The 2023 MDPI Annual Report has
been released!
 
12 pages, 811 KiB  
Article
Droplet Digital RT-PCR (dd RT-PCR) Detection of SARS-CoV-2 in Honey Bees and Honey Collected in Apiaries across the Campania Region
by Andrea Mancusi, Yolande Thérèse Rose Proroga, Paola Maiolino, Raffaele Marrone, Claudia D’Emilio, Santa Girardi, Marica Egidio, Arianna Boni, Teresa Vicenza, Elisabetta Suffredini and Karen Power
Viruses 2024, 16(5), 729; https://doi.org/10.3390/v16050729 (registering DOI) - 04 May 2024
Abstract
Coronaviruses (CoVs), a subfamily of Orthocoronavirinae, are viruses that sometimes present a zoonotic character. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the recent outbreak of COVID-19, which, since its outbreak in 2019, has caused about 774,593,066 confirmed cases and 7,028,881 deaths. [...] Read more.
Coronaviruses (CoVs), a subfamily of Orthocoronavirinae, are viruses that sometimes present a zoonotic character. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the recent outbreak of COVID-19, which, since its outbreak in 2019, has caused about 774,593,066 confirmed cases and 7,028,881 deaths. Aereosols are the main route of transmission among people; however, viral droplets can contaminate surfaces and fomites as well as particulate matter (PM) in suspensions of natural and human origin. Honey bees are well known bioindicators of the presence of pollutants and PMs in the environment as they can collect a great variety of substances during their foraging activities. The aim of this study was to evaluate the possible role of honey bees as bioindicators of the prevalence SARS-CoV-2. In this regard, 91 samples of honey bees and 6 of honey were collected from different apiaries of Campania region (Southern Italy) in four time periods from September 2020 to June 2022 and were analyzed with Droplet Digital RT-PCR for SARS-CoV-2 target genes Orf1b and N. The screening revealed the presence of SARS-CoV-2 in 12/91 in honey bee samples and in 2/6 honey samples. These results suggest that honey bees could also be used as indicators of outbreaks of airborne pathogens such as SARS-CoV-2. Full article
(This article belongs to the Special Issue Viruses in Mass-Reared Invertebrates 2nd Edition)
Show Figures

Figure 1

21 pages, 6695 KiB  
Article
MVT: Multi-Vision Transformer for Event-Based Small Target Detection
by Shilong Jing, Hengyi Lv, Yuchen Zhao, Hailong Liu and Ming Sun
Remote Sens. 2024, 16(9), 1641; https://doi.org/10.3390/rs16091641 (registering DOI) - 04 May 2024
Abstract
Object detection in remote sensing plays a crucial role in various ground identification tasks. However, due to the limited feature information contained within small targets, which are more susceptible to being buried by complex backgrounds, especially in extreme environments (e.g., low-light, motion-blur scenes). [...] Read more.
Object detection in remote sensing plays a crucial role in various ground identification tasks. However, due to the limited feature information contained within small targets, which are more susceptible to being buried by complex backgrounds, especially in extreme environments (e.g., low-light, motion-blur scenes). Meanwhile, event cameras offer a unique paradigm with high temporal resolution and wide dynamic range for object detection. These advantages enable event cameras without being limited by the intensity of light, to perform better in challenging conditions compared to traditional cameras. In this work, we introduce the Multi-Vision Transformer (MVT), which comprises three efficiently designed components: the downsampling module, the Channel Spatial Attention (CSA) module, and the Global Spatial Attention (GSA) module. This architecture simultaneously considers short-term and long-term dependencies in semantic information, resulting in improved performance for small object detection. Additionally, we propose Cross Deformable Attention (CDA), which progressively fuses high-level and low-level features instead of considering all scales at each layer, thereby reducing the computational complexity of multi-scale features. Nevertheless, due to the scarcity of event camera remote sensing datasets, we provide the Event Object Detection (EOD) dataset, which is the first dataset that includes various extreme scenarios specifically introduced for remote sensing using event cameras. Moreover, we conducted experiments on the EOD dataset and two typical unmanned aerial vehicle remote sensing datasets (VisDrone2019 and UAVDT Dataset). The comprehensive results demonstrate that the proposed MVT-Net achieves a promising and competitive performance. Full article
(This article belongs to the Special Issue Remote Sensing of Target Object Detection and Identification II)
Show Figures

Figure 1

29 pages, 1752 KiB  
Article
The Influence of Soil Deformability on the Seismic Response of 3D Mixed R/C–Steel Buildings
by Paraskevi K. Askouni
Infrastructures 2024, 9(5), 80; https://doi.org/10.3390/infrastructures9050080 (registering DOI) - 04 May 2024
Abstract
Following effective seismic codes, common buildings are considered to be made of the same material throughout the story distribution and based on an ideal rigid soil. However, in daily construction practice, there are often cases of buildings formed by a bottom part constructed [...] Read more.
Following effective seismic codes, common buildings are considered to be made of the same material throughout the story distribution and based on an ideal rigid soil. However, in daily construction practice, there are often cases of buildings formed by a bottom part constructed with reinforced concrete (r/c) and a higher steel part, despite this construction type not being recognized by code assumptions. In addition, soil deformability, commonly referred to as the Soil–Structure Interaction (SSI), is widely found to affect the earthquake response of typical residence structures, apart from special structures, though it is not included in the normative design procedure. This work studies the seismic response of in-height mixed 3D models, considering the effect of sustaining deformable ground compared to the common rigid soil hypothesis, which has not been clarified so far in the literature. Two types of soft soil, as well as the rigid soil assumption, acting as a reference point, are considered, while two limit interconnections between the steel part on the concrete part are included in the group analysis. The possible influence of the seismic orientation angle is explored in the analysis set. Selected numerical results of the dynamic nonlinear analyses under strong near-fault ground excitations were plotted through dimensionless parameters to facilitate an objective comparative discussion. The effect of SSI on the nonlinear performance of three-dimensional mixed models is identified, which serves as the primary contribution of this work, making it unique among the numerous research works available globally and pointing to findings that are useful for the enhancement of the seismic rules regarding the design and analysis of code-neglected mixed buildings. Full article
24 pages, 2963 KiB  
Review
Permeability: The Driving Force That Influences the Mechanical Behavior of Polymers Used for Hydrogen Storage and Delivery
by Emanuele Sgambitterra and Leonardo Pagnotta
Energies 2024, 17(9), 2216; https://doi.org/10.3390/en17092216 (registering DOI) - 04 May 2024
Abstract
This article explores the main mechanisms that can generate damage in polymers and polymer-based materials used for hydrogen storage and distribution infrastructures. All of these mechanisms are driven by the permeability process that is enhanced by the operating temperature and pressure conditions. Hydrogen [...] Read more.
This article explores the main mechanisms that can generate damage in polymers and polymer-based materials used for hydrogen storage and distribution infrastructures. All of these mechanisms are driven by the permeability process that is enhanced by the operating temperature and pressure conditions. Hydrogen storage and delivery systems typically work under high pressure and a relatively wide range of temperatures, especially during the filling and emptying processes. Therefore, it is of great interest to better understand how this phenomenon can influence the integrity of polymer-based hydrogen infrastructures in order to avoid catastrophic events and to better design/investigate new optimized solutions. The first part of this paper discusses the main storage and delivery solutions for gas and liquid hydrogen. Then, the physics of the permeability is investigated with a focus on the effect of pressure and temperature on the integrity of polymers working in a hydrogen environment. Finally, the main mechanisms that mostly induce damage in polymers operating in a hydrogen environment and that influence their mechanical properties are explored and discussed. Particular focus was placed on the rapid gas decompression and aging phenomena. In addition, some of the limits that still exist for a reliable design of polymer-based storage and delivery systems for hydrogen are pointed out. Full article
(This article belongs to the Special Issue Hydrogen-Based Energy Systems for Sustainable Transportation)
Show Figures

Figure 1

21 pages, 579 KiB  
Review
The Current Role of Radiation in the Management of Cholangiocarcinoma—A Narrative Review
by Saurav Verma, Natalie Grindrod, Daniel Breadner and Michael Lock
Cancers 2024, 16(9), 1776; https://doi.org/10.3390/cancers16091776 (registering DOI) - 04 May 2024
Abstract
Cholangiocarcinoma (CCA) is a rare cancer of bile ducts. It is associated with a poor prognosis. The incidence of CCA is rising worldwide. Anatomical subgroups have been used to classify patients for treatment and prognosis. There is a growing understanding of clinically important [...] Read more.
Cholangiocarcinoma (CCA) is a rare cancer of bile ducts. It is associated with a poor prognosis. The incidence of CCA is rising worldwide. Anatomical subgroups have been used to classify patients for treatment and prognosis. There is a growing understanding of clinically important distinctions based on underlying genetic differences that lead to different treatment options and outcomes. Its management is further complicated by a heterogeneous population and relative rarity, which limits the conduct of large trials to guide management. Surgery has been the primary method of therapy for localized disease; however, recurrence and death remain high with or without surgery. Therefore, there have been concerted efforts to investigate new treatment options, such as the use of neoadjuvant treatments to optimize surgical outcomes, targeted therapy, leveraging a new understanding of immunobiology and stereotactic radiation. In this narrative review, we address the evidence to improve suboptimal outcomes in unresectable CCA with radiation, as well as the role of radiation in neoadjuvant and postoperative treatment. We also briefly discuss the recent developments in systemic treatment with targeted therapies and immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue New Horizons and Surgical Decision Making in HPB Cancer)
Show Figures

Figure 1

23 pages, 25107 KiB  
Article
Variation in Debris-Flow-Prone Areas with Ecosystem Stability: A Case Study of the Qipan Catchment in the Wenchuan Earthquake Region
by Xiaoyu Zhan, Xudong Hu, Zexin Jing, Wennian Xu, Dong Xia and Gujie Ding
Sustainability 2024, 16(9), 3855; https://doi.org/10.3390/su16093855 (registering DOI) - 04 May 2024
Abstract
The spatial distribution of vegetation in a basin has a far-reaching influence on the potential for sediment separation and transport capacity. However, many landslides induced by strong earthquakes have greatly changed the existing pattern, which further increases the probability of debris flow in [...] Read more.
The spatial distribution of vegetation in a basin has a far-reaching influence on the potential for sediment separation and transport capacity. However, many landslides induced by strong earthquakes have greatly changed the existing pattern, which further increases the probability of debris flow in a basin during heavy rainfall and has a significant impact on the stability of the basin. Thus, this study selected the debris flow basin in the Qipan catchment of the Wenchuan earthquake area as the research object. Multisource and high-precision remote sensing images were used to analyze the land use changes in the basin, and the index of connectivity (IC) was introduced to analyze the evolution of sediment transport capacity. An ecosystem stability assessment method suitable for post-earthquake debris flow basins was proposed. Through quantitative assessment of the ecosystem stability of the basin after the Wenchuan earthquake in 2008 and the two debris flow events after the earthquake, the dynamic relationship between the debris-flow-prone area and the ecosystem stability of the basin was revealed. The results showed that the stability of the ecosystem in the Qipan catchment increased annually, indicating a stable and substable state. The spatial distribution characteristics were lower in the north and south and greater in the middle. By comparing the evaluation results with the actual terrain change trend, the accuracy and feasibility of the evaluation method are verified. The results of this study provide a scientific basis for the formulation of regional disaster prevention strategies and help to accelerate the improvement of regional stability in debris-flow-prone areas. Full article
Show Figures

Figure 1

16 pages, 5324 KiB  
Article
Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide
by Hugo Alexander Rondón-Quintana, Carlos Alfonso Zafra-Mejía and Carlos Felipe Urazán-Bonells
Infrastructures 2024, 9(5), 81; https://doi.org/10.3390/infrastructures9050081 (registering DOI) - 04 May 2024
Abstract
The phenomenon of the oxidation and aging of asphalt binders affects the strength and durability of asphalt mixtures in pavements. Several studies are trying to improve the resistance to this phenomenon by modifying the properties of the binders with nano-particles. One material that [...] Read more.
The phenomenon of the oxidation and aging of asphalt binders affects the strength and durability of asphalt mixtures in pavements. Several studies are trying to improve the resistance to this phenomenon by modifying the properties of the binders with nano-particles. One material that shows promise in this field is zinc oxide (ZnO), especially in improving ultraviolet (UV) aging resistance. Few studies have evaluated the effect of these nano-particles on the thermo-oxidative resistance of asphalt binders, and, on hot-mix asphalt (HMA), studies are even more scarce and limited. Therefore, in the present study, the resistance to thermo-oxidative aging of an HMA manufactured with an asphalt binder modified with ZnO was evaluated. An asphalt cement (AC 60–70) was initially modified with 0, 1, 3, 5, 7.5, and 10% ZnO (percentage by weight of asphalt binder; ZnO/AC in wt%), and then exposed to aging in Rolling Thin-Film Oven tests (RTFOT) and a Pressure Aging Vessel (PAV). Penetration, viscosity, and softening point tests were performed on these binders, and aging indices were calculated and evaluated. Samples of HMAs were then manufactured using these binders and designed by the Marshall method, determining the optimum asphalt binder content (OAC) and the optimum ZnO/AC ratio. Control (unmodified) and modified HMA were subjected to short-term oven aging (STOA) and long-term oven aging (LTOA) procedures. Marshall, Indirect Tensile Strength (ITS), and resilient modulus (RM) tests were performed on these mixtures. LTOA/STOA results of the parameters measured in these tests were used as aging indices. In this study, ZnO was shown to increase the thermo-oxidative aging resistance of the asphalt binder and HMA. It also contributed to an increase in the resistance under monotonic loading in the Marshall and ITS tests, and under repeated loading in RM test. Likewise, it contributed to a slightly increasing resistance to moisture damage. The best performance is achieved using ZnO/AC = 5 wt%. Full article
Show Figures

Figure 1

20 pages, 8575 KiB  
Article
Unlocking Economic Resilience: A New Methodological Approach and Empirical Examination under Digital Transformation
by Chenchen Shi and Jinjing Lu
Land 2024, 13(5), 621; https://doi.org/10.3390/land13050621 (registering DOI) - 04 May 2024
Abstract
Economic resilience is crucial for urban sustainability as it ensures stability and growth in the face of external shocks, promotes social cohesion and inclusivity, fosters environmental sustainability, and enhances cities’ adaptability to future challenges. This study expands the conventional perspective on economic resilience [...] Read more.
Economic resilience is crucial for urban sustainability as it ensures stability and growth in the face of external shocks, promotes social cohesion and inclusivity, fosters environmental sustainability, and enhances cities’ adaptability to future challenges. This study expands the conventional perspective on economic resilience beyond the context of shocks, focusing on the inherent resilience of regional economic systems. A novel method for quantifying economic resilience is introduced, emphasizing system sensitivity and adaptability. Using Chinese prefecture-level city data and an econometric model, we empirically examine how Fintech, a major digital transition in current urban systems, affects economic resilience. The findings reveal that Fintech has a substantial positive effect on economic resilience, primarily through the upgrading of industrial structures and technological innovation. Furthermore, there is significant regional heterogeneity in the impact of Fintech on economic resilience, with more pronounced contributions in the east, central, and western regions of China, as opposed to the northeast. Additionally, the impact of Fintech on economic resilience is more substantial in large-scale cities. The promotion of economic resilience through digital transformation serves as a potent risk prevention measure. Understanding the role of economic resilience in urban systems holds valuable implications for countries worldwide. Full article
Show Figures

Figure 1

16 pages, 5975 KiB  
Article
Mechanical and Physical Changes in Bio-Polybutylene-Succinate Induced by UVC Ray Photodegradation
by Cristina Scolaro, Salim Brahimi, Aurora Falcone, Valentina Beghetto and Annamaria Visco
Polymers 2024, 16(9), 1288; https://doi.org/10.3390/polym16091288 (registering DOI) - 04 May 2024
Abstract
Bio-polybutylene succinate (PBS) is a biodegradable polymer obtained from renewable feedstock having physical–mechanical properties like traditional low-density polyethylene (LDPE). PBS is employed by many manufacturing sectors, from biomedical to agri-food and cosmetics. Although some studies have already evaluated the resistance of PBS to [...] Read more.
Bio-polybutylene succinate (PBS) is a biodegradable polymer obtained from renewable feedstock having physical–mechanical properties like traditional low-density polyethylene (LDPE). PBS is employed by many manufacturing sectors, from biomedical to agri-food and cosmetics. Although some studies have already evaluated the resistance of PBS to photodegradation caused by natural outdoor solar exposure (UVA-UVB), a systematic study on the resistance to degradation caused by exposure to UVC rays, which is the subject of this study, has not yet been carried out. PBS was exposed to UVC either neat or filled with 2% carbon black (CB). Mechanical and physical characterization (tensile, hardness, calorimetry, contact angle, morphology, and surface roughness analyses) indicates that the bulk and surface properties of the polymer matrix changes after exposure to UVC radiations, due to a severe degradation. However, the presence of carbon black compensates for the degradation phenomenon. Because UVC rays are used for the sterilization process, necessary in applications such as biomedical, cosmetic, pharmaceutical, food, and other products, a comparison of the protocol used in this paper with the literature’s data has been reported and discussed. Full article
(This article belongs to the Special Issue Polymers and Biopolymers for Sustainable Life and Applications)
Show Figures

Figure 1

14 pages, 979 KiB  
Review
Prevention and Risk Assessment of Cardiac Device Infections in Clinical Practice
by Andrea Matteucci, Carlo Pignalberi, Claudio Pandozi, Barbara Magris, Antonella Meo, Maurizio Russo, Marco Galeazzi, Giammarco Schiaffini, Stefano Aquilani, Stefania Angela Di Fusco and Furio Colivicchi
J. Clin. Med. 2024, 13(9), 2707; https://doi.org/10.3390/jcm13092707 (registering DOI) - 04 May 2024
Abstract
The implantation of cardiac electronic devices (CIEDs), including pacemakers and defibrillators, has become increasingly prevalent in recent years and has been accompanied by a significant rise in cardiac device infections (CDIs), which pose a substantial clinical and economic burden. CDIs are associated with [...] Read more.
The implantation of cardiac electronic devices (CIEDs), including pacemakers and defibrillators, has become increasingly prevalent in recent years and has been accompanied by a significant rise in cardiac device infections (CDIs), which pose a substantial clinical and economic burden. CDIs are associated with hospitalizations and prolonged antibiotic therapy and often necessitate device removal, leading to increased morbidity, mortality, and healthcare costs worldwide. Approximately 1–2% of CIED implants are associated with infections, making this a critical issue to address. In this contemporary review, we discuss the burden of CDIs with their risk factors, healthcare costs, prevention strategies, and clinical management. Full article
(This article belongs to the Special Issue Clinical Advances in Preventive Cardiology)
Show Figures

Figure 1

26 pages, 3117 KiB  
Article
Environmental and Biogeographic Drivers behind Alpine Plant Thermal Tolerance and Genetic Variation
by Lisa M. Danzey, Verónica F. Briceño, Alicia M. Cook, Adrienne B. Nicotra, Gwendolyn Peyre, Maurizio Rossetto, Jia-Yee S. Yap and Andrea Leigh
Plants 2024, 13(9), 1271; https://doi.org/10.3390/plants13091271 (registering DOI) - 04 May 2024
Abstract
In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies [...] Read more.
In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 6701 KiB  
Article
Direct Torque Control of Dual Three-Phase Permanent Magnet Synchronous Motors Based on Master–Slave Virtual Vectors
by Qiang Geng, Ziteng Qin, Xuefeng Jin, Guozheng Zhang and Zhanqing Zhou
World Electr. Veh. J. 2024, 15(5), 199; https://doi.org/10.3390/wevj15050199 (registering DOI) - 04 May 2024
Abstract
In order to further reduce the torque, flux-linkage fluctuation, and current harmonic content of dual three-phase permanent magnet synchronous motors, this paper proposes a direct torque control strategy combined with a master–slave virtual vector duty cycle assignment. Two types of virtual voltage vectors [...] Read more.
In order to further reduce the torque, flux-linkage fluctuation, and current harmonic content of dual three-phase permanent magnet synchronous motors, this paper proposes a direct torque control strategy combined with a master–slave virtual vector duty cycle assignment. Two types of virtual voltage vectors with different amplitudes are used to form a harmonic suppression switching table. The virtual vectors are classified into master and slave virtual vectors according to the degree of influence on the torque and the flux-linkage. Then, the duty cycle of the master and slave virtual vectors is recalculated and allocated through the evaluation function to achieve accurate control of the torque and the flux-linkage. Finally, the switching sequences of the master and slave virtual vectors that act together in one control cycle are rearranged into a symmetrical waveform. It is experimentally verified that the phase current THD of the proposed strategy is reduced by 69.4%, the 5th and 7th current harmonics content is significantly reduced, and the torque fluctuation and flux-linkage fluctuation can also be effectively suppressed, which provides better dynamic performance and steady-state performance. Full article
Show Figures

Figure 1

17 pages, 901 KiB  
Article
Research on Fault Identification of Hybrid Multi-Feed High-Voltage Direct Current System Based on Line Commutated Converter and Voltage Source Converter
by Ting Wang, Kun Chen, Long’en Zhang, Xingyang Hu, Hengxuan Li and Pangqi Ye
Energies 2024, 17(9), 2215; https://doi.org/10.3390/en17092215 (registering DOI) - 04 May 2024
Abstract
With the rapid development of voltage source converter (VSC) and line commutated converter (LCC) technology and the relative concentration of power and load, the inverter station of the flexible DC system is fed into the same AC bus with the conventional DC rectifier [...] Read more.
With the rapid development of voltage source converter (VSC) and line commutated converter (LCC) technology and the relative concentration of power and load, the inverter station of the flexible DC system is fed into the same AC bus with the conventional DC rectifier station, and the high-voltage direct current (HVDC) parallel hybrid feed system is formed in structure. As the electrical distance between the converter stations is very close, when a fault occurs in the near area, the current on the AC wiring on the VSC side will fluctuate greatly, resulting in the misoperation of the AC wiring protection. For this reason, this paper proposes a fault identification method based on VSC/LCC hybrid multi-fed HVDC system, which discriminates the fault and outputs the protection signal according to the protection criterion, and logically judges the combination of the output protection signal to identify the fault type. The simulation results show that the method can identify all kinds of faults of hybrid multi-feed DC system and solve the problem of protection misoperation of the hybrid multi-feed DC system. Full article
(This article belongs to the Section F6: High Voltage)
15 pages, 9901 KiB  
Article
Gelatin Enhances the Wet Mechanical Properties of Poly(D,L-Lactic Acid) Membranes
by Deuk Yong Lee
Int. J. Mol. Sci. 2024, 25(9), 5022; https://doi.org/10.3390/ijms25095022 (registering DOI) - 04 May 2024
Abstract
Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well [...] Read more.
Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well as their biocompatibility. Regardless of the environmental conditions, increasing the gelatin content resulted in elevated stress and reduced strain at membrane failure. There was a remarkable difference in strain-to-failure between dry and wet PDLLA/gelatin membranes, with wet strains consistently higher than those of the dry membranes because of the hydrophilic nature of gelatin. A similar wet strain (εw = 2.7–3.0) was observed in PDLLA/gelatin membranes with a gelatin content between 10 and 40%. Both dry and wet stresses increased with increasing gelatin content. The dry stress on PDLLA/gelatin membranes (σd = 6.7–9.7 MPa) consistently exceeded the wet stress (σw = 4.5–8.6 MPa). The water uptake capacity (WUC) improved, increasing from 57% to 624% with the addition of 40% gelatin to PDLLA. PDLLA/gelatin hybrid membranes containing 10 to 20 wt% gelatin exhibited favorable wet mechanical properties (σw = 5.4–6.3 MPa; εw = 2.9–3.0); WUC (337–571%), degradability (11.4–20.2%), and excellent biocompatibility. Full article
16 pages, 2017 KiB  
Article
Electrochemical Nanosensor for the Simultaneous Determination of Anticancer Drugs Epirubicin and Topotecan Using UiO-66-NH2/GO Nanocomposite Modified Electrode
by Somayeh Tajik, Parisa Shams, Hadi Beitollahi and Fariba Garkani Nejad
Biosensors 2024, 14(5), 229; https://doi.org/10.3390/bios14050229 (registering DOI) - 04 May 2024
Abstract
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection [...] Read more.
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results. Full article
(This article belongs to the Special Issue Biosensors for the Analysis and Detection of Drug, Food or Disease)
Show Figures

Figure 1

17 pages, 5095 KiB  
Article
Development and Efficacy of the Antivenom Specific to Severe Envenomations in Morocco and North Africa: Advancements in Scorpion Envenomation Management
by Bouchra Darkaoui, Ines Hilal, Soukaina Khourcha, Ayoub Lafnoune, Salma Chakir, Ayoub Aarab, Abdellah Moustaghfir, Ouafaa Aniq Filali and Naoual Oukkache
Toxins 2024, 16(5), 214; https://doi.org/10.3390/toxins16050214 (registering DOI) - 04 May 2024
Abstract
Scorpion envenomation poses a global public health issue, with an estimated 1,500,000 cases worldwide annually resulting in 2600 deaths. North Africa, particularly Morocco, experiences severe envenomations, mainly attributed to Androctonus mauretanicus and Buthus occitanus in Morocco, and Buthus occitanus and Androctonus australis hector [...] Read more.
Scorpion envenomation poses a global public health issue, with an estimated 1,500,000 cases worldwide annually resulting in 2600 deaths. North Africa, particularly Morocco, experiences severe envenomations, mainly attributed to Androctonus mauretanicus and Buthus occitanus in Morocco, and Buthus occitanus and Androctonus australis hector in Algeria and Tunisia, with case numbers often underestimated. Current treatment relies mainly on symptomatic approaches, except in Morocco, where management is limited to symptomatic treatment due to controversies regarding specific treatment. In Morocco, between 30,000 and 50,000 scorpion envenomation cases are reported annually, leading to hundreds of deaths, mainly among children. Controversies among clinicians persist regarding the appropriate course of action, often limiting treatments to symptomatic measures. The absence of a specific antivenom for the venoms of the most lethal scorpions further exacerbates the situation. This study aims to address this gap by developing a monovalent antivenom against the endemic and most dangerous scorpion, Androctonus mauretanicus. The antivenom was produced by immunizing albino rabbits with a mixture of Androctonus mauretanicus venom collected from high-risk areas in Morocco. Immunizations were performed by subcutaneous injections at multiple sites near the lymphatic system, following an immunization schedule. Production control of neutralizing antibody titers was conducted through immunodiffusion. Once a sufficient antibody titer was achieved, blood collection was performed, and the recovered plasma underwent affinity chromatography. The efficacy of purified IgG was evaluated by determining the ED50 in mice, complemented by histological and immunohistochemical studies on its ability to neutralize venom-induced tissue alterations and the neutralization of toxins bound to receptors in the studied organs. The monovalent antivenom demonstrated specificity against Androctonus mauretanicus venom and effective cross-protection against the venom of the scorpions Buthus occitanus and Androctonus australis hector, highly implicated in lethal envenomations in the Maghreb. This study shows that the developed monovalent antivenom exhibits notable efficacy against local scorpions and a surprising ability to neutralize the most lethal envenomations in North Africa. These results pave the way for a new, more specific, and promising therapeutic approach to countering severe scorpion envenomations, especially in Morocco, where specific treatment is lacking. Full article
Show Figures

Figure 1

24 pages, 2092 KiB  
Article
More than 30 Years of PVC Recycling in Europe—A Critical Inventory
by Uwe Lahl and Barbara Zeschmar-Lahl
Sustainability 2024, 16(9), 3854; https://doi.org/10.3390/su16093854 (registering DOI) - 04 May 2024
Abstract
PVC has a special status, as chlorine is a component of the polymer molecule. The properties of chlorine are the reason why the polymer molecule needs additivation. PVC is the mass plastic to which the most diverse and quantitatively largest number of additives [...] Read more.
PVC has a special status, as chlorine is a component of the polymer molecule. The properties of chlorine are the reason why the polymer molecule needs additivation. PVC is the mass plastic to which the most diverse and quantitatively largest number of additives are added. This makes PVC difficult to recycle. More than three decades ago, the PVC industry announced its commitment to improve the sustainability of the material through material recycling. We analysed the latest figures from the European PVC industry, ensuring that the statistics included the quantities that enter the market as recyclate. We also analysed the significance of replacing virgin PVC with recyclates. We conclude from this that, after a good three decades, the recycling result is rather meagre. The lion’s share of PVC waste in Europe is still going to waste-to-energy plants, where it tends to be a nuisance. The many announcements to close the chlorine cycle via waste incineration have not got very far either. And the announcements to expand chemical recycling in parallel have not been successful. On the basis of this stocktaking, we have analysed, in a second separately published part, which conclusions can be drawn for regulatory measures, building on a current ECHA investigation report. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
11 pages, 901 KiB  
Review
Iris Reconstruction: A Surgeon’s Guide
by Lorenzo Ferro Desideri, Kirupakaran Arun, Grace Doherty, Enrico Bernardi and Rodrigo Anguita
J. Clin. Med. 2024, 13(9), 2706; https://doi.org/10.3390/jcm13092706 (registering DOI) - 04 May 2024
Abstract
Objectives: The aim of this review paper is to summarise surgical options available for repairing iris defects at the iris–lens plane, focusing on suturing techniques, iridodialysis repair, and prosthetic iris devices. Methods: A thorough literature search was conducted using multiple databases, [...] Read more.
Objectives: The aim of this review paper is to summarise surgical options available for repairing iris defects at the iris–lens plane, focusing on suturing techniques, iridodialysis repair, and prosthetic iris devices. Methods: A thorough literature search was conducted using multiple databases, including Medline, PubMed, Web of Science Core Collection, and the Cochrane Library, from inception to February 2024. Relevant studies were screened based on predefined criteria, and primary references cited in selected articles were also reviewed. Results: Various surgical techniques were identified for iris defect repair. Suturing methods such as interrupted full-thickness sutures and the McCannel technique offer solutions for smaller defects, while iridodialysis repair techniques address detachment of the iris from the ciliary body. Prosthetic iris devices, including iris–lens diaphragm devices, endocapsular capsular tension ring-based devices, and customizable artificial iris implants, provide options for larger defects, each with its own advantages and limitations. Conclusions: Successful iris reconstruction requires a personalised approach considering factors like defect size, ocular comorbidities, and patient preference. Surgeons must possess a thorough understanding of available techniques and prosthetic devices to achieve optimal outcomes in terms of both visual function and, nonetheless, cosmetic appearance. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

20 pages, 853 KiB  
Article
Space–Air–Ground–Sea Integrated Network with Federated Learning
by Hao Zhao, Fei Ji, Yan Wang, Kexing Yao and Fangjiong Chen
Remote Sens. 2024, 16(9), 1640; https://doi.org/10.3390/rs16091640 (registering DOI) - 04 May 2024
Abstract
A space–air–ground–sea integrated network (SAGSIN) is a promising heterogeneous network framework for the next generation mobile communications. Moreover, federated learning (FL), as a widely used distributed intelligence approach, can improve advanced network performance. In view of the combination and cooperation of SAGSINs and [...] Read more.
A space–air–ground–sea integrated network (SAGSIN) is a promising heterogeneous network framework for the next generation mobile communications. Moreover, federated learning (FL), as a widely used distributed intelligence approach, can improve advanced network performance. In view of the combination and cooperation of SAGSINs and FL, an FL-based SAGSIN framework faces a number of unprecedented challenges, not only from the communication aspect but also on the security and privacy side. Motivated by these observations, in this article, we first give a detailed state-of-the-art review of recent progress and ongoing research works on FL-based SAGSINs. Then, the challenges of FL-based SAGSINs are discussed. After that, for different service demands, basic applications are introduced with their benefits and functions. In addition, two case studies are proposed, in order to improve SAGSINs’ communication efficiency under a significant communication latency difference and to protect user-level privacy for SAGSIN participants, respectively. Simulation results show the effectiveness of the proposed algorithms. Moreover, future trends of FL-based SAGSINs are discussed. Full article
18 pages, 3491 KiB  
Article
Ring-Opening Polymerization of Cyclohexene Oxide and Cycloaddition with CO2 Catalyzed by Amine Triphenolate Iron(III) Complexes
by Peng Li, Sixuan Li, Xin Dai, Shifeng Gao, Zhaozheng Song and Qingzhe Jiang
Molecules 2024, 29(9), 2139; https://doi.org/10.3390/molecules29092139 (registering DOI) - 04 May 2024
Abstract
A series of novel amine triphenolate iron complexes were synthesized and characterized using UV, IR, elemental analysis, and high-resolution mass spectrometry. These complexes were applied to the ring-opening polymerization (ROP) of cyclohexene oxide (CHO), demonstrating excellent activity (TOF > 11050 h−1) [...] Read more.
A series of novel amine triphenolate iron complexes were synthesized and characterized using UV, IR, elemental analysis, and high-resolution mass spectrometry. These complexes were applied to the ring-opening polymerization (ROP) of cyclohexene oxide (CHO), demonstrating excellent activity (TOF > 11050 h−1) in the absence of a co-catalyst. In addition, complex C1 maintained the dimer in the presence of the reaction substrate CHO, catalyzing the ring-opening polymerization of CHO to PCHO through bimetallic synergy. Furthermore, a two-component system consisting of iron complexes and TBAB displayed the ability to catalyze the reaction of CHO with CO2, resulting in the formation of cis-cyclic carbonate with high selectivity. Complex C4 exhibited the highest catalytic activity, achieving 80% conversion of CHO at a CHO/C4/TBAB molar ratio of 2000/1/8 and a CO2 pressure of 3 MPa for 16 h at 100 °C, while maintaining >99% selectivity of cis-cyclic carbonates, which demonstrated good conversion and selectivity. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous, 2nd Edition)
Show Figures

Figure 1

27 pages, 11489 KiB  
Article
Optimized and Sustainable PV Water Pumping System with Three-Port Converter, a Case Study: The Al-Kharijah Oasis
by Mohamed Selmy, Mohsen Z. El sherif, Miral Salah Noah and Islam M. Abdelqawee
Electricity 2024, 5(2), 227-253; https://doi.org/10.3390/electricity5020012 (registering DOI) - 04 May 2024
Abstract
In this paper an efficient, compact, and cheap power source design for an off-grid PV water pumping system is investigated. The proposed system consists of a PV array, battery, three-port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is extracted [...] Read more.
In this paper an efficient, compact, and cheap power source design for an off-grid PV water pumping system is investigated. The proposed system consists of a PV array, battery, three-port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is extracted from PV sources during the daytime and used to charge batteries through the three-port converter, then used later to supply load during the nighttime. An intelligent MPPT method is used to obtain PV maximum power; a jellyfish optimization technique with different control algorithms is used to optimize and tune controllers’ parameters among the system. Different modes for the TPC are discussed depending on PV power availability. The proposed system is simulated to assess system performance under different conditions; also the system is efficient with reduced number of components than conventional converters. A complete unified power management over PV input port, battery port, and load port has occurred for all operation modes. At all operation modes, the system has been feeding load without any unmet loads. A real case study in Al-Kharijah oasis is studied and simulation results are listed; for the Dom case DC bus ripple factor voltage percentage equals 0.8%, in the Dim case equals 3%, and in the Siso mode equals 9%. Full article
(This article belongs to the Topic Integration of Renewable Energy)
Show Figures

Figure 1

23 pages, 3497 KiB  
Article
Plant Biostimulants Enhance Bud Break in Vitis vinifera Crimson Seedless Using Combination Treatments
by Nicole C. Venter, Eunice Avenant, Theunis N. Kotze, Paul N. Hills and John P. Moore
Horticulturae 2024, 10(5), 471; https://doi.org/10.3390/horticulturae10050471 (registering DOI) - 04 May 2024
Abstract
The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest [...] Read more.
The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest table grape export group; therefore, replacing HC in V. vinifera CS is crucial. This study aimed to confirm the molecular triggers induced by HC and assess the bud-break-enhancing abilities of commercial plant biostimulants. Forced bud-break assay experiments using V. vinifera CS single-node cuttings and a small-scale field trial were performed. Results demonstrated that increased chill unit accumulation (CUA) reduced HC efficacy. Bud-break started between 10 and 20 days after treatment, irrespective of final CUA. The small-scale field trial found that HC 3% and biostimulants were similar to the negative control. The treatment of dormant grapevine compound buds with nitric oxide (NO), hydrogen peroxide (H2O2), and hypoxia trigger dormancy release to a certain extent, supporting the molecular models proposed for HC action. NO, H2O2, and hypoxia, in combination with PBs, may potentially replace HC; however, this needs to be confirmed in future experiments. Full article
(This article belongs to the Special Issue The Role of Biostimulants in Horticultural Crops)
Show Figures

Figure 1

15 pages, 1347 KiB  
Article
Pain of Threatened Self: Explicit and Implicit Self-Esteem, Cortisol Responses to a Social Threat and Pain Perception
by Ewa Wojtyna, Magdalena Hyla and Aleksandra Hachuła
J. Clin. Med. 2024, 13(9), 2705; https://doi.org/10.3390/jcm13092705 (registering DOI) - 04 May 2024
Abstract
Background: Rejection, injustice, and exclusion from meaningful interpersonal relationships are often extremely painful and stress-generating experiences. This study aimed to define the role of explicit and implicit self-esteem in pain perception as a component of the physiological–psychological system that regulates the body’s [...] Read more.
Background: Rejection, injustice, and exclusion from meaningful interpersonal relationships are often extremely painful and stress-generating experiences. This study aimed to define the role of explicit and implicit self-esteem in pain perception as a component of the physiological–psychological system that regulates the body’s response to stress associated with the threat of social rejection. Methods: In total, 360 individuals participated in this study. The measurement of cortisol in saliva, the assessment of pain thresholds using thermal stimuli, the IAT to assess implicit self-esteem, and a questionnaire on global self-esteem and social pain were used. The study included three measurements: baseline and 15 and 45 min after the application of a laboratory socially threatening stimulus (the Trier Social Stress Test). Results: People experiencing chronic social pain (CSP) are more likely to have fragile self-esteem, higher pain thresholds, and tend to experience reduced pain tolerance in situations of acute social threat than people without CSP experience. In people with CSP and fragile self-esteem, after the introduction of a social threat, an increase in pain tolerance was observed along with a longer-lasting increase in cortisol levels. Conclusions: Fragile self-esteem, along with feelings of chronic exclusion, injustice, and rejection, may prolong stress reactions and produce a hypoalgesic effect. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop