The 2023 MDPI Annual Report has
been released!
 
10 pages, 246 KiB  
Article
Heterozygous SERPINA1 Defects and Their Impact on Clinical Manifestations of Patients with Predominantly Antibody Deficiencies
by Styliani Sarrou, Ioanna Voulgaridi, Athanasia Fousika, Katerina Dadouli, Olympia Margaritopoulou, Ioannis Kakkas, Christos Hadjichristodoulou, Fani Kalala and Matthaios Speletas
Int. J. Mol. Sci. 2024, 25(10), 5382; https://doi.org/10.3390/ijms25105382 (registering DOI) - 15 May 2024
Abstract
Patients with predominantly antibody deficiencies (PADs) display hypogammaglobulinemia with a high prevalence of infections, along with autoimmune manifestations, benign and malignant lymphoproliferation and granulomatous disease. It is noteworthy that PAD patients, even those with defects in the same causative genes, display a variable [...] Read more.
Patients with predominantly antibody deficiencies (PADs) display hypogammaglobulinemia with a high prevalence of infections, along with autoimmune manifestations, benign and malignant lymphoproliferation and granulomatous disease. It is noteworthy that PAD patients, even those with defects in the same causative genes, display a variable clinical phenotype, suggesting that additional genetic polymorphisms, located in either immune-related or non-immune-related genes, may affect their clinical and laboratory phenotype. In this context, we analyzed 80 PAD patients, including 70 with common variable immunodeficiency (CVID) for SERPINA1 defects, in order to investigate the possible contribution to PAD clinical phenotype. Ten CVID patients carried heterozygous pathogenic SERPINA1 defects with normal alpha-1 antitrypsin levels. Interestingly, the presence of the Z allele (rs28929474), which was found in three patients, was significantly associated with liver disease; hepatic complications were also observed in patients carrying the p.Leu23Gln (rs1379209512) and the p.Phe76del (rs775982338) alleles. Conversely, no correlation of SERPINA1 defective variants with respiratory complications was observed, although patients with pathogenic variants exhibit a reduced probability of developing autoimmune diseases. Therefore, we recommend SERPINA1 genetic analysis in PAD in order to identify patients with a higher risk for liver disease. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases)
14 pages, 1276 KiB  
Article
Screening of Metal Reduction Potential for Thermochemical Hydrogen Storage
by Jure Voglar and Blaž Likozar
Processes 2024, 12(5), 1004; https://doi.org/10.3390/pr12051004 (registering DOI) - 15 May 2024
Abstract
The screening of all non-radioactive metals without lanthanides for thermochemical hydrogen storage was performed based on physical chemistry calculations. The thermodynamic data were collected from the NIST (National Institute of Standards and Technology) public data repository, which was followed by calculations regarding the [...] Read more.
The screening of all non-radioactive metals without lanthanides for thermochemical hydrogen storage was performed based on physical chemistry calculations. The thermodynamic data were collected from the NIST (National Institute of Standards and Technology) public data repository, which was followed by calculations regarding the change in enthalpy, entropy, Gibbs free energy and equilibrium reaction temperature. The results were critically evaluated based on thermodynamic parameters, viable metals were identified, and their hydrogen storage densities and energy–enthalpy ratios were evaluated. The elements viable for controlled thermochemical hydrogen storage via the reversible reduction and oxidation of metal oxides and metals are manganese (Mn), iron (Fe), molybdenum (Mo) and tungsten (W). Manganese has the largest theoretical potential for hydrogen storage with reversible reduction and oxidation of metal oxides and metals. The second candidate is iron, while the other two (Mo and W) have much lower potential. More research efforts should be dedicated to experimental testing of the identified metals (Mn, Fe, Mo and W) and their different oxides for thermochemical hydrogen storage capabilities both on laboratory and pilot scales. Ferromanganese alloy(s) might also prove itself as an efficient and affordable thermochemical hydrogen storage material. Our theoretical investigation expanded the knowledge on thermochemical hydrogen storage and is accompanied with a brief literature review revealing the lack of experimental studies, especially on oxidation of metals with water vapor occurring during the hydrogen release phase of the cycle. Consequently, accurate modelling of transport, kinetics and other phenomena during hydrogen storage and release is scarce. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

27 pages, 3555 KiB  
Article
Ecological Groups of Coleoptera (Insecta) as Indicators of Habitat Transformation on Drained and Rewetted Peatlands: A Baseline Study from a Carbon Supersite, Kaliningrad, Russia
by Vitalii Alekseev, Maxim Napreenko and Tatiana Napreenko-Dorokhova
Insects 2024, 15(5), 356; https://doi.org/10.3390/insects15050356 (registering DOI) - 15 May 2024
Abstract
A total of 281 coleopteran species from 41 families were recorded from different sites of an abandoned cut-over peatland designated as the Carbon Measurement Supersite in Kaliningrad Oblast. This beetle assemblage is considered a baseline (pre-impact) faunal assemblage for further investigations during the [...] Read more.
A total of 281 coleopteran species from 41 families were recorded from different sites of an abandoned cut-over peatland designated as the Carbon Measurement Supersite in Kaliningrad Oblast. This beetle assemblage is considered a baseline (pre-impact) faunal assemblage for further investigations during the ‘before–after’ (BA) or ‘before–after control-impact’ (BACI) study on a peatland that is planned to be rewetted. The spontaneously revegetated peatland has a less specialised beetle assemblage than at an intact raised bog. Tyrphobiontic species are completely absent from the peatland, while some tyrphophiles (5.3% of the total beetle fauna) are still found as remnants of the former raised bog communities. The predominant coenotic coleopteran group is tyrphoneutral generalists from various non-bog habitats (72.9%). The species composition is associated with the vegetation structure of the disturbed peatland (fragmentary Sphagnum cover, lack of open habitats, and widespread birch coppice or tree stand), which does not correspond to that of a typical European raised bog. The sampled coleopteran assemblage is divided into several relative ecological groups, whose composition and peculiarities are discussed separately. Possible responses to the rewetting measurements in different coleopteran groups are predicted and briefly discussed. A complex assemblage of stenotopic peatland-specialised tyrphophiles (15 spp.) and the most abundant tyrphoneutral generalists (31 spp.) were assigned as indicators for the environmental monitoring of peatland development. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

22 pages, 9892 KiB  
Article
A Study on the Mechanism of Fracture Initiation and Propagation under Multi-Perforation Conditions in Hydraulic Fracturing
by Dongwei Ding, Wei Xiong, Wei Guo, Haiqing Yu and Keyuan Wang
Processes 2024, 12(5), 1002; https://doi.org/10.3390/pr12051002 (registering DOI) - 15 May 2024
Abstract
To reveal the mechanism of hydraulic fracture initiation and propagation under the conditions of multiple perforations during horizontal well fracturing, we creatively conducted dual-hole fracturing experiments on small rock samples and established a two-dimensional model of a single cluster with multiple perforations in [...] Read more.
To reveal the mechanism of hydraulic fracture initiation and propagation under the conditions of multiple perforations during horizontal well fracturing, we creatively conducted dual-hole fracturing experiments on small rock samples and established a two-dimensional model of a single cluster with multiple perforations in a horizontal well based on the extended finite element method using the fluid–solid coupling equation, which was combined with the basic theory of damage mechanics. The biggest difference from previous research is that this model does not consider the hypothesis of stress shadows and only focuses on studying the initiation and propagation of multiple perforations in one cluster. We studied the effects of perforation parameters, stress state, and injection flow rate on the initiation and propagation of hydraulic fractures using this model. The experimental and simulation results indicate that under multi-perforation conditions, the number of fractures depends on the number of perforations. The simulation results show that when the spacing between perforations increases or the number of perforations reduces, the initiation time of perforation is advanced and the interference between fractures weakens, which is conducive to the initiation and propagation of hydraulic fractures. As the stress difference increases, the initiation time of perforation becomes earlier and the deflection angle of the outermost fractures becomes smaller, which is conducive to the parallel expansion of the fractures. Moreover, although this has little impact on the morphology of fractures with the rise in flow rate in simulation, it is beneficial for improving the initiation and propagation speed of fractures. The length of fractures also increases significantly at the same time point. In addition, both the experiments and simulations revealed that an increase in the flow rate could accelerate the initiation time of fractures. The proposed model can guide fracturing construction to optimize the design of perforation spacing during horizontal well fracturing, which can contribute to reducing development costs and improving the final production. Full article
Show Figures

Figure 1

17 pages, 7594 KiB  
Article
New Updates on the Distribution of Scapania umbrosa (Schrad.) Dumort. (Scapaniaceae, Marchantiophyta) in Pacific Asia
by Ksenia G. Klimova, Yulia D. Maltseva, Vadim A. Bakalin and Seung Se Choi
Diversity 2024, 16(5), 297; https://doi.org/10.3390/d16050297 (registering DOI) - 15 May 2024
Abstract
The distribution of liverworts in the North Pacific is still poorly understood. Scapania umbrosa, which is rare in Asia, was first recorded during the study of the liverwort flora of the Commander Islands (the westernmost Aleutians). The results of the molecular genetic [...] Read more.
The distribution of liverworts in the North Pacific is still poorly understood. Scapania umbrosa, which is rare in Asia, was first recorded during the study of the liverwort flora of the Commander Islands (the westernmost Aleutians). The results of the molecular genetic analysis not only confirmed that the specimen belonged to Scapania umbrosa but also demonstrated the genetic specificity of the discovered population in comparison with the European, Siberian, and Alaskan populations. The island population of Scapania umbrosa is likely a recently diverged isolate of the species. Previously reported data on the distribution of Scapania umbrosa in the Russian Far East from Kamchatka and Kunashir (VBGI Herbarium), as well as from Sakhalin and Southern Primorye (reported in GBIF), are based on misidentifications. Morphological descriptions, distinguishing characters, line drawings, and photographs of Scapania umbrosa based on the collected material are provided. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

19 pages, 7233 KiB  
Article
Simulation of Key Influencing Factors of Hydraulic Fracturing Fracture Propagation in a Shale Reservoir Based on the Displacement Discontinuity Method (DDM)
by Pengcheng Ma and Shanfa Tang
Processes 2024, 12(5), 1000; https://doi.org/10.3390/pr12051000 (registering DOI) - 15 May 2024
Abstract
In the process of the large-scale hydraulic fracturing of a shale gas field in the Weiyuan area of Sichuan province, the quantitative description and evaluation of hydraulic fracture expansion morphology and the three-dimensional distribution law are the key points of evaluation of block [...] Read more.
In the process of the large-scale hydraulic fracturing of a shale gas field in the Weiyuan area of Sichuan province, the quantitative description and evaluation of hydraulic fracture expansion morphology and the three-dimensional distribution law are the key points of evaluation of block fracturing transformation effect. Many scholars have used the finite element method, discrete element method, grid-free method and other numerical simulation methods to quantitatively characterize hydraulic fractures, but there are often the problems that the indoor physical simulation results are much different from the actual results and the accuracy of most quantitative studies is poor. Considering rock mechanics parameters and based on the displacement discontinuity method (DDM), a single-stage multi-cluster fracture propagation model of horizontal well was established. The effects of Young’s modulus, Poisson’s ratio, the in situ stress difference, the approximation angle, the perforation cluster number and the perforation spacing on the formation of complex fracture networks and on the geometrical parameters of hydraulic fractures were simulated. The research results can provide theoretical reference and practical guidance for the optimization of large-scale fracturing parameters and the quantitative post-fracturing evaluation of horizontal wells in unconventional reservoirs such as shale gas reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

14 pages, 4354 KiB  
Perspective
Mpox (Monkeypox) Virus and Its Co-Infection with HIV, Sexually Transmitted Infections, or Bacterial Superinfections: Double Whammy or a New Prime Culprit?
by Benjamin M. Liu, Natella Y. Rakhmanina, Zhilong Yang and Michael I. Bukrinsky
Viruses 2024, 16(5), 784; https://doi.org/10.3390/v16050784 (registering DOI) - 15 May 2024
Abstract
Epidemiologic studies have established that mpox (formerly known as monkeypox) outbreaks worldwide in 2022–2023, due to Clade IIb mpox virus (MPXV), disproportionately affected gay, bisexual, and other men who have sex with men. More than 35% and 40% of the mpox cases suffer [...] Read more.
Epidemiologic studies have established that mpox (formerly known as monkeypox) outbreaks worldwide in 2022–2023, due to Clade IIb mpox virus (MPXV), disproportionately affected gay, bisexual, and other men who have sex with men. More than 35% and 40% of the mpox cases suffer from co-infection with HIV and sexually transmitted infections (STIs) (e.g., Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, and herpes simplex virus), respectively. Bacterial superinfection can also occur. Co-infection of MPXV and other infectious agents may enhance disease severity, deteriorate outcomes, elongate the recovery process, and potentially contribute to the morbidity and mortality of the ensuing diseases. However, the interplays between MPXV and HIV, bacteria, other STI pathogens and host cells are poorly studied. There are many open questions regarding the impact of co-infections with HIV, STIs, or bacterial superinfections on the diagnosis and treatment of MPXV infections, including clinical and laboratory-confirmed mpox diagnosis, suboptimal treatment effectiveness, and induction of antiviral drug resistance. In this review article, we will discuss the progress and knowledge gaps in MPXV biology, antiviral therapy, pathogenesis of human MPXV and its co-infection with HIV, STIs, or bacterial superinfections, and the impact of the co-infections on the diagnosis and treatment of mpox disease. This review not only sheds light on the MPXV infection and co-infection of other etiologies but also calls for more research on MPXV life cycles and the molecular mechanisms of pathogenesis of co-infection of MPXV and other infectious agents, as well as research and development of a novel multiplex molecular testing panel for the detection of MPXV and other STI co-infections. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 5213 KiB  
Article
Desorption Electrospray Ionization Mass Spectrometry Imaging Techniques Depict a Reprogramming of Energy and Purine Metabolism in the Core Brain Regions of Chronic Social Defeat Stress Mice
by Yulong Song, Fan Xiao, Jiye Aa and Guangji Wang
Metabolites 2024, 14(5), 284; https://doi.org/10.3390/metabo14050284 (registering DOI) - 15 May 2024
Abstract
Depression is associated with pathological changes and metabolic abnormalities in multiple brain regions. The simultaneous comprehensive and in situ detection of endogenous molecules in all brain regions is essential for a comprehensive understanding of depression pathology, which is described in this paper. A [...] Read more.
Depression is associated with pathological changes and metabolic abnormalities in multiple brain regions. The simultaneous comprehensive and in situ detection of endogenous molecules in all brain regions is essential for a comprehensive understanding of depression pathology, which is described in this paper. A method based on desorption electrospray ionization mass spectrometry imaging (DESI-MSI) technology was developed to classify mouse brain regions using characteristic lipid molecules and to detect the metabolites in mouse brain tissue samples simultaneously. The results showed that characteristic lipid molecules can be used to clearly distinguish each subdivision of the mouse brain, and the accuracy of this method is higher than that of the conventional staining method. The cerebellar cortex, medial prefrontal cortex, hippocampus, striatum, nucleus accumbens-core, and nucleus accumbens-shell exhibited the most significant differences in the chronic social defeat stress model. An analysis of metabolic pathways revealed that 13 kinds of molecules related to energy metabolism and purine metabolism exhibited significant changes. A DESI-MSI method was developed for the detection of pathological brain sections. We found, for the first time, that there are characteristic changes in the energy metabolism in the cortex and purine metabolism in the striatum, which is highly important for obtaining a deeper and more comprehensive understanding of the pathology of depression and discovering regulatory targets. Full article
Show Figures

Figure 1

21 pages, 1494 KiB  
Review
Plastic and Micro/Nanoplastic Pollution in Sub-Saharan Africa: Challenges, Impacts, and Solutions
by Edith Dube and Grace Emily Okuthe
World 2024, 5(2), 325-345; https://doi.org/10.3390/world5020018 (registering DOI) - 15 May 2024
Abstract
Sub-Saharan Africa faces increasing levels of plastic production and importation, unregulated usage, and inadequate waste management systems. This region’s harsh conditions often lead to plastic breaking down into microplastics and nanoplastics. This review explores the abundance of micro/nanoplastics across different environmental mediums, such [...] Read more.
Sub-Saharan Africa faces increasing levels of plastic production and importation, unregulated usage, and inadequate waste management systems. This region’s harsh conditions often lead to plastic breaking down into microplastics and nanoplastics. This review explores the abundance of micro/nanoplastics across different environmental mediums, such as surface waters, sediments, and aquatic organisms, in sub-Saharan African countries. It also highlights knowledge gaps concerning the region’s abundance of micro/nanoplastics. The effects of plastics and micro/nanoplastics on food production, water quality, health, and the environment are discussed. Strategies to address the challenges of plastic pollution are proposed. Finally, the review concludes with future perspectives for addressing the ongoing challenges of plastic waste management in sub-Saharan Africa. The materials for this study were sourced from published articles on Scopus, Google Scholar, ResearchGate, and additional platforms, including reports and various press releases, using keywords such as plastic waste, micro/nano-plastic, sub-Saharan Africa, toxicity, and circular economy. Articles were initially screened by reviewing abstracts, followed by a thorough reading of full papers to identify relevant studies. Key information was extracted from these selected articles and incorporated into this review. Full article
Show Figures

Figure 1

12 pages, 1249 KiB  
Article
Comparative Analysis of Artificial Intelligence Virtual Assistant and Large Language Models in Post-Operative Care
by Sahar Borna, Cesar A. Gomez-Cabello, Sophia M. Pressman, Syed Ali Haider, Ajai Sehgal, Bradley C. Leibovich, Dave Cole and Antonio Jorge Forte
Eur. J. Investig. Health Psychol. Educ. 2024, 14(5), 1413-1424; https://doi.org/10.3390/ejihpe14050093 (registering DOI) - 15 May 2024
Abstract
In postoperative care, patient education and follow-up are pivotal for enhancing the quality of care and satisfaction. Artificial intelligence virtual assistants (AIVA) and large language models (LLMs) like Google BARD and ChatGPT-4 offer avenues for addressing patient queries using natural language processing (NLP) [...] Read more.
In postoperative care, patient education and follow-up are pivotal for enhancing the quality of care and satisfaction. Artificial intelligence virtual assistants (AIVA) and large language models (LLMs) like Google BARD and ChatGPT-4 offer avenues for addressing patient queries using natural language processing (NLP) techniques. However, the accuracy and appropriateness of the information vary across these platforms, necessitating a comparative study to evaluate their efficacy in this domain. We conducted a study comparing AIVA (using IBM Watson Assistant) with ChatGPT-4 and Google BARD, assessing the accuracy, knowledge gap, and response appropriateness. AIVA demonstrated superior performance, with significantly higher accuracy (mean: 0.9) and lower knowledge gap (mean: 0.1) compared to BARD and ChatGPT-4. Additionally, AIVA’s responses received higher Likert scores for appropriateness. Our findings suggest that specialized AI tools like AIVA are more effective in delivering precise and contextually relevant information for postoperative care compared to general-purpose LLMs. While ChatGPT-4 shows promise, its performance varies, particularly in verbal interactions. This underscores the importance of tailored AI solutions in healthcare, where accuracy and clarity are paramount. Our study highlights the necessity for further research and the development of customized AI solutions to address specific medical contexts and improve patient outcomes. Full article
Show Figures

Figure 1

11 pages, 1161 KiB  
Article
Enamel Remineralisation with a Novel Sodium Fluoride-Infused Bristle Toothbrush
by Xiaotian Liu, Chun Lok Bryan Lau, Hao Ding, Jukka Pekka Matinlinna and James K. H. Tsoi
Dent. J. 2024, 12(5), 142; https://doi.org/10.3390/dj12050142 (registering DOI) - 15 May 2024
Abstract
This study aims to investigate whether toothbrushes with fluoride-infused bristles have any (re)mineralisation effects on bovine enamel. Bovine incisors (N = 160) were extracted, and the buccal side of the crown was cut into dimensions of ~5 mm × 5 mm with a [...] Read more.
This study aims to investigate whether toothbrushes with fluoride-infused bristles have any (re)mineralisation effects on bovine enamel. Bovine incisors (N = 160) were extracted, and the buccal side of the crown was cut into dimensions of ~5 mm × 5 mm with a low-speed saw. These specimens were randomly allocated into four groups: half (80 teeth) were stored in demineralising solution (DM), and the other half were stored in deionised water (DW) for 96 h. Then, they were brushed with a force of 2.0 ± 0.1 N for five min with a manual toothbrush with either fluoride-infused (TF) or regular (TR) bristles. Microhardness (Vickers), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) were used to investigate the surfaces of the bovine enamel specimens before and after brushing. Two-way ANOVA was used to analyse the hardness data, and the pairwise comparison method was used to analyse the Ca/P ratio, for each group at α = 0.05. The results show that brushing with either of these toothbrushes increased the Vickers microhardness on DM and DW enamel (p < 0.001), whereas hydroxyapatite was revealed in all groups by XRD. The DM samples showed a significant increase (p < 0.05) in the Ca/P ratios after brushing with TR and TF. Conversely, under DW conditions, these ratios decreased significantly after brushing. In terms of the F atomic%, TF increased significantly. SEM revealed mineral deposition in the DM groups after toothbrushing. To conclude, toothbrushing effectively induces the microhardness of sound and demineralised enamel, while fluoride-infused bristles might be able to retain fluoride on the enamel surface. Full article
(This article belongs to the Special Issue Studies on Dental Enamel)
Show Figures

Figure 1

12 pages, 7138 KiB  
Article
Overexpression of NB-LRR Gene AtRPM1(D505V) Improved Drought and Salt Resistance and Decreased Cold Tolerance in Transgenic Rice
by Zhaowu Li, Xiaojie Zhou, Xiaoxiao Liu, Xiaoqiu Wu, Zhiming He, Zhiyong Gao and Zhangying Wang
Agronomy 2024, 14(5), 1050; https://doi.org/10.3390/agronomy14051050 (registering DOI) - 15 May 2024
Abstract
Abiotic stimuli severely restrict the growth and development of plants, resulting in massive losses in the quality and yield of crops. Exploring genes that can improve crop tolerance to abiotic stress is important. In a previous study, we found that overexpression of the [...] Read more.
Abiotic stimuli severely restrict the growth and development of plants, resulting in massive losses in the quality and yield of crops. Exploring genes that can improve crop tolerance to abiotic stress is important. In a previous study, we found that overexpression of the Arabidopsis nucleotide-binding domain leucine-rich repeat (NB-LRR) gene AtRPM1(D505V) increased disease resistance in rice. In this research, we found that AtRPM1(D505V) transgenic plants were more sensitive to abscisic acid (ABA) than wild type (WT) plants. Abiotic-stress resistance in AtRPM1(D505V) transgenic plants was investigated. We found that AtRPM1(D505V) transgenic plants exhibited improved resistance to drought and salt stress; the phonotype and survival rates of transgenic rice were better than WT plants. The expression of stress responsive genes including OsDREB2A, OsDREB2B, OsRD22, and OsRD29A were significantly upregulated in AtRPM1(D505V) overexpressed plants than in WT plants. Moreover, the activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were significantly increased in AtRPM1(D505V) overexpressed plants than in WT plants under drought and salt stress. Under cold stress, the expression of stress responsive genes and the activities of antioxidant enzymes in AtRPM1(D505V) transgenic plants were significantly lower than in WT plants. Our research demonstrated that AtRPM1(D505V) confers drought and salt resistance to transgenic rice. Therefore, AtRPM1(D505V) could act as a potential candidate gene to cultivate drought- and salt-tolerant plants. Full article
6 pages, 184 KiB  
Editorial
Advances in the Management of Solid Waste and Wastewater Treatment
by Carlos Costa
Water 2024, 16(10), 1404; https://doi.org/10.3390/w16101404 (registering DOI) - 15 May 2024
Abstract
The management of solid waste and wastewater treatment is an ever-pressing concern for countries around the world [...] Full article
(This article belongs to the Special Issue Advances in Management of Solid Waste and Wastewater Treatment)
10 pages, 1252 KiB  
Review
Percutaneous Retrograde Trans-Gluteal Embolization of Type 2 Endoleak Causing Iliac Aneurysm Enlargement after Endovascular Repair: Case Report and Literature Review
by Andrea Esposito, Rocco Pasqua, Danilo Menna, Antonio Nicola Giordano, Giulio Illuminati and Vito D’Andrea
J. Clin. Med. 2024, 13(10), 2909; https://doi.org/10.3390/jcm13102909 (registering DOI) - 15 May 2024
Abstract
Late type II endoleaks (T2ELs) arising from the internal iliac artery (IIA) may present during follow-up after endovascular aortic repair (EVAR) of aortoiliac aneurysm and may warrant embolization if enlargement of the aneurysmal sac is demonstrated. When coverage of the IIA ostium has [...] Read more.
Late type II endoleaks (T2ELs) arising from the internal iliac artery (IIA) may present during follow-up after endovascular aortic repair (EVAR) of aortoiliac aneurysm and may warrant embolization if enlargement of the aneurysmal sac is demonstrated. When coverage of the IIA ostium has been made due to extensive iliac disease, access options can be challenging. Different treatment options have been reported over recent years, and a careful selection of the best one must be made based on the characteristics of each case. The present study reports a simple and reproducible sheathless percutaneous superior gluteal artery (SGA) access and provides a discussion based on a review of the existing literature on this topic. Full article
(This article belongs to the Special Issue Advance in Clinical Application of Embolization Techniques)
Show Figures

Figure 1

13 pages, 3749 KiB  
Article
Source Analysis and Bioavailability of Soil Cadmium in Poyang Lake Plain of China Based on Principal Component Analysis and Positive Definite Matrix Factor
by Bangyong Wen, Hongyu Jiang, Yuan Gao, Qiangqiang Zhou and Haiman Qie
Minerals 2024, 14(5), 514; https://doi.org/10.3390/min14050514 (registering DOI) - 15 May 2024
Abstract
In order to identify the source and bioavailability of soil Cd in the alluvial geological high background area, 3799 topsoil samples and 140 root soil samples were collected from the Jiulong area on the south bank of Poyang Lake, Jiangxi Province. The results [...] Read more.
In order to identify the source and bioavailability of soil Cd in the alluvial geological high background area, 3799 topsoil samples and 140 root soil samples were collected from the Jiulong area on the south bank of Poyang Lake, Jiangxi Province. The results confidently indicate that the range of topsoil Cd content is 0.02~8.12 ppm, with an exceedance rate of 14.6%. It is noteworthy that exceedance points were mostly distributed in quaternary sediments. The geostatistical analysis clearly shows that the spatial distribution characteristic of topsoil Cd is higher in the north and lower in the south. The area with extremely high values (>90% quantile) is predominantly located in the tidal flat and low-lying areas of the mainstream of the Xinjiang River. The PCA analysis confirms that the main source of topsoil Cd is man-made activities related to industry and mining. Soil Cd is primarily derived from upstream industrial and mining discharge (58.5%), as revealed by the PMF model analysis. The active Cd content in root soil is 77 ppb, with higher levels observed in the north and lower levels in the south. These findings suggest a significant risk of Cd diffusion along the upstream stream and deposition in the low-lying parts of the north. It is worth noting that Cd’s bioavailability and active forms in paddy fields are the highest, which can have a detrimental effect on food security. The correlation analysis suggests that genetic sources primarily control the bioavailability of soil Cd, followed by soil physicochemical properties such as SOC, Fe-Al oxides, and soil texture. Preventing source pollution and cutting off water system transmission are effective methods for preventing and controlling soil Cd pollution. These methods ensure the safety of cultivated land in the lakeside area of Poyang Lake Plain. Full article
Show Figures

Figure 1

11 pages, 1303 KiB  
Perspective
Food Plants and Environmental Contamination: An Update
by Nicoletta Guerrieri, Stefania Mazzini and Gigliola Borgonovo
Toxics 2024, 12(5), 365; https://doi.org/10.3390/toxics12050365 (registering DOI) - 15 May 2024
Abstract
Food plants are the basis of human nutrition, but, in contaminated places, they can uptake contaminants. Environmental contamination and climate change can modify food quality; generally, they have a negative impact on and imply risks to human health. Heavy metals, like lead, arsenic, [...] Read more.
Food plants are the basis of human nutrition, but, in contaminated places, they can uptake contaminants. Environmental contamination and climate change can modify food quality; generally, they have a negative impact on and imply risks to human health. Heavy metals, like lead, arsenic, cadmium, and chromium, can be present at various environmental levels (soil, water, and atmosphere), and they are widely distributed in the world. Food plants can carry out heavy metal bioaccumulation, a defense pathway for plants, which is different for every plant species. Accumulation is frequent in the roots and the leaves, and heavy metals can be present in fruits and seeds; As and Cd are always present. In addition, other contaminants can bioaccumulate in food plants, including emerging contaminants, like persistent organic pollutants (POPs), pesticides, and microplastics. In food plants, these are present in the roots but also in the leaves and fruits, depending on their chemical structure. The literature published in recent years was examined to understand the distribution of contaminants among food plants. In the literature, old agronomical practices and new integrated technology to clean the water, control the soil, and monitor the crops have been proposed to mitigate contamination and produce high food quality and high food safety. Full article
(This article belongs to the Special Issue Environmental Pollution and Food Safety)
Show Figures

Figure 1

17 pages, 4545 KiB  
Article
Liquid Dynamics in the Upper Respiratory–Digestive System with Contracting Pharynx Motions and Varying Epiglottis Angles
by Amr Seifelnasr, Xiuhua Si, Peng Ding and Jinxiang Xi
Liquids 2024, 4(2), 415-431; https://doi.org/10.3390/liquids4020022 (registering DOI) - 15 May 2024
Abstract
Swallowing disorders, or dysphagia, can lead to bolus aspiration in the airway, causing serious adverse health effects. Current clinical interventions for dysphagia are mainly empirical and often based on symptoms rather than etiology, of which a thorough understanding is still lacking. However, it [...] Read more.
Swallowing disorders, or dysphagia, can lead to bolus aspiration in the airway, causing serious adverse health effects. Current clinical interventions for dysphagia are mainly empirical and often based on symptoms rather than etiology, of which a thorough understanding is still lacking. However, it is challenging to study the swallowing process that involves sequential structural motions and is inaccessible to standard visualization instruments. This study proposed an in vitro method to visualize swallowing hydrodynamics and identify the fundamental mechanisms underlying overflow aspirations. An anatomically accurate pharynx–epiglottis model was developed from patient-specific CT images of 623 µm isotropic resolution. A compliant half-pharynx cast was prepared to incorporate dynamic structures and visualize the flow dynamics in the mid-sagittal plane. Three locations of frequent overflow aspiration were identified: the epiglottis base, cuneiform tubular recesses, and the interarytenoid notch. Water had a consistently higher aspiration risk than a 1% w/v methylcellulose (MC) solution. The contracting–relaxing pharynx and flapping epiglottis spread the liquid film, causing a delayed esophageal entry and increased vallecular residual, which was more pronounced with the MC solution. Dispensing the liquid too slowly resulted in water aspiration, whereas this was not observed with the MC solution. An incomplete epiglottis inversion, such as horizontal or down-tilt 45°, aggravated the aspiration risks of water. This study suggests that it is practical to use anatomically accurate respiratory–digestive models to study the swallowing process by incorporating varying physiological details. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

20 pages, 280 KiB  
Article
Tractability of Multivariate Approximation Problem on Euler and Wiener Integrated Processes
by Jie Zhang
Axioms 2024, 13(5), 326; https://doi.org/10.3390/axioms13050326 (registering DOI) - 15 May 2024
Abstract
This paper examines the tractability of multivariate approximation problems under the normalized error criterion for a zero-mean Gaussian measure in an average-case setting. The Gaussian measure is associated with a covariance kernel, which is represented by the tensor product of one-dimensional kernels corresponding [...] Read more.
This paper examines the tractability of multivariate approximation problems under the normalized error criterion for a zero-mean Gaussian measure in an average-case setting. The Gaussian measure is associated with a covariance kernel, which is represented by the tensor product of one-dimensional kernels corresponding to Euler and Wiener integrated processes with non-negative and nondecreasing smoothness parameters {rd}dN. We give matching sufficient and necessary conditions for various concepts of tractability in terms of the asymptotic properties of the regularity parameters, except for (s, 0)-WT. Full article
17 pages, 3086 KiB  
Article
Interaction Effects between Mood State and Background Sound Level on Students’ Sound Perceptions and Concentration Levels in Study Spaces
by Dadi Zhang, Kwok-Wai Mui and Ling-Tim Wong
Buildings 2024, 14(5), 1419; https://doi.org/10.3390/buildings14051419 (registering DOI) - 15 May 2024
Abstract
This study investigated the impacts of students’ mood states and background sound levels on students’ sound perceptions and academic performance in four library rooms. The background sound level was measured for five days. Meanwhile, around 300 students were invited to participate in a [...] Read more.
This study investigated the impacts of students’ mood states and background sound levels on students’ sound perceptions and academic performance in four library rooms. The background sound level was measured for five days. Meanwhile, around 300 students were invited to participate in a survey of questions about their acoustic perceptions and mood states and a concentration test. Pearson correlation, one-way ANOVA, and two-way ANOVA were applied to establish the relationships between the LAeq, students’ mood states, acoustic perceptions, and concentration levels on both the individual level and the room level and to identify the interaction effect between the background sound levels and mood states on students’ acoustic perception and concentration. The results indicated that LAeq in learning spaces significantly impacted students’ acoustic satisfaction, but only at the room level. In contrast, mood states mainly influenced students’ sound perception and concentration at the individual level. Furthermore, this study reports significant interaction effects between mood state and LAeq on students’ sound perceptions and reveals different impacts of mood states due to different sound levels. These results could help improve occupants’ acoustic perceptions and performance in learning spaces in the future. Full article
(This article belongs to the Special Issue Advances in Indoor Environmental Quality (IEQ))
Show Figures

Figure 1

27 pages, 1788 KiB  
Article
Securing Critical Infrastructure with Blockchain Technology: An Approach to Cyber-Resilience
by Jaime Govea, Walter Gaibor-Naranjo and William Villegas-Ch
Computers 2024, 13(5), 122; https://doi.org/10.3390/computers13050122 (registering DOI) - 15 May 2024
Abstract
Currently, in the digital era, critical infrastructure is increasingly exposed to cyber threats to their operation and security. This study explores the use of blockchain technology to address these challenges, highlighting its immutability, decentralization, and transparency as keys to strengthening the resilience of [...] Read more.
Currently, in the digital era, critical infrastructure is increasingly exposed to cyber threats to their operation and security. This study explores the use of blockchain technology to address these challenges, highlighting its immutability, decentralization, and transparency as keys to strengthening the resilience of these vital structures. Through a methodology encompassing literature review, use-case analysis, and the development and evaluation of prototypes, the effective implementation of the blockchain in the protection of critical infrastructure is investigated. The experimental results reveal the positive impact of the blockchain on security and resilience, presenting a solid defense against cyber-attacks due to its immutable and decentralized structure, with a 40% reduction in security incidents. Despite the observed benefits, blockchain integration faces significant challenges in scalability, interoperability, and regulations. This work demonstrates the potential of the blockchain to strengthen critical infrastructure. It marks progress towards the blockchain’s practical adoption, offering a clear direction for future research and development in this evolving field. Full article
Show Figures

Figure 1

15 pages, 4045 KiB  
Article
Additive Cytotoxic and Colony-Formation Inhibitory Effects of Aspirin and Metformin on PI3KCA-Mutant Colorectal Cancer Cells
by Joana Gonçalves, Sara Pinto, Francisca Carmo, Cláudia Silva, Nelson Andrade and Fátima Martel
Int. J. Mol. Sci. 2024, 25(10), 5381; https://doi.org/10.3390/ijms25105381 (registering DOI) - 15 May 2024
Abstract
Human malignancies are one of the major health-related issues throughout the world and are anticipated to rise in the future. Despite huge investments made in anticancer drug development, limited success has been obtained and the average number of FDA approvals per year is [...] Read more.
Human malignancies are one of the major health-related issues throughout the world and are anticipated to rise in the future. Despite huge investments made in anticancer drug development, limited success has been obtained and the average number of FDA approvals per year is declining. So, an increasing interest in drug repurposing exists. Metformin (MET) and aspirin (ASP) possess anticancer properties. This work aims to test the effect of these two drugs in combination on colorectal cancer (CRC) cells in vitro. The effects of MET and/or ASP on cell proliferation, viability, migratory ability, anchorage-independent growth ability (colony formation), and nutrient uptake were determined in two (HT-29 and Caco-2) human CRC cell lines. Individually, MET and ASP possessed antiproliferative, cytotoxic, and antimigratory effects and reduced colony formation in HT-29 cells (BRAF- and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PI3KCA)-mutant), although MET did not affect either 3H-deoxy-D-glucose or 14C-butyrate uptake and lactate production, and ASP caused only a small decrease in 14C-butyrate uptake. Moreover, in these cells, the combination of MET and ASP resulted in a tendency to an increase in the cytotoxic effect and in a potentiation of the inhibitory effect on colony formation, although no additive antiproliferative and antimigratory effects, and no effect on nutrient uptake and lactate production were observed. In contrast, MET and ASP, both individually and in combination, were almost devoid of effects on Caco-2 cells (BRAF- and PI3KCA-wild type). We suggest that inhibition of PI3K is the common mechanism involved in the anti-CRC effect of both MET, ASP and their combination and, therefore, that the combination of MET + ASP may especially benefit PI3KCA-mutant CRC cases, which currently have a poor prognostic. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer 3.0)
Show Figures

Figure 1

24 pages, 2942 KiB  
Review
Comparative Review on the Production and Purification of Bioethanol from Biomass: A Focus on Corn
by Jean Claude Assaf, Zeinab Mortada, Sid-Ahmed Rezzoug, Zoulikha Maache-Rezzoug, Espérance Debs and Nicolas Louka
Processes 2024, 12(5), 1001; https://doi.org/10.3390/pr12051001 (registering DOI) - 15 May 2024
Abstract
In the contemporary era, conventional energy sources like oil, coal, and natural gas overwhelmingly contribute 89.6% to global CO2 emissions, intensifying environmental challenges. Recognizing the urgency of addressing climate concerns, a pivotal shift towards renewable energy, encompassing solar, wind, and biofuels, is [...] Read more.
In the contemporary era, conventional energy sources like oil, coal, and natural gas overwhelmingly contribute 89.6% to global CO2 emissions, intensifying environmental challenges. Recognizing the urgency of addressing climate concerns, a pivotal shift towards renewable energy, encompassing solar, wind, and biofuels, is crucial for bolstering environmental sustainability. Bioethanol, a globally predominant biofuel, offers a versatile solution, replacing gasoline or integrating into gasoline–ethanol blends while serving as a fundamental building block for various valuable compounds. This review investigates the dynamic landscape of biomass generations, drawing insightful comparisons between the first, second, third, and fourth generations. Amid the drive for sustainability, the deliberate focus on the initial generation of biomass, particularly corn, in bioethanol production is grounded in the current dependence on edible crops. The established utilization of first-generation biomass, exemplified by corn, underscores the necessity for a comprehensive examination of its advantages and challenges, allowing for a nuanced exploration of existing infrastructure and practices. To produce bioethanol from corn feedstock, various milling methods can be employed. Thus, this paper delves into a comparative assessment of dry-milling and wet-milling processes scrutinizing their efficiency, environmental impact, and economic feasibility. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 1371 KiB  
Article
Combined Ultrasound and Fluoroscopy versus Ultrasound versus Fluoroscopy-Guided Caudal Epidural Steroid Injection for the Treatment of Unilateral Lower Lumbar Radicular Pain: A Retrospective Comparative Study
by Dong yuk Lee, Yongbum Park, Jun Hyeong Song, Jaeki Ahn, Kyung Hwan Cho and Suyeon Kim
Medicina 2024, 60(5), 809; https://doi.org/10.3390/medicina60050809 (registering DOI) - 15 May 2024
Abstract
Background and Objectives: This study aimed to evaluate the mid-term effectiveness and safety of a combined ultrasound (US) and fluoroscopy (FL)-guided approach in comparison to US-guided and FL-guided caudal epidural steroid injections (CESI) for treating unilateral lower lumbar radicular pain. Materials and [...] Read more.
Background and Objectives: This study aimed to evaluate the mid-term effectiveness and safety of a combined ultrasound (US) and fluoroscopy (FL)-guided approach in comparison to US-guided and FL-guided caudal epidural steroid injections (CESI) for treating unilateral lower lumbar radicular pain. Materials and Methods: A total of 154 patients who underwent CESI between 2018 and 2022 were included. Patients were categorized into three groups based on the guidance method: combined US and FL (n = 51), US-guided (n = 51), and FL-guided (n = 52). The study design was retrospective case-controlled, utilizing patient charts and standardized forms to assess clinical outcomes, adverse events, complications during the procedures. Results: In all groups, Oswestry Disability Index and Verbal Numeric Scale scores improved at 1, 3, and 6 months after the last injection, with no significant differences between groups (p < 0.05). The treatment success rate at all time points was also similar among the groups. Logistic regression analysis showed that injection method, cause, sex, age, number of injections, and pain duration did not independently predict treatment success. Blood was aspirated before injection in 2% (n = 1), 13.5% (n = 7), and 4% (n = 2) of patients in the combined US and FL groups, FL-guided groups, and US-guided groups, respectively. Intravascular contrast spread was detected in one patient in the combined method groups and seven in the FL-guided groups. Conclusions: When comparing pain reduction and functional improvement, there was no significant difference between the three methods. The combined method took less time compared to using FL alone. The combined approach also showed a lower occurrence of intravascular injection compared to using FL alone. Moreover, blood vessels at the injection site can be identified with an ultrasound using the combined method. Given these advantages, it might be advisable to prioritize the combined US- and FL-guided therapy when administering CESI for patients with unilateral lumbar radicular pain. Full article
(This article belongs to the Special Issue Persistent Pain: Advances in Diagnosis and Management)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop