The 2023 MDPI Annual Report has
been released!
 
26 pages, 2544 KiB  
Article
Effective Stakeholder Management for Inclusive Post-Flood Management: Sri Lanka as a Case Study
by Kalindu Mendis, Menaha Thayaparan, Yamuna Kaluarachchi and Bingunath Ingirige
Water 2024, 16(10), 1429; https://doi.org/10.3390/w16101429 (registering DOI) - 17 May 2024
Abstract
This study aimed to examine post-flood management, with a particular focus on enhancing the inclusivity of marginalised communities through stakeholder analysis. This study was based on an interpretivist mixed method approach, under which 30 semi-structured stakeholder interviews were conducted. Interest versus power versus [...] Read more.
This study aimed to examine post-flood management, with a particular focus on enhancing the inclusivity of marginalised communities through stakeholder analysis. This study was based on an interpretivist mixed method approach, under which 30 semi-structured stakeholder interviews were conducted. Interest versus power versus actual engagement matrix, social network analysis, and thematic analysis techniques were employed under the stakeholder analysis tool to analyse the collected data. The findings highlight the lack of clearly defined responsibilities among key stakeholders. Marginalised communities and community-based organisations have a high level of interests but a low level of power in decision making, resulting in weak engagement and the exclusion of their perceptions. This lack of collaboration and coordination among stakeholders has made marginalised communities more vulnerable in post-flood situations, as their interests are not defended. The findings emphasise the importance of conducting stakeholder analysis in the decision-making process to enhance stakeholder engagement and interaction, as well as promote inclusivity of marginalised communities in the post-flood recovery efforts of the government. Finally, this study recommends developing strategies to improve collaboration among stakeholders, fostering inclusiveness and customising these strategies according to the different types of stakeholders identified through stakeholder analysis. Full article
(This article belongs to the Special Issue Flood Risk Management and Resilience Volume II)
Show Figures

Figure 1

18 pages, 1953 KiB  
Review
Current Knowledge and Perspectives of Phage Therapy for Combating Refractory Wound Infections
by Bo Wang, Lin Du, Baiping Dong, Erwen Kou, Liangzhe Wang and Yuanjie Zhu
Int. J. Mol. Sci. 2024, 25(10), 5465; https://doi.org/10.3390/ijms25105465 (registering DOI) - 17 May 2024
Abstract
Wound infection is one of the most important factors affecting wound healing, so its effective control is critical to promote the process of wound healing. However, with the increasing prevalence of multi-drug-resistant (MDR) bacterial strains, the prevention and treatment of wound infections are [...] Read more.
Wound infection is one of the most important factors affecting wound healing, so its effective control is critical to promote the process of wound healing. However, with the increasing prevalence of multi-drug-resistant (MDR) bacterial strains, the prevention and treatment of wound infections are now more challenging, imposing heavy medical and financial burdens on patients. Furthermore, the diminishing effectiveness of conventional antimicrobials and the declining research on new antibiotics necessitate the urgent exploration of alternative treatments for wound infections. Recently, phage therapy has been revitalized as a promising strategy to address the challenges posed by bacterial infections in the era of antibiotic resistance. The use of phage therapy in treating infectious diseases has demonstrated positive results. This review provides an overview of the mechanisms, characteristics, and delivery methods of phage therapy for combating pathogenic bacteria. Then, we focus on the clinical application of various phage therapies in managing refractory wound infections, such as diabetic foot infections, as well as traumatic, surgical, and burn wound infections. Additionally, an analysis of the potential obstacles and challenges of phage therapy in clinical practice is presented, along with corresponding strategies for addressing these issues. This review serves to enhance our understanding of phage therapy and provides innovative avenues for addressing refractory infections in wound healing. Full article
(This article belongs to the Special Issue Recent Advances in Wound Healing)
Show Figures

Figure 1

25 pages, 15978 KiB  
Article
Flexural Behavior of Cross-Laminated Timber Panels with Environmentally Friendly Timber Edge Connections
by Honghao Ren, Alireza Bahrami, Mathias Cehlin and Marita Wallhagen
Buildings 2024, 14(5), 1455; https://doi.org/10.3390/buildings14051455 (registering DOI) - 17 May 2024
Abstract
As a sustainable construction material, timber is more promoted than steel, concrete, and aluminum nowadays. The building industry benefits from using timber based on several perspectives, including decarbonization, improved energy efficiency, and easier recycling and disposal processes. The cross-laminated timber (CLT) panel is [...] Read more.
As a sustainable construction material, timber is more promoted than steel, concrete, and aluminum nowadays. The building industry benefits from using timber based on several perspectives, including decarbonization, improved energy efficiency, and easier recycling and disposal processes. The cross-laminated timber (CLT) panel is one of the widely utilized engineered wood products in construction for floors, which is an ideal alternative option for replacing reinforced concrete. One single CLT panel has an outstanding flexural behavior. However, CLT cannot be extended independently without external connections, which are normally made of steel. This article proposes two innovative adhesive-free edge connections made of timber, the double surface (DS) and half-lapped (HL) connections. These connections were designed to connect two CLT panels along their weak direction. Parametric studies consisting of twenty models were conducted on the proposed edge connections to investigate the effects of different factors and the flexural behavior of CLT panels with these edge connections under a four-point bending test. Numerical simulations of all the models were done in the current study by using ABAQUS 2022. Furthermore, the employed material properties and other relevant inputs (VUSDFLD subroutines, time steps, meshes, etc.) of the numerical models were validated through existing experiments. The results demonstrated that the maximum and minimum load capacities among the studied models were 6.23 kN and 0.35 kN, respectively. The load–displacement responses, strain, stress, and defection distributions were collected and analyzed, as well as their failure modes. It was revealed that the CLT panels’ load capacity was distinctly improved due to the increment of the connectors’ number (55.05%) and horizontal length (80.81%), which also reinforced the stability. Based on the findings, it was indicated that adhesive-free timber connections could be used for CLT panels in buildings and replace traditional construction materials, having profound potential for improving buildings’ sustainability and energy efficiency. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 2592 KiB  
Article
The Impact of Frailty Components and Preoperative Mechanical Cardiac Support Changes with Time after Heart Transplantation
by Rita Szentgróti, Dmitry Khochanskiy, Balázs Szécsi, Flóra Németh, András Szabó, Kinga Koritsánszky, Alexandra Vereb, Zsuzsanna Cserép, Balázs Sax, Béla Merkely and Andrea Székely
Biomedicines 2024, 12(5), 1114; https://doi.org/10.3390/biomedicines12051114 (registering DOI) - 17 May 2024
Abstract
Background: Frailty has been proven to be associated with mortality after orthotopic heart transplantation (OHT). The aim of our study was to determine the impact of frailty on mortality in the current era using pretransplant mechanical cardiac support (MCS). Methods: We retrospectively calculated [...] Read more.
Background: Frailty has been proven to be associated with mortality after orthotopic heart transplantation (OHT). The aim of our study was to determine the impact of frailty on mortality in the current era using pretransplant mechanical cardiac support (MCS). Methods: We retrospectively calculated the frailty scores of 471 patients undergoing OHT in a single institution between January 2012 and August 2022. The outcome was all-cause mortality. Results: The median survival time was 1987 days (IQR: 1487 days) for all patients. In total, 266 (56.5%) patients were categorized as nonfrail, 179 (38.0%) as prefrail, and 26 (5.5%) as frail. The survival rates were 0.73, 0.54, and 0.28 for nonfrail, prefrail, and frail patients, respectively. The frailty score was associated with mortality [HR: 1.34 (95% CI: 1.22–1.47, p < 0.001)]. Among the components of the frailty score, age above 50 years, creatinine ≥ 3.0 mg/dL or prior dialysis, and hospitalization before OHT were independently associated with mortality. Continuous-flow left ventricular assist devices (CF-LVAD) were associated with an increased risk for all-cause mortality [AHR: 1.80 (95% CI: 1.01–3.24, p = 0.047)]. Conclusions: The components of the frailty score were not equally associated with mortality. Frailty and pretransplant MCS should be included in the risk estimation. Full article
(This article belongs to the Special Issue Heart Failure: New Diagnostic and Therapeutic Approaches)
Show Figures

Figure 1

16 pages, 8028 KiB  
Article
Investigation of Non-Uniform Inflow Effects on Impeller Forces in Axial-Flow Pumps Operating as Turbines
by Kan Kan, Qingying Zhang, Hui Xu, Jiangang Feng, Zhenguo Song, Jianping Cheng and Maxime Binama
Water 2024, 16(10), 1428; https://doi.org/10.3390/w16101428 (registering DOI) - 17 May 2024
Abstract
Due to the existence of an inlet elbow, transmission shaft, and other structural components, the inflow of axial-flow pumps as turbines (PATs) becomes non-uniform, resulting in the complexity of internal flow and adverse effects such as structural vibration. In this paper, numerical methods [...] Read more.
Due to the existence of an inlet elbow, transmission shaft, and other structural components, the inflow of axial-flow pumps as turbines (PATs) becomes non-uniform, resulting in the complexity of internal flow and adverse effects such as structural vibration. In this paper, numerical methods were employed to explore the non-uniform inflow effects on impeller forces and internal flow field characteristics within an axial-flow PAT. The study results indicated that non-uniform inflow caused uneven pressure distribution inside the impeller, which leads to an imbalance in radial forces and offsetting the center of radial forces. With an increasing flow rate, the asymmetry of radial forces as well as the amplitude of their fluctuations increased. Non-uniform inflow was found to induce unstable flow structures inside the impeller, leading to low-frequency, high-amplitude pressure fluctuations near the hub. Using the enstrophy transport equation, it was shown that the relative vortex generation term played a major part in the spatiotemporal evolution of vortices, with minimal viscous effects. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery)
Show Figures

Figure 1

14 pages, 4249 KiB  
Article
Mechanical and Tribological Behavior of Nitrided AISI/SAE 4340 Steel Coated with NiP and AlCrN
by Marcos E. Soares, Qianxi He, Jose M. DePaiva, Bruna M. de Freitas, Paulo Soares, Stephen C. Veldhuis, Fred L. Amorim and Ricardo D. Torres
Lubricants 2024, 12(5), 181; https://doi.org/10.3390/lubricants12050181 (registering DOI) - 17 May 2024
Abstract
In this study, novel surface engineering strategies to improve the wear performance of AISI 4340 were investigated. The strategies were as follows: (i) NiP deposition on a previously nitrided steel substrate, followed by NiP interdiffusion heat treatment at either 400 °C or 610 [...] Read more.
In this study, novel surface engineering strategies to improve the wear performance of AISI 4340 were investigated. The strategies were as follows: (i) NiP deposition on a previously nitrided steel substrate, followed by NiP interdiffusion heat treatment at either 400 °C or 610 °C (referred to as duplex treatment); (ii) the deposition of AlCrN PVD coating on NiP layers on a previously nitrided steel substrate (referred to as triplex treatment). Prior to the deposition of AlCrN, the NiP was subjected to the interdiffusion heat treatment at either 400 °C or 610 °C. These strategies were compared with the performance of the AlCrN coating directly applied on nitrided steel. To characterize the microstructural features of each layer, X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) analysis were conducted. We also carried out mechanical and tribological behavior assessments. The tribological tests were carried out using a ball-on-disc tribometer under a constant load of 20 N and a tangential speed of 25 cm/s; cemented carbide spheres with a diameter of 6 mm were the counterpart body. The friction coefficient was continuously monitored throughout the tests. The results reveal that the wear mechanism for the AlCrN coating is predominantly oxidative. The most wear-resistant surface architecture was the one comprising AlCrN over the NiP layer subjected to interdiffusion heat treatment at either 400 °C or 610 °C. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

17 pages, 5721 KiB  
Article
Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction
by Rafael G. Morais, Natalia Rey-Raap, José L. Figueiredo and Manuel F. R. Pereira
C 2024, 10(2), 47; https://doi.org/10.3390/c10020047 (registering DOI) - 17 May 2024
Abstract
Glucose-derived carbon hybrids were synthesized by hydrothermal treatment in the presence of oxidized carbon nanotubes. Additionally, iron and nitrogen functionalities were incorporated into the carbon structure using different methodologies. The introduction of iron and nitrogen in a single step under a H2 [...] Read more.
Glucose-derived carbon hybrids were synthesized by hydrothermal treatment in the presence of oxidized carbon nanotubes. Additionally, iron and nitrogen functionalities were incorporated into the carbon structure using different methodologies. The introduction of iron and nitrogen in a single step under a H2 atmosphere favored the formation of quaternary nitrogen and oxidized nitrogen, whereas the incorporation of nitrogen under an N2 atmosphere after doping the hybrids with iron mainly produced pyridinic nitrogen. The samples were characterized by scanning electron microscopy, X-ray spectroscopy, adsorption isotherms, inductively coupled plasma optical emission spectrometry, and Raman spectroscopy. The presence of iron and nitrogen in the carbons increases the onset potential toward oxygen reduction in KOH 0.1 mol L−1 by 130 mV (0.83 V), in comparison to carbonized glucose, whereas the reaction mechanism shifts closer to a direct pathway and the formation of HO2 decreases to 25% (3.5 electrons). The reaction rate also increased in comparison to the carbonized glucose, as observed by the decrease in the Tafel slope value from 117 to 61 mV dec−1. Furthermore, the incorporation of iron and nitrogen in a single step enhanced the short-term performance of the prepared electrocatalysts, which may also be due to the higher relative amount of quaternary nitrogen. Full article
Show Figures

Graphical abstract

27 pages, 451 KiB  
Review
A Review on Biofloc System Technology, History, Types, and Future Economical Perceptions in Aquaculture
by Bilal Raza, Zhongming Zheng and Wen Yang
Animals 2024, 14(10), 1489; https://doi.org/10.3390/ani14101489 (registering DOI) - 17 May 2024
Abstract
Given the scarcity of water and land resources, coupled with the competitive nature of aquaculture, the long-term viability of this industry will depend on strategies for vertical development. This involves enhancing production environments, increasing productivity, and advancing aquaculture technologies. The use of biofloc [...] Read more.
Given the scarcity of water and land resources, coupled with the competitive nature of aquaculture, the long-term viability of this industry will depend on strategies for vertical development. This involves enhancing production environments, increasing productivity, and advancing aquaculture technologies. The use of biofloc technology offers a potential solution to mitigate the adverse environmental impacts and the heavy reliance on fishmeal in the aquaculture sector. This method is designed to effectively assimilate inorganic nitrogen found in aquaculture wastewater, thereby enhancing water quality. Additionally, this process produces microbial protein, which can serve as a viable supplemental feed for aquatic animals. Furthermore, this technique has the potential to reduce the feed conversion ratio, thereby lowering overall production costs. This article provides an overview of the evolving field of biofloc system technology within aquaculture. In this study, we will examine the historical development and various types of biofloc systems, as well as the factors that influence their effectiveness. Finally, we will explore the economic potential of implementing biofloc systems in aquaculture. Full article
(This article belongs to the Special Issue Sustainable Aquaculture Production Systems)
11 pages, 2712 KiB  
Article
Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans
by Sydney N. Phu, David J. Leishman, Sierra D. Palmer, Scott H. Oppler, Melanie N. Niewinski, Lucas A. Mutch, Jill S. Faustich, Andrew B. Adams, Robert T. Tranquillo and Melanie L. Graham
Surgeries 2024, 5(2), 423-433; https://doi.org/10.3390/surgeries5020035 (registering DOI) - 17 May 2024
Abstract
Anticoagulant and antiplatelet therapies are used to prevent life-threatening complications associated with thrombosis. While there are numerous clinical guidelines for antithrombotic medications, there is an incomplete understanding of whether these interventions yield similar effects in preclinical models, potentially impacting their predictive value for [...] Read more.
Anticoagulant and antiplatelet therapies are used to prevent life-threatening complications associated with thrombosis. While there are numerous clinical guidelines for antithrombotic medications, there is an incomplete understanding of whether these interventions yield similar effects in preclinical models, potentially impacting their predictive value for translational studies on the development of medical devices, therapies, and surgical techniques. Due to their close physiologic similarities to humans, we employed nonhuman primates (NHPs) using a reverse translational approach to analyze the response to clinical regimens of unfractionated heparin, low-molecular-weight heparin (LMWH) and aspirin to assess concordance with typical human responses and evaluate the predictive validity of this model. We evaluate activated clotting time (ACT) in nine rhesus and six cynomolgus macaques following the intraoperative administration of intravenous unfractionated heparin (100–300 U/kg) reflecting the clinical dose range. We observed a significant dose-dependent effect of heparin on ACT (low-dose average = 114.1 s; high-dose average = 148.3 s; p = 0.0011). LMWH and aspirin, common clinical antithrombotic prophylactics, were evaluated in three rhesus macaques. NHPs achieved therapeutic Anti-Xa levels (mean = 0.64 U/mL) and ARU (mean = 459) via VerifyNow, adhering to clinical guidance using 1.0 mg/kg enoxaparin and 81 mg aspirin. Clinical dosing strategies for unfractionated heparin, LMWH, and aspirin were safe and effective in NHPs, with no development of thrombosis or bleeding complications intraoperatively, postoperatively, or for prophylaxis. Our findings suggest that coagulation studies, performed as an integrative part of studies on biologics, bioengineered devices, or transplantation in NHPs, can be extrapolated to the clinical situation with high predictive validity. Full article
Show Figures

Figure 1

12 pages, 3508 KiB  
Article
Upconversion Emission and Dual-Mode Sensing Characteristics of NaYF4:Yb3+/Er3+ Microcrystals at High and Ultralow Temperatures
by Xinyi Xu, Zhaojin Wang, Jin Hou, Tian Zhang, Xin Zhao, Siyi Di and Zijie Li
Nanomaterials 2024, 14(10), 871; https://doi.org/10.3390/nano14100871 (registering DOI) - 17 May 2024
Abstract
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and [...] Read more.
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and ultralow temperatures. We explore the relationship between temperature and the upconversion luminescence (UCL) spectra in both frequency and time domains. Our findings highlight the strong dependence of these spectral characteristics of lanthanide-doped NaYF4 crystals on temperature. Furthermore, we introduce a dual-mode luminescence temperature measurement technique, leveraging the upconversion emission intensity ratio for both green and red emissions. This study also examines the correlation between temperature sensing, energy level disparities, and thermal coupling in Er3+ ions across various temperature scales. Our research contributes to advancing the understanding and application of lanthanide-doped materials, setting a foundation for future innovations in temperature sensing across diverse fields. Full article
Show Figures

Figure 1

23 pages, 4969 KiB  
Article
The Utility of Contrast-Enhanced Ultrasound (CEUS) in Assessing the Risk of Malignancy in Thyroid Nodules
by Agnieszka Żyłka, Katarzyna Dobruch-Sobczak, Hanna Piotrzkowska-Wróblewska, Maciej Jędrzejczyk, Elwira Bakuła-Zalewska, Piotr Góralski, Jacek Gałczyński and Marek Dedecjus
Cancers 2024, 16(10), 1911; https://doi.org/10.3390/cancers16101911 (registering DOI) - 17 May 2024
Abstract
Background: Ultrasonography is a primary method used in the evaluation of thyroid nodules, but no single feature of this method predicts malignancy with high accuracy. Therefore, this paper aims to assess the utility of contrast-enhanced ultrasound (CEUS) in the differential diagnosis of thyroid [...] Read more.
Background: Ultrasonography is a primary method used in the evaluation of thyroid nodules, but no single feature of this method predicts malignancy with high accuracy. Therefore, this paper aims to assess the utility of contrast-enhanced ultrasound (CEUS) in the differential diagnosis of thyroid nodules. Methods: The study group comprised 188 adult patients (155 women and 33 men) who preoperatively underwent CEUS of a thyroid nodule classified as Bethesda categories II–VI after fine-needle aspiration biopsy. During the CEUS examination, 1.5 mL of SonoVue contrast was injected intravenously, after which 15 qualitative CEUS enhancement patterns were analysed. Results: The histopathologic results comprised 65 benign thyroid nodules and 123 thyroid carcinomas. The dominant malignant CEUS features, such as hypo- and heterogeneous enhancement and slow wash-in phase, were evaluated, whereas high enhancement, ring enhancement, and a slow wash-out phase were assessed as predictors of benign lesions. Two significant combinations of B-mode and CEUS patterns were noted, namely, hypoechogenicity with heterogeneous enhancement and non-smooth margins with hypo- or iso-enhancement. Conclusions: The preliminary results indicate that CEUS is a useful tool in assessing the risk of malignancy of thyroid lesions. The combination of the qualitative enhancement parameters and B-mode sonographic features significantly increases the method’s usefulness. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

11 pages, 420 KiB  
Article
Epidemiological Study of Pathogens in Spontaneous Bacterial Peritonitis in 2017–2024—A Preliminary Report of the University Hospital in South-Eastern Poland
by Jolanta Gruszecka and Rafał Filip
Microorganisms 2024, 12(5), 1008; https://doi.org/10.3390/microorganisms12051008 (registering DOI) - 17 May 2024
Abstract
Spontaneous Bacterial Peritonitis (SBP) is a serious complication and a common cause of death in patients with liver cirrhosis. Between January 2017 and March 2024, a retrospective study was conducted involving 302 patients (>18 years old) with ascites treated at a tertiary referral [...] Read more.
Spontaneous Bacterial Peritonitis (SBP) is a serious complication and a common cause of death in patients with liver cirrhosis. Between January 2017 and March 2024, a retrospective study was conducted involving 302 patients (>18 years old) with ascites treated at a tertiary referral center in south-eastern Poland. Microbiological analysis of the ascitic fluids was performed in all patients. The presence of microorganisms was found in samples from 17 patients, and 21 pathogens were isolated, including 15 Gram-positive bacteria and 6 Gram-negative bacteria. Staphylococcus epidermidis, MRCNS (methicillin-resistant coagulase-negative staphylococci, resistant to all beta-lactam antibiotics: penicillins, penicillins with beta-lactamase inhibitor, cephalosporins and carbapenems) was the main pathogen detected (19.05%, 4/21), followed by Enterococcus faecalis (9.52%, 2/21), Enterococcus faecium (9.52%, 2/21), Staphylococcus haemolyticus, MRCNS (4.76%, 1/21), Streptococcus mitis (9.52%, 2/21), Streptococcus parasanguinis (9.52%, 2/21), Micrococcus luteus (4.76%, 1/21) and Bacillus spp. (4.76%, 1/21). The following Gram-negative bacteria were also found in the specimens examined: Escherichia coli, ESBL (extended-spectrum β-lactamase producing E. coli) (4.76%, 1/21), Escherichia coli (4.76%, 1/21), Pseudomonas aeruginosa (4.76%, 1/21), Klebsiella oxytoca (9.52%, 2/21) and Sphingomonas paucimobilis (4.76%, 1/21). Gram-positive bacteria caused nosocomial infections in nine patients with SBP, Gram-negative bacteria caused nosocomial infections in two patients. In six patients with SBP, community-acquired infections caused by Gram-negative bacteria were found in three cases, Gram-positive bacteria in two cases, and in one case, community-acquired infection was caused by mixed Gram-positive and Gram-negative. Bacteria isolated from patients with hospital-acquired SBP showed higher drug resistance than those found in patients with non-hospital SBP. Bacterial infections in cirrhotic patients with complications may be responsible for their deteriorating health. Prompt intervention is critical to reducing mortality. Full article
Show Figures

Figure 1

9 pages, 1176 KiB  
Article
Serum Leucine-Rich α2 Glycoprotein Could Be a Useful Biomarker to Differentiate Patients with Normal Colonic Mucosa from Those with Inflammatory Bowel Disease or Other Forms of Colitis
by Ichitaro Horiuchi, Kaori Horiuchi, Akira Horiuchi and Takeji Umemura
J. Clin. Med. 2024, 13(10), 2957; https://doi.org/10.3390/jcm13102957 (registering DOI) - 17 May 2024
Abstract
(1) Background: Serum leucine-rich α2 glycoprotein (LRG) has been reported as a useful biomarker for monitoring disease activity in patients with inflammatory bowel disease (IBD). We investigated whether serum LRG can differentiate patients with normal colonic mucosa from those with IBD or other [...] Read more.
(1) Background: Serum leucine-rich α2 glycoprotein (LRG) has been reported as a useful biomarker for monitoring disease activity in patients with inflammatory bowel disease (IBD). We investigated whether serum LRG can differentiate patients with normal colonic mucosa from those with IBD or other forms of colitis. (2) Methods: Patients with diarrhea, abdominal pain, or bloody stools were consecutively enrolled at their initial visit to our hospital. Serum LRG and C-reactive protein were measured, and a colonoscopy and histology were performed. (3) Results: We enrolled 317 patients (181 men, 136 women; median age: 51 years). Based on the endoscopic and histological criteria, 260 patients were diagnosed with ulcerative colitis (n = 134), Crohn’s disease (n = 10), infectious colitis (n = 43), diverticular colitis (n = 17), or nonspecific colitis (n = 56). The remaining 57 patients were diagnosed with normal colonic mucosa including histology. The latter group’s median LRG value (9.5 µg/mL, range: 5.8–13.5) was significantly lower than that of the other 260 patients (13.6 µg/mL, range: 6.8–62.7, p < 0.0001). The optimal LRG cut-off value of <10.4 µg/mL was derived from the receiver operating characteristic (ROC) curve, showing a 91% sensitivity and 77% specificity for identifying patients with normal colonic mucosa. (4) Conclusions: serum LRG values < 10.4 µg/mL could be a useful biomarker for predicting patients with normal colonic mucosa. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

14 pages, 6596 KiB  
Article
Vibration Isolation and Launch Performance Enhancement of the Spacecraft In-Orbit Launch Design Using the Nonlinear Dynamic Feature
by Xu Zhou, Weihao Tong, Lu Dai and Boyuan Wei
Appl. Sci. 2024, 14(10), 4250; https://doi.org/10.3390/app14104250 (registering DOI) - 17 May 2024
Abstract
This paper proposes a new spacecraft in-orbit launch design using a nonlinear configuration to utilize nonlinear dynamics for the enhancement of vibration isolation and launch performance. The in-orbit launch device has four springs, where the stroke directions of two springs are perpendicular to [...] Read more.
This paper proposes a new spacecraft in-orbit launch design using a nonlinear configuration to utilize nonlinear dynamics for the enhancement of vibration isolation and launch performance. The in-orbit launch device has four springs, where the stroke directions of two springs are perpendicular to the launch direction so as to produce nonlinearity with negative stiffness for enhancing the launch velocity. The other two springs are designed to counterbalance the above negative stiffness when the launch outlet is shut down, leading to quasi-zero dynamic stiffness for vibration isolation enhancement. The dynamic equations of the in-orbit launch device for both the on- and off-launch are presented. Then the performance enhancement of both the vibration isolation and launch performance is thoroughly investigated via comparative study and parametric study. The resonance peak is reduced by 4.16 dB, the effective vibration isolation bandwidth is increased by 57%, and the launch speed is increased 1.64 times. This validates the performance improvement of the new launch device design and presents a useful guideline for application. Full article
Show Figures

Figure 1

16 pages, 2735 KiB  
Article
Suppression PCR-Based Selective Enrichment Sequencing for Pathogen and Antimicrobial Resistance Detection on Cell-Free DNA in Sepsis—A Targeted, Blood Culture-Independent Approach for Rapid Pathogen and Resistance Diagnostics in Septic Patients
by Mirko Sonntag, Vanessa K. Elgeti, Yevhen Vainshtein, Lucca Jenner, Jan Mueller, Thorsten Brenner, Sebastian O. Decker and Kai Sohn
Int. J. Mol. Sci. 2024, 25(10), 5463; https://doi.org/10.3390/ijms25105463 (registering DOI) - 17 May 2024
Abstract
Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve [...] Read more.
Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve outcomes in septic patients. However, current sepsis diagnostics based on blood culture is limited by low sensitivity and specificity while current molecular approaches fail to enter clinical routine. Therefore, we developed a suppression PCR-based selective enrichment sequencing approach (SUPSETS), providing a molecular method combining multiplex suppression PCR with Nanopore sequencing to identify most common sepsis-causative pathogens and AMRs using plasma cell-free DNA. Applying only 1 mL of plasma, we targeted eight pathogens across three kingdoms and ten AMRs in a proof-of-concept study. SUPSETS was successfully tested in an experimental research study on the first ten clinical samples and revealed comparable results to clinical metagenomics while clearly outperforming blood culture. Several clinically relevant AMRs could be additionally detected. Furthermore, SUPSETS provided first pathogen and AMR-specific sequencing reads within minutes of starting sequencing, thereby potentially decreasing time-to-results to 11–13 h and suggesting diagnostic potential in sepsis. Full article
(This article belongs to the Special Issue Sepsis and Septic Shock: From Molecular Mechanisms to Novel Therapies)
Show Figures

Figure 1

19 pages, 9612 KiB  
Article
A Novel Load-Sharing System to Simulate the Creep of Strain-Hardening Cementitious Composites (SHCCs) in Practical Situations
by Karuna Arachchige Shan Dilruksha Ratnayake and Christopher Kin Ying Leung
Materials 2024, 17(10), 2407; https://doi.org/10.3390/ma17102407 (registering DOI) - 17 May 2024
Abstract
The ductility and exhibition of the multiple, fine, self-controlled cracking of strain-hardening cementitious composites (SHCCs) under tension has made them attractive for enhancing the durability of civil infrastructure. These fine cracks are key to preventing the ingress of water and harmful chemicals into [...] Read more.
The ductility and exhibition of the multiple, fine, self-controlled cracking of strain-hardening cementitious composites (SHCCs) under tension has made them attractive for enhancing the durability of civil infrastructure. These fine cracks are key to preventing the ingress of water and harmful chemicals into the structure and thereby achieving steel reinforcement. However, several studies have suggested that the short-term fine cracks shown in the laboratory may end up exceeding the acceptable crack widths that are specified in design codes when SHCC members are subjected to sustained constant loads. In real structures, however, the load is also shared by the steel reinforcement in the member, so the SHCC within may not be under a constant load; therefore, the crack widening will not be as severe. This study focuses on the creep behaviour of SHCCs when they are applied as an external layer on reinforced concrete to enhance durability. A novel approach to simulate various stress–strain regimes in such systems is developed by using a fixture to share a sustained moment exclusively between a reinforcement member and SHCC. The developed load-sharing system allows stresses within the reinforcement and SHCC to be monitored against time during the imposed loading, while ensuring access to the SHCC layer for instrumentation and monitoring of strain/cracking. The time-dependent widening of cracks in the SHCC layer is found to be much less significant than that under constant loading, so resistance to water/chemical penetration can still be ensured in the long term. The obtained information on the variation in stress, strain, and crack opening with time will be useful for the development of a general model for the creep behaviour of SHCC members. Full article
Show Figures

Figure 1

7 pages, 904 KiB  
Case Report
A HGF Mutation in the Familial Case of Primary Lymphedema: A Report
by Galina Koksharova, Natalia Kokh, Maria Gridina, Rustam Khapaev, Vadim Nimaev and Veniamin Fishman
Int. J. Mol. Sci. 2024, 25(10), 5464; https://doi.org/10.3390/ijms25105464 (registering DOI) - 17 May 2024
Abstract
Lymphedema is a disorder that leads to excessive swelling due to lymphatic insufficiency, resulting in the accumulation of protein-rich interstitial fluid. Primary lymphedema predominantly impacts the lower extremities and is frequently linked to hereditary factors. This condition is known to be associated with [...] Read more.
Lymphedema is a disorder that leads to excessive swelling due to lymphatic insufficiency, resulting in the accumulation of protein-rich interstitial fluid. Primary lymphedema predominantly impacts the lower extremities and is frequently linked to hereditary factors. This condition is known to be associated with variants in several genes, such as FOXC2, FLT4, and SOX18. However, many cases remain unexplained, suggesting undiscovered gene associations. This study describes a novel mutation in the hepatocyte growth factor (HGF) gene, a previously hypothesized candidate for lymphedema pathogenesis. This mutation was identified in affected members of a multigenerational family presenting with primary leg lymphedema, consistent with an autosomal dominant inheritance pattern. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

31 pages, 4756 KiB  
Review
A Survey on Data Compression Techniques for Automotive LiDAR Point Clouds
by Ricardo Roriz, Heitor Silva, Francisco Dias and Tiago Gomes
Sensors 2024, 24(10), 3185; https://doi.org/10.3390/s24103185 (registering DOI) - 17 May 2024
Abstract
In the evolving landscape of autonomous driving technology, Light Detection and Ranging (LiDAR) sensors have emerged as a pivotal instrument for enhancing environmental perception. They can offer precise, high-resolution, real-time 3D representations around a vehicle, and the ability for long-range measurements under low-light [...] Read more.
In the evolving landscape of autonomous driving technology, Light Detection and Ranging (LiDAR) sensors have emerged as a pivotal instrument for enhancing environmental perception. They can offer precise, high-resolution, real-time 3D representations around a vehicle, and the ability for long-range measurements under low-light conditions. However, these advantages come at the cost of the large volume of data generated by the sensor, leading to several challenges in transmission, processing, and storage operations, which can be currently mitigated by employing data compression techniques to the point cloud. This article presents a survey of existing methods used to compress point cloud data for automotive LiDAR sensors. It presents a comprehensive taxonomy that categorizes these approaches into four main groups, comparing and discussing them across several important metrics. Full article
(This article belongs to the Special Issue Innovations with LiDAR Sensors and Applications)
Show Figures

Figure 1

19 pages, 9470 KiB  
Article
Optimizing Machining Efficiency in High-Speed Milling of Super Duplex Stainless Steel with SiAlON Ceramic Inserts
by Monica Guimarães, Victor Saciotto, Qianxi He, Jose M. DePaiva, Anselmo Diniz and Stephen Veldhuis
Machines 2024, 12(5), 349; https://doi.org/10.3390/machines12050349 (registering DOI) - 17 May 2024
Abstract
Super duplex stainless steels (SDSSs) are widely utilized across industries owing to their remarkable mechanical properties and corrosion resistance. However, machining SDSS presents considerable challenges, particularly at high speeds. This study investigates the machinability of SDSS grade SAF 2507 (UNS S32750) under high-speed [...] Read more.
Super duplex stainless steels (SDSSs) are widely utilized across industries owing to their remarkable mechanical properties and corrosion resistance. However, machining SDSS presents considerable challenges, particularly at high speeds. This study investigates the machinability of SDSS grade SAF 2507 (UNS S32750) under high-speed milling conditions using SiAlON insert tools. Comprehensive analysis of key machinability indicators, including chip compression ratio, chip analysis, shear angle, tool wear, and friction conditions, reveals that lower cutting speeds optimize machining performance, reducing cutting forces and improving chip formation. Finite element analysis (FEA) corroborates the efficacy of lower speeds and moderate feed rates. Furthermore, insights into friction dynamics at the tool–chip interface are offered, alongside strategies for enhancing SDSS machining. This study revealed the critical impact of cutting speed on cutting forces, with a significant reduction in forces at cutting speeds of 950 and 1350 m/min, but a substantial increase at 1750 m/min, particularly when tool wear is severe. Furthermore, the combination of 950 and 1350 m/min cutting speeds with a 0.2 mm/tooth feed rate led to smoother chip surfaces and decreased friction coefficients, thus enhancing machining efficiency. The presence of stick–slip phenomena at 1750 m/min indicated thermoplastic instability. Optimizing machining parameters for super duplex stainless steel necessitates balancing material removal rate and surface integrity, as the latter plays an important role in ensuring long-term performance and reliability in critical applications. Full article
(This article belongs to the Special Issue Recent Advances in Surface Integrity with Machining and Milling)
Show Figures

Figure 1

17 pages, 1552 KiB  
Article
Adaptation through Climate-Smart Agriculture: Examining the Socioeconomic Factors Influencing the Willingness to Adopt Climate-Smart Agriculture among Smallholder Maize Farmers in the Limpopo Province, South Africa
by Koketso Cathrine Machete, Mmapatla Precious Senyolo and Lungile Sivuyile Gidi
Climate 2024, 12(5), 74; https://doi.org/10.3390/cli12050074 (registering DOI) - 17 May 2024
Abstract
Agriculture contributes to the South African economy, but this sector is highly vulnerable to climate change risks. Smallholder maize farmers are specifically susceptible to climate change impacts. The maize crop plays a crucial role in the country’s food security as is considered a [...] Read more.
Agriculture contributes to the South African economy, but this sector is highly vulnerable to climate change risks. Smallholder maize farmers are specifically susceptible to climate change impacts. The maize crop plays a crucial role in the country’s food security as is considered a staple food and feed. The study aimed at examining the socioeconomic factors influencing smallholder maize farmers’ willingness to adopt climate-smart agriculture in the Limpopo Province, South Africa. It was conducted in three different areas due to their specific agro-ecological zones. A multipurpose research design was used to gather data, and multistage random sampling was used to choose the study areas. Subsequently, 209 purposefully selected farmers were interviewed face-to-face using structured questionnaires and focus discussion groups. Descriptive results revealed that 81%, 67%, and 63% farmers in Ga-Makanye, Gabaza, and Giyani were willing to adopt CSA. Using the double-hurdle model, the t-test was significant at 1%, Prob > chi2 = 0. 0000, indicating a good model. At a 5% confidence level, education, crop diversification, and information about climate-smart agriculture (CSA) positively influenced adoption, while household size and agricultural experience negatively influenced it. It is recommended that the Department of Agriculture, Land Reform, and Rural Development provide CSA workshops and educational programs to farmers to enhance their knowledge and decision-making processes regarding adaptation strategies. Full article
Show Figures

Figure 1

14 pages, 4572 KiB  
Article
Analysis of Structural Heterogeneity in Low-Rank Coal and Its Pyrolyzed Char Using Multi-Point Scanning Micro-Raman Spectroscopy
by Yaqi Gao, Chong Zou, Yuan She, Zhengyan Huang and Siqi Li
Molecules 2024, 29(10), 2361; https://doi.org/10.3390/molecules29102361 (registering DOI) - 17 May 2024
Abstract
Understanding the changes in carbon structure during the mid–low-temperature pyrolysis of low-rank coal is important for efficient utilization. Raman spectroscopy is commonly used to analyze the structural order of carbonaceous materials, but traditional methods may overlook the heterogeneity of coal/char. This research explores [...] Read more.
Understanding the changes in carbon structure during the mid–low-temperature pyrolysis of low-rank coal is important for efficient utilization. Raman spectroscopy is commonly used to analyze the structural order of carbonaceous materials, but traditional methods may overlook the heterogeneity of coal/char. This research explores the heterogeneity of char structure derived from low-rank coal at 700 °C through multi-point micro-Raman analysis. The analysis of parameters such as area (A), intensity (I), full width at half maximum (FWHM/W), and peak position (P) reveals that the carbon structure becomes less ordered as coal transforms into char due to the deposition of small molecules on the surface. The study emphasizes the benefits of multi-point detection for gaining in-depth insights into the structural evolution of carbonaceous materials. The increased standard deviation of Raman parameters indicates diverse structural characteristics resulting from pyrolysis at this temperature, which traditional methods may not capture effectively. The mapping method used in this research visually illustrates the distribution of carbon structures in the region. Full article
(This article belongs to the Special Issue Raman Spectroscopy Analysis of Surfaces)
Show Figures

Figure 1

20 pages, 49154 KiB  
Article
Comparative Analysis of Interfacial Adaptation and Depth Penetration of Recent HiFlow versus Regular Bioceramic Sealers in Conjunction with BC Gutta-Percha Points Using Two Different Obturation Techniques—A Preliminary Report of an Ex Vivo Study
by Sawsan T. Abu-Zeid and Ruaa A. Alamoudi
J. Funct. Biomater. 2024, 15(5), 134; https://doi.org/10.3390/jfb15050134 (registering DOI) - 17 May 2024
Abstract
This study aimed to assess the adaptability and penetration depth capacity of recent bioceramic systems, including regular EndoSequence (BC) versus HiFlow (BCH) sealers in the presence of BC points. A total of 54 single-rooted teeth were instrumented and obturated with either the cold [...] Read more.
This study aimed to assess the adaptability and penetration depth capacity of recent bioceramic systems, including regular EndoSequence (BC) versus HiFlow (BCH) sealers in the presence of BC points. A total of 54 single-rooted teeth were instrumented and obturated with either the cold or warm compaction technique (n = 9), using either BC, BCH, or AH Plus (AHP) combined with BC points. The adaptation, film thickness, and gaps/voids were evaluated by scanning electron microscopy. The sealer/dentin interface was evaluated by Raman spectroscopy, and depth penetration was evaluated by a confocal laser scanning microscope. According to the normality test, the data were statistically analyzed by ANOVA or Kruskal–Wallis and Mann–Whitney U tests at p < 0.05. BCH sealer showed the significantly thinnest film with the greatest flow (p > 0.001), with further improvement when subjected to the warm compaction technique. Moreover, it exhibited close adaptation with deep penetration into radicular dentin, forming a tag-like structure. The Raman spectra also indicated close contact with the dentin surface. The use of BC sealer with BC points exhibited homogenous, single-unit obturation, either with a cold or warm technique. Furthermore, the use of the warm compaction technique with BCH sealer achieved a gap-free interface associated with tag-like structures, which exhibit the monoblock phenomenon. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

14 pages, 5213 KiB  
Article
Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients
by Chase Maag, Clare K. Fitzpatrick and Paul J. Rullkoetter
Bioengineering 2024, 11(5), 503; https://doi.org/10.3390/bioengineering11050503 (registering DOI) - 17 May 2024
Abstract
Recent advancements in computational modeling offer opportunities to refine total knee arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model. Calibration of the external actuation required to achieve [...] Read more.
Recent advancements in computational modeling offer opportunities to refine total knee arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model. Calibration of the external actuation required to achieve measured patient-specific joint loading and motion was completed for nine patients with telemetric implants during gait, stair descent, and deep knee bend. The study also compared two EBC scenarios: activity-specific hip AP motion and pelvic rotation (that was averaged across all patients for an activity) and patient-specific hip AP motion and pelvic rotation. Including patient-specific data significantly improved reproduction of joint-level loading, reducing root mean squared error between the target and achieved loading by 28.7% and highlighting the importance of detailed patient data in replicating joint kinematics and kinetics. The principal component analysis (PCA) of the EBCs for the patient dataset showed that one component represented 77.8% of the overall variation, while the first three components represented 97.8%. Given the significant loading variability within the patient cohort, this group of patient-specific models can be run individually to provide insight into expected TKA mechanics variability, and the PCA can be utilized to further create reasonable EBCs that expand the variability evaluated. Full article
(This article belongs to the Special Issue Computational Biomechanics, Volume II)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop