding the lack of efficacy of antidepressants in treating depression in dementia patients. However, further well-designed Randomized controlled trials (RCTs,) using scales with good validity and reliability to diagnose depression in dementia patients, sufficient sample sizes, and detailed adverse effect profiles may help determine the rationale for their use. Full article
(This article belongs to the Section Geriatric Psychiatry and Psychology)
Show Figures

Figure 1

19 pages, 3428 KiB  
Article
Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR
by Jonghyeok Jeon, Jaeho Sul, Daehwan Ko, Myoungjae Seo, Sungmin Kim and Hongseok Lim
Bioengineering 2024, 11(5), 491; https://doi.org/10.3390/bioengineering11050491 - 15 May 2024
Abstract
Cardiopulmonary resuscitation (CPR) is a life-saving technique used in emergencies when the heart stops beating, typically involving chest compressions and ventilation. Current adult CPR guidelines do not differentiate based on age beyond infancy and childhood. This oversight increases the risk of fatigue fractures [...] Read more.
Cardiopulmonary resuscitation (CPR) is a life-saving technique used in emergencies when the heart stops beating, typically involving chest compressions and ventilation. Current adult CPR guidelines do not differentiate based on age beyond infancy and childhood. This oversight increases the risk of fatigue fractures in the elderly due to decreased bone density and changes in thoracic structure. Therefore, this study aimed to investigate the correlation and impact of factors influencing rib fatigue fractures for safer out-of-hospital manual cardiopulmonary resuscitation (OHMCPR) application. Using the finite element analysis (FEA) method, we performed fatigue analysis on rib cage models incorporating chest compression conditions and age-specific trabecular bone properties. Fatigue life analyses were conducted on three age-specific rib cage models, each differentiated by trabecular bone properties, to determine the influence of four explanatory variables (the properties of the trabecular bone (a surrogate for the age of the subject), the site of application of the compression force on the breastbone, the magnitude of applied compression force, and the rate of application of the compression force) on the fatigue life of the model. Additionally, considering the complex interaction of chest compression conditions during actual CPR, we aimed to predict rib fatigue fractures under conditions simulating real-life scenarios by analyzing the sensitivity and interrelation of chest compression conditions on the model’s fatigue life. Time constraints led to the selection of optimal analysis conditions through the use of design of experiments (DOE), specifically orthogonal array testing, followed by the construction of a deep learning-based metamodel. The predicted fatigue life values of the rib cage model, obtained from the metamodel, showed the influence of the four explanatory variables on fatigue life. These results may be used to devise safer CPR guidelines, particularly for the elderly at a high risk of acute cardiac arrest, safeguarding against potential complications like fatigue fractures. Full article
(This article belongs to the Special Issue Advances in Trauma and Injury Biomechanics)
Show Figures

Graphical abstract

13 pages, 3257 KiB  
Article
Advancing Exoskeleton Development: Validation of a Robotic Surrogate to Measure Tibial Strain
by Robert L. McGrath, Ciera A. Price, William Brett Johnson and Walter Lee Childers
Bioengineering 2024, 11(5), 490; https://doi.org/10.3390/bioengineering11050490 - 15 May 2024
Abstract
Bone stress injuries are prevalent among athletes and military recruits and can significantly compromise training schedules. The development of an ankle–foot orthosis to reduce tibial load and enable a faster return to activity will require new device testing methodologies capable of capturing the [...] Read more.
Bone stress injuries are prevalent among athletes and military recruits and can significantly compromise training schedules. The development of an ankle–foot orthosis to reduce tibial load and enable a faster return to activity will require new device testing methodologies capable of capturing the contribution of muscular force on tibial strain. Thus, an actuated robotic surrogate leg was developed to explore how tibial strain changes with different ankle–foot orthosis conditions. The purpose of this work was to assess the reliability, scalability, and behavior of the surrogate. A dual actuation system consisting of a Bowden cable and a vertical load applied to the femur via a material testing system, replicated the action-reaction of the Achilles-soleus complex. Maximum and minimum principal strain, maximum shear strain, and axial strain were measured by instrumented strain gauges at five locations on the tibia. Strains were highly repeatable across tests but did not consistently match in vivo data when scaled. However, the stiffness of the ankle–foot orthosis strut did not systematically affect tibial load, which is consistent with in vivo findings. Future work will involve improving the scalability of the results to match in vivo data and using the surrogate to inform exoskeletal designs for bone stress injuries. Full article
(This article belongs to the Special Issue Medical Devices and Implants)
Show Figures

Figure 1

16 pages, 3090 KiB  
Review
Searching for the Best Machine Learning Algorithm for the Detection of Left Ventricular Hypertrophy from the ECG: A Review
by Simon W Rabkin
Bioengineering 2024, 11(5), 489; https://doi.org/10.3390/bioengineering11050489 - 15 May 2024
Abstract
Background: Left ventricular hypertrophy (LVH) is a powerful predictor of future cardiovascular events. Objectives: The objectives of this study were to conduct a systematic review of machine learning (ML) algorithms for the identification of LVH and compare them with respect to the classical [...] Read more.
Background: Left ventricular hypertrophy (LVH) is a powerful predictor of future cardiovascular events. Objectives: The objectives of this study were to conduct a systematic review of machine learning (ML) algorithms for the identification of LVH and compare them with respect to the classical features of test sensitivity, specificity, accuracy, ROC and the traditional ECG criteria for LVH. Methods: A search string was constructed with the operators “left ventricular hypertrophy, electrocardiogram” AND machine learning; then, Medline and PubMed were systematically searched. Results: There were 14 studies that examined the detection of LVH utilizing the ECG and utilized at least one ML approach. ML approaches encompassed support vector machines, logistic regression, Random Forest, GLMNet, Gradient Boosting Machine, XGBoost, AdaBoost, ensemble neural networks, convolutional neural networks, deep neural networks and a back-propagation neural network. Sensitivity ranged from 0.29 to 0.966 and specificity ranged from 0.53 to 0.99. A comparison with the classical ECG criteria for LVH was performed in nine studies. ML algorithms were universally more sensitive than the Cornell voltage, Cornell product, Sokolow-Lyons or Romhilt-Estes criteria. However, none of the ML algorithms had meaningfully better specificity, and four were worse. Many of the ML algorithms included a large number of clinical (age, sex, height, weight), laboratory and detailed ECG waveform data (P, QRS and T wave), making them difficult to utilize in a clinical screening situation. Conclusions: There are over a dozen different ML algorithms for the detection of LVH on a 12-lead ECG that use various ECG signal analyses and/or the inclusion of clinical and laboratory variables. Most improved in terms of sensitivity, but most also failed to outperform specificity compared to the classic ECG criteria. ML algorithms should be compared or tested on the same (standard) database. Full article
Show Figures

Graphical abstract

11 pages, 1303 KiB  
Perspective
Food Plants and Environmental Contamination: An Update
by Nicoletta Guerrieri, Stefania Mazzini and Gigliola Borgonovo
Toxics 2024, 12(5), 365; https://doi.org/10.3390/toxics12050365 - 15 May 2024
Abstract
Food plants are the basis of human nutrition, but, in contaminated places, they can uptake contaminants. Environmental contamination and climate change can modify food quality; generally, they have a negative impact on and imply risks to human health. Heavy metals, like lead, arsenic, [...] Read more.
Food plants are the basis of human nutrition, but, in contaminated places, they can uptake contaminants. Environmental contamination and climate change can modify food quality; generally, they have a negative impact on and imply risks to human health. Heavy metals, like lead, arsenic, cadmium, and chromium, can be present at various environmental levels (soil, water, and atmosphere), and they are widely distributed in the world. Food plants can carry out heavy metal bioaccumulation, a defense pathway for plants, which is different for every plant species. Accumulation is frequent in the roots and the leaves, and heavy metals can be present in fruits and seeds; As and Cd are always present. In addition, other contaminants can bioaccumulate in food plants, including emerging contaminants, like persistent organic pollutants (POPs), pesticides, and microplastics. In food plants, these are present in the roots but also in the leaves and fruits, depending on their chemical structure. The literature published in recent years was examined to understand the distribution of contaminants among food plants. In the literature, old agronomical practices and new integrated technology to clean the water, control the soil, and monitor the crops have been proposed to mitigate contamination and produce high food quality and high food safety. Full article
(This article belongs to the Special Issue Environmental Pollution and Food Safety)
Show Figures

Figure 1

13 pages, 1852 KiB  
Article
Short-Term Effects of Ambient Air Pollution on Chronic Obstructive Pulmonary Disease Admissions in Jiuquan, China
by Hairong Bao, Jiyuan Dong, Deshun Li, Lisha Zhu and Juan Shu
Toxics 2024, 12(5), 364; https://doi.org/10.3390/toxics12050364 - 15 May 2024
Abstract
Recent findings indicate that air pollution contributes to the onset and advancement of chronic obstructive pulmonary disease (COPD). Nevertheless, there is insufficient research indicating that air pollution is linked to COPD in the region of inland northwest China. Daily hospital admission records for [...] Read more.
Recent findings indicate that air pollution contributes to the onset and advancement of chronic obstructive pulmonary disease (COPD). Nevertheless, there is insufficient research indicating that air pollution is linked to COPD in the region of inland northwest China. Daily hospital admission records for COPD, air pollutant levels, and meteorological factor information were collected in Jiuquan for this study between 1 January 2018 and 31 December 2019. We employed a distributed lag non-linear model (DLNM) integrated with the generalized additive model (GAM) to assess the association between air pollution and hospital admissions for COPD with single lag days from lag0 to lag7 and multiday moving average lag days from lag01 to lag07. For example, the pollutant concentration on the current day was lag0, and on the prior 7th day was lag7. The present and previous 7-day moving average pollutant concentration was lag07. Gender, age, and season-specific stratified analyses were also carried out. It is noteworthy that the delayed days exhibited a different pattern, and the magnitude of associations varied. For NO2 and CO, obvious associations with hospitalizations for COPD were found at lag1, lag01–lag07, and lag03–lag07, with the biggest associations at lag05 and lag06 [RR = 1.015 (95%CI: 1.008, 1.023) for NO2, RR = 2.049 (95%CI: 1.416, 2.966) for CO], while only SO2 at lag02 was appreciably linked to hospitalizations for COPD [1.167 (95%CI: 1.009, 1.348)]. In contrast, short-term encounters with PM2.5, PM10, and O3 were found to have no significant effects on COPD morbidity. The lag effects of NO2 and CO were stronger than those of PM2.5 and PM10. Males and those aged 65 years or older were more vulnerable to air pollution. When it came to the seasons, the impacts appeared to be more pronounced in the cold season. In conclusion, short-term encounters with NO2 and CO were significantly correlated with COPD hospitalization in males and the elderly (≥65). Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

14 pages, 1313 KiB  
Review
Insights into Grain Milling and Fractionation Practices for Improved Food Sustainability with Emphasis on Wheat and Peas
by El-Sayed M. Abdel-Aal
Foods 2024, 13(10), 1532; https://doi.org/10.3390/foods13101532 - 15 May 2024
Abstract
Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal [...] Read more.
Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal feeds or fertilizers. This adversely affects food security and the environment, and definitely implies an urgent need for a sustainable grain processing system to rectify the current issues, particularly the management of waste and excessive use of water and energy. The current review intends to discuss the limitations and flaws of the existing practice of grain milling and fractionation, along with potential solutions to make it more sustainable, with an emphasis on wheat and peas as common fractionation crops. This review discusses a proposed sustainable grain processing system for the fractionation of wheat or peas into flour, protein, starch, and value-added components. The proposed system is a hybrid model that combines dry and wet fractionation processes in conjunction with the implementation of three principles, namely, integration, recycling, and upcycling, to improve component separation efficiency and value addition and minimize grain milling waste. The three principles are critical in making grain processing more efficient in terms of the management of waste and resources. Overall, this review provides potential solutions for how to make the grain processing system more sustainable. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop