The 2023 MDPI Annual Report has
been released!
 
9 pages, 1151 KiB  
Article
Chaos Synchronization of Integrated Five-Section Semiconductor Lasers
by Yuanyuan Guo, Yao Du, Hua Gao, Min Tan, Tong Zhao, Zhiwei Jia, Pengfa Chang and Longsheng Wang
Entropy 2024, 26(5), 405; https://doi.org/10.3390/e26050405 - 06 May 2024
Abstract
We proposed and verified a scheme of chaos synchronization for integrated five-section semiconductor lasers with matching parameters. The simulation results demonstrated that the integrated five-section semiconductor laser could generate a chaotic signal within a large parameter range of the driving currents of five [...] Read more.
We proposed and verified a scheme of chaos synchronization for integrated five-section semiconductor lasers with matching parameters. The simulation results demonstrated that the integrated five-section semiconductor laser could generate a chaotic signal within a large parameter range of the driving currents of five sections. Subsequently, chaos synchronization between two integrated five-section semiconductor lasers with matched parameters was realized by using a common noise signal as a driver. Moreover, it was found that the synchronization was sensitive to the current mismatch in all five sections, indicating that the driving currents of the five sections could be used as keys of chaotic optical communication. Therefore, this synchronization scheme provides a candidate to increase the dimension of key space and enhances the security of the system. Full article
32 pages, 2235 KiB  
Article
Importance of Characteristic Features and Their Form for Data Exploration
by Urszula Stańczyk, Beata Zielosko and Grzegorz Baron
Entropy 2024, 26(5), 404; https://doi.org/10.3390/e26050404 - 06 May 2024
Abstract
The nature of the input features is one of the key factors indicating what kind of tools, methods, or approaches can be used in a knowledge discovery process. Depending on the characteristics of the available attributes, some techniques could lead to unsatisfactory performance [...] Read more.
The nature of the input features is one of the key factors indicating what kind of tools, methods, or approaches can be used in a knowledge discovery process. Depending on the characteristics of the available attributes, some techniques could lead to unsatisfactory performance or even may not proceed at all without additional preprocessing steps. The types of variables and their domains affect performance. Any changes to their form can influence it as well, or even enable some learners. On the other hand, the relevance of features for a task constitutes another element with a noticeable impact on data exploration. The importance of attributes can be estimated through the application of mechanisms belonging to the feature selection and reduction area, such as rankings. In the described research framework, the data form was conditioned on relevance by the proposed procedure of gradual discretisation controlled by a ranking of attributes. Supervised and unsupervised discretisation methods were employed to the datasets from the stylometric domain and the task of binary authorship attribution. For the selected classifiers, extensive tests were performed and they indicated many cases of enhanced prediction for partially discretised datasets. Full article
Show Figures

Figure 1

29 pages, 10645 KiB  
Article
Seeds Priming with Melatonin Improves Root Hydraulic Conductivity of Wheat Varieties under Drought, Salinity, and Combined Stress
by Yuanyuan Fu, Penghui Li, Zhuanyun Si, Shoutian Ma and Yang Gao
Int. J. Mol. Sci. 2024, 25(9), 5055; https://doi.org/10.3390/ijms25095055 - 06 May 2024
Abstract
Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought–salinity combined remains greatly unclear. In the current report, we investigated [...] Read more.
Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought–salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines’ 12 h priming with 100 μM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h−1·MPa−1, 0.2477 mL·h−1·MPa−1, and 0.4444 mL·h−1·MPa−1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought–salinity stress. Full article
(This article belongs to the Special Issue Plant Adaptation Mechanism to Stress)
21 pages, 3013 KiB  
Article
Retinoic Acid-Mediated Control of Energy Metabolism is Essential for Lung Branching Morphogenesis
by Hugo Fernandes-Silva, Marco G. Alves, Marcia R. Garcez, Jorge Correia-Pinto, Pedro F. Oliveira, Catarina C. F. Homem and Rute S. Moura
Int. J. Mol. Sci. 2024, 25(9), 5054; https://doi.org/10.3390/ijms25095054 - 06 May 2024
Abstract
Lung branching morphogenesis relies on intricate epithelial–mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal­–distal patterning and branching morphogenesis, but its role as a metabolic [...] Read more.
Lung branching morphogenesis relies on intricate epithelial–mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal­–distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA’s pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders. Full article
15 pages, 2203 KiB  
Article
Clinicopathological Significance of Cyclin-Dependent Kinase 2 (CDK2) in Ductal Carcinoma In Situ and Early-Stage Invasive Breast Cancers
by Ayat Lashen, Shatha Alqahtani, Ahmed Shoqafi, Mashael Algethami, Jennie N. Jeyapalan, Nigel P. Mongan, Emad A. Rakha and Srinivasan Madhusudan
Int. J. Mol. Sci. 2024, 25(9), 5053; https://doi.org/10.3390/ijms25095053 - 06 May 2024
Abstract
Cyclin-dependent kinase 2 (CDK2) is a key cell cycle regulator, with essential roles during G1/S transition. The clinicopathological significance of CDK2 in ductal carcinomas in situ (DCIS) and early-stage invasive breast cancers (BCs) remains largely unknown. Here, we evaluated CDK2’s protein expression in [...] Read more.
Cyclin-dependent kinase 2 (CDK2) is a key cell cycle regulator, with essential roles during G1/S transition. The clinicopathological significance of CDK2 in ductal carcinomas in situ (DCIS) and early-stage invasive breast cancers (BCs) remains largely unknown. Here, we evaluated CDK2’s protein expression in 479 BC samples and 216 DCIS specimens. Analysis of CDK2 transcripts was completed in the METABRIC cohort (n = 1980) and TCGA cohort (n = 1090), respectively. A high nuclear CDK2 protein expression was significantly associated with aggressive phenotypes, including a high tumour grade, lymph vascular invasion, a poor Nottingham prognostic index (all p-values < 0.0001), and shorter survival (p = 0.006), especially in luminal BC (p = 0.009). In p53-mutant BC, high nuclear CDK2 remained linked with worse survival (p = 0.01). In DCIS, high nuclear/low cytoplasmic co-expression showed significant association with a high tumour grade (p = 0.043), triple-negative and HER2-enriched molecular subtypes (p = 0.01), Comedo necrosis (p = 0.024), negative ER status (p = 0.004), negative PR status (p < 0.0001), and a high proliferation index (p < 0.0001). Tumours with high CDK2 transcripts were more likely to have higher expressions of genes involved in the cell cycle, homologous recombination, and p53 signaling. We provide compelling evidence that high CDK2 is a feature of aggressive breast cancers. The clinical evaluation of CDK2 inhibitors in early-stage BC patients will have a clinical impact. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapeutics in Breast Cancer)
18 pages, 2852 KiB  
Article
Genome-Wide Identification and Expression Profile Analysis of the Phenylalanine Ammonia-Lyase Gene Family in Hevea brasiliensis
by Hui Liu, Qiguang He, Yiyu Hu, Ruilin Lu, Shuang Wu, Chengtian Feng, Kun Yuan and Zhenhui Wang
Int. J. Mol. Sci. 2024, 25(9), 5052; https://doi.org/10.3390/ijms25095052 - 06 May 2024
Abstract
The majority of the world’s natural rubber comes from the rubber tree (Hevea brasiliensis). As a key enzyme for synthesizing phenylpropanoid compounds, phenylalanine ammonia-lyase (PAL) has a critical role in plant satisfactory growth and environmental adaptation. To clarify the characteristics of [...] Read more.
The majority of the world’s natural rubber comes from the rubber tree (Hevea brasiliensis). As a key enzyme for synthesizing phenylpropanoid compounds, phenylalanine ammonia-lyase (PAL) has a critical role in plant satisfactory growth and environmental adaptation. To clarify the characteristics of rubber tree PAL family genes, a genome-wide characterization of rubber tree PALs was conducted in this study. Eight PAL genes (HbPAL1-HbPAL8), which spread over chromosomes 3, 7, 8, 10, 12, 13, 14, 16, and 18, were found to be present in the genome of H. brasiliensis. Phylogenetic analysis classified HbPALs into groups I and II, and the group I HbPALs (HbPAL1-HbPAL6) displayed similar conserved motif compositions and gene architectures. Tissue expression patterns of HbPALs quantified by quantitative real-time PCR (qPCR) proved that distinct HbPALs exhibited varying tissue expression patterns. The HbPAL promoters contained a plethora of cis-acting elements that responded to hormones and stress, and the qPCR analysis demonstrated that abiotic stressors like cold, drought, salt, and H2O2-induced oxidative stress, as well as hormones like salicylic acid, abscisic acid, ethylene, and methyl jasmonate, controlled the expression of HbPALs. The majority of HbPALs were also regulated by powdery mildew, anthracnose, and Corynespora leaf fall disease infection. In addition, HbPAL1, HbPAL4, and HbPAL7 were significantly up-regulated in the bark of tapping panel dryness rubber trees relative to that of healthy trees. Our results provide a thorough comprehension of the characteristics of HbPAL genes and set the groundwork for further investigation of the biological functions of HbPALs in rubber trees. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
17 pages, 5604 KiB  
Article
Anti-Biofilm Activity of Oleacein and Oleocanthal from Extra-Virgin Olive Oil toward Pseudomonas aeruginosa
by Marisa Di Pietro, Simone Filardo, Roberto Mattioli, Giuseppina Bozzuto, Giammarco Raponi, Luciana Mosca and Rosa Sessa
Int. J. Mol. Sci. 2024, 25(9), 5051; https://doi.org/10.3390/ijms25095051 - 06 May 2024
Abstract
New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant “high-priority pathogen”, are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic [...] Read more.
New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant “high-priority pathogen”, are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial Activity against Drug-Resistant Strains, 2nd Edition)
18 pages, 912 KiB  
Article
Serum Levels of Adiponectin Are Strongly Associated with Lipoprotein Subclasses in Healthy Volunteers but Not in Patients with Metabolic Syndrome
by Iva Klobučar, Hansjörg Habisch, Lucija Klobučar, Matias Trbušić, Gudrun Pregartner, Andrea Berghold, Gerhard M. Kostner, Hubert Scharnagl, Tobias Madl, Saša Frank and Vesna Degoricija
Int. J. Mol. Sci. 2024, 25(9), 5050; https://doi.org/10.3390/ijms25095050 - 06 May 2024
Abstract
Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet [...] Read more.
Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet it remains unexplored whether the observed associations also exist in patients with MS. Therefore, in the present study, we analyzed the serum levels of lipoprotein subclasses using nuclear magnetic resonance spectroscopy and examined their associations with the serum levels of adiponectin in patients with MS in comparison with healthy volunteers (HVs). In the HVs, the serum levels of adiponectin were significantly negatively correlated with the serum levels of large buoyant-, very-low-density lipoprotein, and intermediate-density lipoprotein, as well as small dense low-density lipoprotein (LDL) and significantly positively correlated with large buoyant high-density lipoprotein (HDL). In patients with MS, however, adiponectin was only significantly correlated with the serum levels of phospholipids in total HDL and large buoyant LDL. As revealed through logistic regression and orthogonal partial least-squares discriminant analyses, high adiponectin serum levels were associated with low levels of small dense LDL and high levels of large buoyant HDL in the HVs as well as high levels of large buoyant LDL and total HDL in patients with MS. We conclude that the presence of MS weakens or abolishes the strong associations between adiponectin and the lipoprotein parameters observed in HVs and disturbs the complex interplay between adiponectin and lipoprotein metabolism. Full article
(This article belongs to the Special Issue Lipoprotein Metabolism in Health and Disease 2.0)
19 pages, 4833 KiB  
Article
OsCAMTA3 Negatively Regulates Disease Resistance to Magnaporthe oryzae by Associating with OsCAMTAPL in Rice
by Shibo Yu, Shengping Li, Wei Wang and Dingzhong Tang
Int. J. Mol. Sci. 2024, 25(9), 5049; https://doi.org/10.3390/ijms25095049 - 06 May 2024
Abstract
Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the [...] Read more.
Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security. Full article
(This article belongs to the Special Issue Advanced Research in Plant-Fungi Interactions)
Show Figures

Figure 1

16 pages, 2190 KiB  
Article
KiSS-1 Modulation by Epigenetic Agents Improves the Cisplatin Sensitivity of Lung Cancer Cells
by Giovanni Luca Beretta, Desirè Alampi, Cristina Corno, Nives Carenini, Elisabetta Corna and Paola Perego
Int. J. Mol. Sci. 2024, 25(9), 5048; https://doi.org/10.3390/ijms25095048 - 06 May 2024
Abstract
Epigenetic alterations my play a role in the aggressive behavior of Non-Small Cell Lung Cancer (NSCLC). Treatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, vorinostat) has been reported to interfere with the proliferative and invasive potential of NSCLC cells. In addition, [...] Read more.
Epigenetic alterations my play a role in the aggressive behavior of Non-Small Cell Lung Cancer (NSCLC). Treatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, vorinostat) has been reported to interfere with the proliferative and invasive potential of NSCLC cells. In addition, the DNA methyltransferase inhibitor azacytidine (AZA, vidaza) can modulate the levels of the metastasis suppressor KiSS-1. Thus, since cisplatin is still clinically available for NSCLC therapy, the aim of this study was to evaluate drug combinations between cisplatin and SAHA as well as AZA using cisplatin-sensitive H460 and -resistant H460/Pt NSCLC cells in relation to KiSS-1 modulation. An analysis of drug interaction according to the Combination-Index values indicated a more marked synergistic effect when the exposure to SAHA or AZA preceded cisplatin treatment with respect to a simultaneous schedule. A modulation of proteins involved in apoptosis (p53, Bax) was found in both sensitive and resistant cells, and compared to the treatment with epigenetic agents alone, the combination of cisplatin and SAHA or AZA increased apoptosis induction. The epigenetic treatments, both as single agents and in combination, increased the release of KiSS-1. Finally, the exposure of cisplatin-sensitive and -resistant cells to the kisspeptin KP10 enhanced cisplatin induced cell death. The efficacy of the combination of SAHA and cisplatin was tested in vivo after subcutaneous inoculum of parental and resistant cells in immunodeficient mice. A significant tumor volume inhibition was found when mice bearing advanced tumors were treated with the combination of SAHA and cisplatin according to the best schedule identified in cellular studies. These results, together with the available literature, support that epigenetic drugs are amenable for the combination treatment of NSCLC, including patients bearing cisplatin-resistant tumors. Full article
(This article belongs to the Section Molecular Oncology)
23 pages, 5076 KiB  
Article
Natural Compounds for Bone Remodeling: A Computational and Experimental Approach Targeting Bone Metabolism-Related Proteins
by Alexandros-Timotheos Loukas, Michail Papadourakis, Vasilis Panagiotopoulos, Apostolia Zarmpala, Eleni Chontzopoulou, Stephanos Christodoulou, Theodora Katsila, Panagiotis Zoumpoulakis and Minos-Timotheos Matsoukas
Int. J. Mol. Sci. 2024, 25(9), 5047; https://doi.org/10.3390/ijms25095047 - 06 May 2024
Abstract
Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and [...] Read more.
Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome’s influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment. Full article
(This article belongs to the Topic Natural Products and Drug Discovery)
Show Figures

Figure 1

16 pages, 4301 KiB  
Article
Complexes of Gold(III) with Hydrazones Derived from Pyridoxal: Stability, Structure, and Nature of UV-Vis Spectra
by Natalia N. Kuranova, Oleg A. Pimenov, Maksim N. Zavalishin and George A. Gamov
Int. J. Mol. Sci. 2024, 25(9), 5046; https://doi.org/10.3390/ijms25095046 - 06 May 2024
Abstract
Pyridoxal and pyridoxal 5′-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, [...] Read more.
Pyridoxal and pyridoxal 5′-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5′-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5′-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data. Full article
(This article belongs to the Special Issue Materials for Photobiology 2.0)
Show Figures

Figure 1

14 pages, 3166 KiB  
Article
Prognostic Value of B7H4 Expression in Patients with Solid Cancers: A Systematic Review and Meta-Analysis
by Miriam Dawidowicz, Agnieszka Kula, Sylwia Mielcarska, Elżbieta Świętochowska and Dariusz Waniczek
Int. J. Mol. Sci. 2024, 25(9), 5045; https://doi.org/10.3390/ijms25095045 - 06 May 2024
Abstract
V-set domain-containing T-cell activation inhibitor 1 (aliases VTCN1, B7H4) participates in tumour immune escape by delivering inhibitory signals to T cells. The purpose of this article was to assess the B7H4 prognostic value in solid cancers. Three databases were searched for relevant articles. [...] Read more.
V-set domain-containing T-cell activation inhibitor 1 (aliases VTCN1, B7H4) participates in tumour immune escape by delivering inhibitory signals to T cells. The purpose of this article was to assess the B7H4 prognostic value in solid cancers. Three databases were searched for relevant articles. The main endpoints were overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS). Appropriate hazard ratios (HRs) were pooled. The R studio software (version 4.0.3) was used for data analysis. Thirty-one studies met the inclusion criteria. High expression of B7H4 was associated with worse OS (HR = 1.52, 95% CI: 1.37–1.68) but not with DSS (HR = 1.14, 95% CI: 0.49–2.63), RFS (HR = 1.77, 95% CI: 0.75–4.18), DFS (HR = 1.29, 95% CI: 0.8–2.09), or PFS (HR = 1.71, 95% CI: 0.91–3.2) in patients with solid cancers. High expression of B7H4 is associated with a poorer prognosis in patients with solid cancers. B7H4 is a promising prognostic biomarker and immunotherapeutic target for various solid cancers because of its activity in cancer immunity and tumourigenesis. Full article
Show Figures

Figure 1

28 pages, 2232 KiB  
Review
Emerging Roles of Vitamin B12 in Aging and Inflammation
by Sergey Yu. Simonenko, Daria A. Bogdanova and Nikita A. Kuldyushev
Int. J. Mol. Sci. 2024, 25(9), 5044; https://doi.org/10.3390/ijms25095044 - 06 May 2024
Abstract
Vitamin B12 (cobalamin) is an essential nutrient for humans and animals. Metabolically active forms of B12-methylcobalamin and 5-deoxyadenosylcobalamin are cofactors for the enzymes methionine synthase and mitochondrial methylmalonyl-CoA mutase. Malfunction of these enzymes due to a scarcity of vitamin B [...] Read more.
Vitamin B12 (cobalamin) is an essential nutrient for humans and animals. Metabolically active forms of B12-methylcobalamin and 5-deoxyadenosylcobalamin are cofactors for the enzymes methionine synthase and mitochondrial methylmalonyl-CoA mutase. Malfunction of these enzymes due to a scarcity of vitamin B12 leads to disturbance of one-carbon metabolism and impaired mitochondrial function. A significant fraction of the population (up to 20%) is deficient in vitamin B12, with a higher rate of deficiency among elderly people. B12 deficiency is associated with numerous hallmarks of aging at the cellular and organismal levels. Cellular senescence is characterized by high levels of DNA damage by metabolic abnormalities, increased mitochondrial dysfunction, and disturbance of epigenetic regulation. B12 deficiency could be responsible for or play a crucial part in these disorders. In this review, we focus on a comprehensive analysis of molecular mechanisms through which vitamin B12 influences aging. We review new data about how deficiency in vitamin B12 may accelerate cellular aging. Despite indications that vitamin B12 has an important role in health and healthy aging, knowledge of the influence of vitamin B12 on aging is still limited and requires further research. Full article
(This article belongs to the Special Issue Functional Role of Cytokines in Cancer and Chronic Inflammation)
Show Figures

Figure 1

26 pages, 1466 KiB  
Review
Molecular Mechanisms of CBL-CIPK Signaling Pathway in Plant Abiotic Stress Tolerance and Hormone Crosstalk
by Cengiz Kaya, Ferhat Uğurlar and Ioannis-Dimosthenis S. Adamakis
Int. J. Mol. Sci. 2024, 25(9), 5043; https://doi.org/10.3390/ijms25095043 - 06 May 2024
Abstract
Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). [...] Read more.
Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant’s response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein–protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops’ abiotic stress. Full article
Show Figures

Figure 1

18 pages, 946 KiB  
Review
The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples
by Vladislav Deigin, Natalia Linkova, Julia Vinogradova, Dmitrii Vinogradov, Victoria Polyakova, Dmitrii Medvedev, Alexander Krasichkov and Olga Volpina
Int. J. Mol. Sci. 2024, 25(9), 5042; https://doi.org/10.3390/ijms25095042 - 06 May 2024
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides’ susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino [...] Read more.
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides’ susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed. Full article
(This article belongs to the Special Issue Peptides as Biochemical Tools and Modulators of Biological Activity)
Show Figures

Figure 1

24 pages, 6127 KiB  
Review
Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications
by Karine Charrière, Vincent Schneider, Manon Perrignon-Sommet, Gérard Lizard, Alexandre Benani, Agnès Jacquin-Piques and Anne Vejux
Int. J. Mol. Sci. 2024, 25(9), 5041; https://doi.org/10.3390/ijms25095041 - 06 May 2024
Abstract
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present [...] Read more.
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson’s disease, Alzheimer’s disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin’s multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin’s therapeutic promise and calls for further investigation into its clinical applications. Full article
(This article belongs to the Special Issue Molecular Mechanism of Natural Compounds in Neuroinflammation)
Show Figures

Figure 1

10 pages, 277 KiB  
Opinion
Neuron-Specific Enolase—What Are We Measuring?
by Anastasiya S. Babkina, Maxim A. Lyubomudrov, Mikhail A. Golubev, Mikhail V. Pisarev and Arkady M. Golubev
Int. J. Mol. Sci. 2024, 25(9), 5040; https://doi.org/10.3390/ijms25095040 - 06 May 2024
Abstract
Since the discovery of the neuron-specific protein by Moore and McGregor in 1965, tens of thousands of studies have investigated the basic and applied significance of neuron-specific enolase (NSE). This promising biomarker, according to many researchers, has not found widespread use in clinical [...] Read more.
Since the discovery of the neuron-specific protein by Moore and McGregor in 1965, tens of thousands of studies have investigated the basic and applied significance of neuron-specific enolase (NSE). This promising biomarker, according to many researchers, has not found widespread use in clinical practice, particularly in acute cerebrovascular accidents. Moreover, the several studies refuting the usefulness of serum NSE measurement in critically ill patients leads us to consider the reasons for such contradictory conclusions. In this article, we have analyzed the main directions in the study of NSE and expressed our perspective on the reasons for the contradictory results and the difficulties in implementing the results of these studies in clinical practice. In our opinion, the method of the enzyme-linked immunosorbent assay (ELISA) used in the majority of the studies is inappropriate for the evaluation of NSE as a marker of central nervous system damage, because it does not allow for the differentiation of heterodimers of enolases and the assessment of the enzymatic activity of this group of enzymatic proteins. Therefore, the methodological approach for the evaluation of NSE (γγ-enolase) as a biomarker needs to be elaborated and improved. Furthermore, the specificity of the applied research methods and the appropriateness of the continued use of the term “neuron-specific enolase” must be addressed. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
10 pages, 655 KiB  
Review
Transformative Landscape of Anesthesia Education: Simulation, AI Integration, and Learner-Centric Reforms: A Narrative Review
by Nobuyasu Komasawa
Anesth. Res. 2024, 1(1), 34-43; https://doi.org/10.3390/anesthres1010005 - 06 May 2024
Abstract
This article examines the intersection of simulation-based education and the AI revolution in anesthesia medicine. With AI technologies reshaping perioperative management, simulation education faces both challenges and opportunities. The integration of AI into anesthesia practice offers personalized management possibilities, particularly in preoperative assessment [...] Read more.
This article examines the intersection of simulation-based education and the AI revolution in anesthesia medicine. With AI technologies reshaping perioperative management, simulation education faces both challenges and opportunities. The integration of AI into anesthesia practice offers personalized management possibilities, particularly in preoperative assessment and monitoring. However, the ethical, legal, and social implications necessitate careful navigation, emphasizing patient data privacy and accountability. Anesthesiologists must develop non-technical skills, including ethical decision-making and effective AI management, to adapt to the AI era. The experience-based medical education (EXPBME) framework underscores reflective learning and AI literacy acquisition, fostering lifelong learning and adaptation. Learner-centered approaches are pivotal in anesthesia education, promoting active engagement and self-regulated learning. Simulation-based learning, augmented by AI technologies, provides a dynamic platform for technical and non-technical skills development. Ultimately, by prioritizing non-technical skills, embracing learner-centered education, and responsibly leveraging AI technologies, anesthesiologists can contribute to enhanced patient care and safety in the evolving perioperative landscape. Full article
Show Figures

Figure 1

16 pages, 1347 KiB  
Article
RNA Polymerase Inhibitor Enisamium for Treatment of Moderate COVID-19 Patients: A Randomized, Placebo-Controlled, Multicenter, Double-Blind Phase 3 Clinical Trial
by Olga Holubovska, Pavlo Babich, Alla Mironenko, Jens Milde, Yuriy Lebed, Holger Stammer, Lutz Mueller, Aartjan J. W. te Velthuis, Victor Margitich and Andrew Goy
Adv. Respir. Med. 2024, 92(3), 202-217; https://doi.org/10.3390/arm92030021 - 06 May 2024
Abstract
Enisamium is an orally available therapeutic that inhibits influenza A virus and SARS-CoV-2 replication. We evaluated the clinical efficacy of enisamium treatment combined with standard care in adult, hospitalized patients with moderate COVID-19 requiring external oxygen. Hospitalized patients with laboratory-confirmed SARS-CoV-2 infection were [...] Read more.
Enisamium is an orally available therapeutic that inhibits influenza A virus and SARS-CoV-2 replication. We evaluated the clinical efficacy of enisamium treatment combined with standard care in adult, hospitalized patients with moderate COVID-19 requiring external oxygen. Hospitalized patients with laboratory-confirmed SARS-CoV-2 infection were randomly assigned to receive either enisamium (500 mg per dose, four times a day) or a placebo. The primary outcome was an improvement of at least two points on an eight-point severity rating (SR) scale within 29 days of randomization. We initially set out to study the effect of enisamium on patients with a baseline SR of 4 or 5. However, because the study was started early in the COVID-19 pandemic, and COVID-19 had been insufficiently studied at the start of our study, an interim analysis was performed alongside a conditional power analysis in order to ensure patient safety and assess whether the treatment was likely to be beneficial for one or both groups. Following this analysis, a beneficial effect was observed for patients with an SR of 4 only, i.e., patients with moderate COVID-19 requiring supplementary oxygen. The study was continued for these COVID-19 patients. Overall, a total of 592 patients were enrolled and randomized between May 2020 and March 2021. Patients with a baseline SR of 4 were divided into two groups: 142 (49.8%) were assigned to the enisamium group and 143 (50.2%) to the placebo group. An analysis of the population showed that if patients were treated within 4 days of the onset of COVID-19 symptoms (n = 33), the median time to improvement was 8 days for the enisamium group and 13 days for the placebo group (p = 0.005). For patients treated within 10 days of the onset of COVID-19 symptoms (n = 154), the median time to improvement was 10 days for the enisamium group and 12 days for the placebo group (p = 0.002). Our findings suggest that enisamium is safe to use with COVID-19 patients, and that the observed clinical benefit of enisamium is worth reporting and studying in detail. Full article
Show Figures

Figure 1

11 pages, 258 KiB  
Review
Outcome Measures of Clinical Trials in Pediatric Chronic Kidney Disease
by Ziyun Liang, Guohua He, Liyuan Tao, Xuhui Zhong, Tianxin Lin, Xiaoyun Jiang and Jie Ding
Future 2024, 2(2), 56-66; https://doi.org/10.3390/future2020005 - 06 May 2024
Abstract
Clinical trials of chronic kidney disease (CKD) in children have important implications for the early identification and management of CKD. The selection of clinical trial outcomes is critical for assessing the effectiveness of interventions in pediatric CKD clinical trials. This review systematically examines [...] Read more.
Clinical trials of chronic kidney disease (CKD) in children have important implications for the early identification and management of CKD. The selection of clinical trial outcomes is critical for assessing the effectiveness of interventions in pediatric CKD clinical trials. This review systematically examines the spectrum of outcome measures deployed in pediatric CKD clinical trials, which includes clinical and alternative outcomes, patient-reported outcome measures (PROMs), and safety indicators. Alternative outcome measures were stratified into four levels of evidence strength: convincing, probable, suggestive, and inconclusive. Consequently, the selection of outcome measures for pediatric CKD clinical trials mandates careful consideration of both their methodological feasibility and the robustness of their evidence base. Moreover, the burgeoning field of PROMs warrants integration into the design of future pediatric clinical trials to enrich the relevance and impact of research findings. Full article
27 pages, 2011 KiB  
Review
The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms
by Amanda K. Garcia and Sharilyn Almodovar
J. Vasc. Dis. 2024, 3(2), 174-200; https://doi.org/10.3390/jvd3020015 - 06 May 2024
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated [...] Read more.
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda. Full article
(This article belongs to the Section Cardiovascular Diseases)
Show Figures

Figure 1

14 pages, 1299 KiB  
Article
Analysing Pre-Operative Gait Patterns Using Inertial Wearable Sensors: An Observational Study of Participants Undergoing Total Hip and Knee Replacement
by Pragadesh Natarajan, Ashley Lim Cha Yin, R. Dineth Fonseka, David Abi-Hanna, Kaitlin Rooke, Luke Sy, Monish Maharaj, David Broe, Lianne Koinis and Ralph Jasper Mobbs
Surg. Tech. Dev. 2024, 13(2), 178-191; https://doi.org/10.3390/std13020011 - 06 May 2024
Abstract
Background. Knee and hip arthroplasty are two of the most frequently performed procedures in orthopaedic surgery. They are associated with positive patient-reported outcomes and significant improvements in quality of life for patients. Despite this, there may be room for further progress by quantifying [...] Read more.
Background. Knee and hip arthroplasty are two of the most frequently performed procedures in orthopaedic surgery. They are associated with positive patient-reported outcomes and significant improvements in quality of life for patients. Despite this, there may be room for further progress by quantifying functional improvements with gait analysis. Our study therefore aims to characterise the disease-specific gait pattern of participants with knee and hip osteoarthritis undergoing total joint replacement using a single chest-based wearable sensor. Methods. Twenty-nine participants awaiting total hip replacement and 28 participants awaiting total knee replacement underwent three-dimensional motion analysis with inertial wearable sensors. These gait metrics were then compared with 28 healthy controls of similar ages. Differences in gait metrics were evaluated using a T-test. The participants were recruited through a single centre to participate in this cross-sectional observational study. Participants with osteoarthritis severity sufficient to warrant surgical intervention were considered for inclusion in our study. The participants were instructed to walk 15–120 m in a hospital environment while fitted with a chest-based wearable sensor. Results. In total, three domains were evaluated, including spatiotemporal, variability and asymmetry parameters. There were marked variations in the gait asymmetry parameters and step length variation in both the hip and knee osteoarthritis patients compared with the healthy controls. The magnitude of gait deterioration in terms of step length asymmetry was greater on average in the hip osteoarthritis group than the knee group. The hip osteoarthritis (+180%, p < 0.001) and knee osteoarthritis (+129%, p = 0.001) groups demonstrated marked differences in step length asymmetry. Discussion. A single chest-based sensor was found to be capable of detecting pathological gait signatures in osteoarthritis patients when compared with age-matched controls. Future studies should compare pre- and postoperative changes to disease-specific gait impairments to validate the use of wearable sensors as a clinical adjunct. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop