The 2023 MDPI Annual Report has
been released!
 
19 pages, 2026 KiB  
Article
Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant
by Sameer Al-Dahidi, Piero Baraldi, Miriam Fresc, Enrico Zio and Lorenzo Montelatici
Energies 2024, 17(10), 2424; https://doi.org/10.3390/en17102424 (registering DOI) - 18 May 2024
Abstract
We propose a method for selecting the optimal set of weather features for wind energy prediction. This problem is tackled by developing a wrapper approach that employs binary differential evolution to search for the best feature subset, and an ensemble of artificial neural [...] Read more.
We propose a method for selecting the optimal set of weather features for wind energy prediction. This problem is tackled by developing a wrapper approach that employs binary differential evolution to search for the best feature subset, and an ensemble of artificial neural networks to predict the energy production from a wind plant. The main novelties of the approach are the use of features provided by different weather forecast providers and the use of an ensemble composed of a reduced number of models for the wrapper search. Its effectiveness is verified using weather and energy production data collected from a 34 MW real wind plant. The model is built using the selected optimal subset of weather features and allows for (i) a 1% reduction in the mean absolute error compared with a model that considers all available features and a 4.4% reduction compared with the model currently employed by the plant owners, and (ii) a reduction in the number of selected features by 85% and 50%, respectively. Reducing the number of features boosts the prediction accuracy. The implication of this finding is significant as it allows plant owners to create profitable offers in the energy market and efficiently manage their power unit commitment, maintenance scheduling, and energy storage optimization. Full article
Show Figures

Figure 1

15 pages, 4772 KiB  
Technical Note
Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy
by Giovanni Laneve, Alejandro Téllez, Ashish Kallikkattil Kuruvila, Milena Bruno and Valentina Messineo
Remote Sens. 2024, 16(10), 1792; https://doi.org/10.3390/rs16101792 (registering DOI) - 18 May 2024
Abstract
Remote sensing techniques have become pivotal in monitoring algal blooms and population dynamics in freshwater bodies, particularly to assess the ecological risks associated with eutrophication. This study focuses on remote sensing methods for the analysis of 4 Italian lakes with diverse geological origins, [...] Read more.
Remote sensing techniques have become pivotal in monitoring algal blooms and population dynamics in freshwater bodies, particularly to assess the ecological risks associated with eutrophication. This study focuses on remote sensing methods for the analysis of 4 Italian lakes with diverse geological origins, leveraging water quality samples and data from the Sentinel-2 and Landsat 5.7–8 platforms. Chl-a, a well-correlated indicator of phytoplankton biomass abundance and eutrophication, was estimated using ordinary least squares linear regression to calibrate surface reflectance with chl-a concentrations. Temporal gaps between sample and image acquisition were considered, and atmospheric correction dedicated to water surfaces was implemented using ACOLITE and those specific to each satellite platform. The developed models achieved determination coefficients higher than 0.69 with mean square errors close to 3 mg/m3 for water bodies with low turbidity. Furthermore, the time series described by the models portray the seasonal variations in the lakes water bodies. Full article
(This article belongs to the Special Issue Satellite-Based Climate Change and Sustainability Studies)
Show Figures

Figure 1

14 pages, 636 KiB  
Article
Impact of Real-World Outpatient Cancer Rehabilitation Services on Health-Related Quality of Life of Cancer Survivors across 12 Diagnosis Types in the United States
by Mackenzi Pergolotti, Kelley C. Wood, Tiffany D. Kendig and Stacye Mayo
Cancers 2024, 16(10), 1927; https://doi.org/10.3390/cancers16101927 (registering DOI) - 18 May 2024
Abstract
Compared to adults without cancer, cancer survivors report poorer health-related quality of life (HRQOL), which is associated with negative treatment outcomes and increased healthcare use. Cancer-specialized physical and occupational therapy (PT/OT) could optimize HRQOL; however, the impact among survivors with non-breast malignancies is [...] Read more.
Compared to adults without cancer, cancer survivors report poorer health-related quality of life (HRQOL), which is associated with negative treatment outcomes and increased healthcare use. Cancer-specialized physical and occupational therapy (PT/OT) could optimize HRQOL; however, the impact among survivors with non-breast malignancies is unknown. This retrospective (2020–2022), observational, study of medical record data of 12 cancer types, examined pre/post-HRQOL among cancer survivors who completed PT/OT. PROMIS® HRQOL measures: Global Health (physical [GPH] and mental [GMH]), Physical Function (PF), and Ability to Participate in Social Roles and Activities (SRA) were evaluated using linear mixed effect models by cancer type, then compared to the minimal important change (MIC, 2 points). Survivors were 65.44 ± 12.84 years old (range: 19–91), male (54%), with a median of 12 visits. Improvements in GPH were significant (p < 0.05) for all cancer types and all achieved MIC. Improvements in GMH were significant for 11/12 cancer types and 8/12 achieved MIC. Improvements in PF were significant for all cancer types and all achieved the MIC. Improvements in SRA were significant for all cancer types and all groups achieved the MIC. We observed statistically and clinically significant improvements in HRQOL domains for each of the 12 cancer types evaluated. Full article
(This article belongs to the Special Issue Medical Complications and Supportive Care in Patients with Cancer)
Show Figures

Figure 1

18 pages, 3846 KiB  
Article
Transcriptome and Metabolome Analysis of Rice Cultivar CBB23 after Inoculation by Xanthomonas oryzae pv. oryzae Strains AH28 and PXO99A
by Pingli Chen, Junjie Wang, Qing Liu, Junjie Liu, Qiaoping Mo, Bingrui Sun, Xingxue Mao, Liqun Jiang, Jing Zhang, Shuwei Lv, Hang Yu, Weixiong Chen, Wei Liu and Chen Li
Plants 2024, 13(10), 1411; https://doi.org/10.3390/plants13101411 (registering DOI) - 18 May 2024
Abstract
Bacterial leaf blight (BLB), among the most serious diseases in rice production, is caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23, the broadest resistance gene against BLB in rice, is widely used in rice breeding. In this study, the rice [...] Read more.
Bacterial leaf blight (BLB), among the most serious diseases in rice production, is caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23, the broadest resistance gene against BLB in rice, is widely used in rice breeding. In this study, the rice variety CBB23 carrying the Xa23 resistance gene was inoculated with AH28 and PXO99A to identify differentially expressed genes (DEGs) associated with the resistance. Transcriptome sequencing of the infected leaves showed 7997 DEGs between the two strains at different time points, most of which were up-regulated, including cloned rice anti-blight, peroxidase, pathology-related, protein kinase, glucosidase, and other coding genes, as well as genes related to lignin synthesis, salicylic acid, jasmonic acid, and secondary metabolites. Additionally, the DEGs included 40 cloned, five NBS-LRR, nine SWEET family, and seven phenylalanine aminolyase genes, and 431 transcription factors were differentially expressed, the majority of which belonged to the WRKY, NAC, AP2/ERF, bHLH, and MYB families. Metabolomics analysis showed that a large amount of alkaloid and terpenoid metabolite content decreased significantly after inoculation with AH28 compared with inoculation with PXO99A, while the content of amino acids and their derivatives significantly increased. This study is helpful in further discovering the pathogenic mechanism of AH28 and PXO99A in CBB23 rice and provides a theoretical basis for cloning and molecular mechanism research related to BLB resistance in rice. Full article
(This article belongs to the Special Issue Plant-Bacteria Interaction)
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Influence of Solute Drag Effect and Interphase Precipitation of Nb on Ferrite Transformation
by Yiming Cai, Ran Wei, Duoduo Jin, Honghong Wang, Xiangliang Wan, Chengyang Hu and Kaiming Wu
Materials 2024, 17(10), 2440; https://doi.org/10.3390/ma17102440 (registering DOI) - 18 May 2024
Abstract
The significant impact of Nb on ferrite transformation, both in terms of solute drag effect (SDE) and interphase precipitation, was investigated quantitatively. Ferrite transformation kinetics were characterized using thermal expansion experiments and theoretical calculations. The microstructures were characterized using high−temperature confocal laser scanning [...] Read more.
The significant impact of Nb on ferrite transformation, both in terms of solute drag effect (SDE) and interphase precipitation, was investigated quantitatively. Ferrite transformation kinetics were characterized using thermal expansion experiments and theoretical calculations. The microstructures were characterized using high−temperature confocal laser scanning microscopy (CLSM), a field−emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Under a higher driving force, interphase precipitations were observed in the sample with a higher Nb content. A three−dimensional (3D) reconstruction method was used to convert the two−dimensional (2D) image of interphase precipitation into a three−dimensional model for a more typical view. The SDE and interphase precipitation had opposite effects on the kinetics of ferrite transformation. A lower Nb content showed a strong contribution to the SDE, which delayed ferrite transformation. A higher concentration of Nb was expected to enhance the SDE, but the inhibition effect was eliminated by the interphase precipitation of NbC during interfacial migration. Both the experimental results and theoretical calculations confirmed this phenomenon. Full article
32 pages, 8907 KiB  
Article
Polydatin and Nicotinamide Rescue the Cellular Phenotype of Mitochondrial Diseases by Mitochondrial Unfolded Protein Response (mtUPR) Activation
by Paula Cilleros-Holgado, David Gómez-Fernández, Rocío Piñero-Pérez, José Manuel Romero Domínguez, Marta Talaverón-Rey, Diana Reche-López, Juan Miguel Suárez-Rivero, Mónica Álvarez-Córdoba, Ana Romero-González, Alejandra López-Cabrera, Marta Castro De Oliveira, Andrés Rodríguez-Sacristan and José Antonio Sánchez-Alcázar
Biomolecules 2024, 14(5), 598; https://doi.org/10.3390/biom14050598 (registering DOI) - 18 May 2024
Abstract
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this [...] Read more.
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations. Full article
(This article belongs to the Special Issue Mitochondrial Quality Control in Aging and Neurodegeneration)
Show Figures

Figure 1

9 pages, 832 KiB  
Article
Uncovering the First AGN Jets with AXIS
by Thomas Connor, Eduardo Bañados, Nico Cappelluti and Adi Foord
Universe 2024, 10(5), 227; https://doi.org/10.3390/universe10050227 (registering DOI) - 18 May 2024
Abstract
Jets powered by AGN in the early Universe (z6) have the potential to not only define the evolutionary trajectories of the first-forming massive galaxies but to enable the accelerated growth of their associated SMBHs. Under typical assumptions, jets could [...] Read more.
Jets powered by AGN in the early Universe (z6) have the potential to not only define the evolutionary trajectories of the first-forming massive galaxies but to enable the accelerated growth of their associated SMBHs. Under typical assumptions, jets could even rectify observed quasars with light seed formation scenarios; however, not only are constraints on the parameters of the first jets lacking, observations of these objects are scarce. Owing to the significant energy density of the CMB at these epochs capable of quenching radio emission, observations will require powerful, high angular resolution X-ray imaging to map and characterize these jets. As such, AXIS will be necessary to understand early SMBH growth and feedback. This White Paper is part of a series commissioned for the AXIS Probe Concept Mission; additional AXIS White Papers can be found at the AXIS website. Full article
(This article belongs to the Section Galaxies and Clusters)
15 pages, 6366 KiB  
Article
Transcriptome Analysis Reveals Potential Regulators of DMI Fungicide Resistance in the Citrus Postharvest Pathogen Penicillium digitatum
by Yue Xi, Jing Zhang, Botao Fan, Miaomiao Sun, Wenqian Cao, Xiaotian Liu, Yunpeng Gai, Chenjia Shen, Huizhong Wang and Mingshuang Wang
J. Fungi 2024, 10(5), 360; https://doi.org/10.3390/jof10050360 (registering DOI) - 18 May 2024
Abstract
Green mold, caused by Penicillium digitatum, is the major cause of citrus postharvest decay. Currently, the application of sterol demethylation inhibitor (DMI) fungicide is one of the main control measures to prevent green mold. However, the fungicide-resistance problem in the pathogen P. [...] Read more.
Green mold, caused by Penicillium digitatum, is the major cause of citrus postharvest decay. Currently, the application of sterol demethylation inhibitor (DMI) fungicide is one of the main control measures to prevent green mold. However, the fungicide-resistance problem in the pathogen P. digitatum is growing. The regulatory mechanism of DMI fungicide resistance in P. digitatum is poorly understood. Here, we first performed transcriptomic analysis of the P. digitatum strain Pdw03 treated with imazalil (IMZ) for 2 and 12 h. A total of 1338 genes were up-regulated and 1635 were down-regulated under IMZ treatment for 2 h compared to control while 1700 were up-regulated and 1661 down-regulated under IMZ treatment for 12 h. The expression of about half of the genes in the ergosterol biosynthesis pathway was affected during IMZ stress. Further analysis identified that 84 of 320 transcription factors (TFs) were differentially expressed at both conditions, making them potential regulators in DMI resistance. To confirm their roles, three differentially expressed TFs were selected to generate disruption mutants using the CRISPR/Cas9 technology. The results showed that two of them had no response to IMZ stress while ∆PdflbC was more sensitive compared with the wild type. However, disruption of PdflbC did not affect the ergosterol content. The defect in IMZ sensitivity of ∆PdflbC was restored by genetic complementation of the mutant with a functional copy of PdflbC. Taken together, our results offer a rich source of information to identify novel regulators in DMI resistance. Full article
Show Figures

Figure 1

16 pages, 2600 KiB  
Article
Assessment of Calcaneal Spongy Bone Magnetic Resonance Characteristics in Women: A Comparison between Measures Obtained at 0.3 T, 1.5 T, and 3.0 T
by Silvia Capuani, Alessandra Maiuro, Emiliano Giampà, Marco Montuori, Viviana Varrucciu, Gisela E. Hagberg, Vincenzo Vinicola and Sergio Colonna
Diagnostics 2024, 14(10), 1050; https://doi.org/10.3390/diagnostics14101050 (registering DOI) - 18 May 2024
Abstract
Background: There is a growing interest in bone tissue MRI and an even greater interest in using low-cost MR scanners. However, the characteristics of bone MRI remain to be fully defined, especially at low field strength. This study aimed to characterize the signal-to-noise [...] Read more.
Background: There is a growing interest in bone tissue MRI and an even greater interest in using low-cost MR scanners. However, the characteristics of bone MRI remain to be fully defined, especially at low field strength. This study aimed to characterize the signal-to-noise ratio (SNR), T2, and T2* in spongy bone at 0.3 T, 1.5 T, and 3.0 T. Furthermore, relaxation times were characterized as a function of bone-marrow lipid/water ratio content and trabecular bone density. Methods: Thirty-two women in total underwent an MR-imaging investigation of the calcaneus at 0.3 T, 1.5 T, and 3.0 T. MR-spectroscopy was performed at 3.0 T to assess the fat/water ratio. SNR, T2, and T2* were quantified in distinct calcaneal regions (ST, TC, and CC). ANOVA and Pearson correlation statistics were used. Results: SNR increase depends on the magnetic field strength, acquisition sequence, and calcaneal location. T2* was different at 3.0 T and 1.5 T in ST, TC, and CC. Relaxation times decrease as much as the magnetic field strength increases. The significant linear correlation between relaxation times and fat/water found in healthy young is lost in osteoporotic subjects. Conclusion: The results have implications for the possible use of relaxation vs. lipid/water marrow content for bone quality assessment and the development of quantitative MRI diagnostics at low field strength. Full article
Show Figures

Figure 1

3 pages, 146 KiB  
Editorial
Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment 2.0
by Giuliano Ciarimboli
Int. J. Mol. Sci. 2024, 25(10), 5521; https://doi.org/10.3390/ijms25105521 (registering DOI) - 18 May 2024
Abstract
This editorial summarizes the seven scientific papers published in the Special Issue “Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment 2 [...] Full article
17 pages, 3098 KiB  
Article
Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment
by Lyubomira Radeva, Yordan Yordanov, Ivanka Spassova, Daniela Kovacheva, Ivanka Pencheva-El Tibi, Maya M. Zaharieva, Mila Kaleva, Hristo Najdenski, Petar D. Petrov, Virginia Tzankova and Krassimira Yoncheva
Gels 2024, 10(5), 346; https://doi.org/10.3390/gels10050346 (registering DOI) - 18 May 2024
Abstract
Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-β-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels [...] Read more.
Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-β-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels for wound treatment therapy. IR-spectroscopy and XRD analysis confirmed the successful incorporation of resveratrol into complexes. The wound-healing ability of these complexes was estimated by a scratch assay on fibroblasts, which showed a tendency for improvement of the effect of resveratrol after complexation. The antimicrobial activity of resveratrol in aqueous dispersion and in the complexes was evaluated on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans strains. The results revealed a twofold decrease in the MIC and stronger inhibition of the metabolic activity of MRSA after treatment with resveratrol in the complexes compared to the suspended drug. Furthermore, the complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties. The formulated hydrogel showed excellent biocompatibility which was confirmed via skin irritation test on rabbits. In conclusion, Pluronic hydrogel containing resveratrol included in hydroxypropyl-β-cyclodextrin complexes is a promising topical formulation for further studies directed at wound therapy. Full article
(This article belongs to the Special Issue Advances in Chemistry and Physics of Hydrogels)
Show Figures

Figure 1

13 pages, 1977 KiB  
Article
Conventional versus Hepatic Arteriography and C-Arm CT-Guided Ablation of Liver Tumors (HepACAGA): A Comparative Analysis
by Niek Wijnen, Rutger C. G. Bruijnen, Evert-Jan P. A. Vonken, Hugo W. A. M. de Jong, Joep de Bruijne, Guus M. Bol, Jeroen Hagendoorn, Martijn P. W. Intven and Maarten L. J. Smits
Cancers 2024, 16(10), 1925; https://doi.org/10.3390/cancers16101925 (registering DOI) - 18 May 2024
Abstract
Purpose: Hepatic Arteriography and C-Arm CT-Guided Ablation of liver tumors (HepACAGA) is a novel technique, combining hepatic–arterial contrast injection with C-arm CT-guided navigation. This study compared the outcomes of the HepACAGA technique with patients treated with conventional ultrasound (US) and/or CT-guided ablation. Materials [...] Read more.
Purpose: Hepatic Arteriography and C-Arm CT-Guided Ablation of liver tumors (HepACAGA) is a novel technique, combining hepatic–arterial contrast injection with C-arm CT-guided navigation. This study compared the outcomes of the HepACAGA technique with patients treated with conventional ultrasound (US) and/or CT-guided ablation. Materials and Methods: In this retrospective cohort study, all consecutive patients with hepatocellular carcinoma (HCC) or colorectal liver metastases (CRLM) treated with conventional US-/CT-guided ablation between 1 January 2015, and 31 December 2020, and patients treated with HepACAGA between 1 January 2021, and 31 October 2023, were included. The primary outcome was local tumor recurrence-free survival (LTRFS). Secondary outcomes included the local tumor recurrence (LTR) rate and complication rate. Results: 68 patients (120 tumors) were included in the HepACAGA cohort and 53 patients (78 tumors) were included in the conventional cohort. In both cohorts, HCC was the predominant tumor type (63% and 73%, respectively). In the HepACAGA cohort, all patients received microwave ablation. Radiofrequency ablation was the main ablation technique in the conventional group (78%). LTRFS was significantly longer for patients treated with the HepACAGA technique (p = 0.015). Both LTR and the complication rate were significantly lower in the HepACAGA cohort compared to the conventional cohort (LTR 5% vs. 26%, respectively; p < 0.001) (complication rate 4% vs. 15%, respectively; p = 0.041). Conclusions: In this study, the HepACAGA technique was safer and more effective than conventional ablation for HCC and CRLM, resulting in lower rates of local tumor recurrence, longer local tumor recurrence-free survival and fewer procedure-related complications. Full article
(This article belongs to the Special Issue Thermal Ablation in the Management for Colorectal Liver Metastases)
Show Figures

Figure 1

15 pages, 2271 KiB  
Article
Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects
by Zhilei Wang, Zipeng Zhang, Chenyu Wu, Zikuan Wang and Wenjian Liu
Molecules 2024, 29(10), 2377; https://doi.org/10.3390/molecules29102377 (registering DOI) - 18 May 2024
Abstract
The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 [...] Read more.
The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 nm, at which molar extinction coefficient εmax = 1.0×104 L/(mol·cm)), hindering photo-curing applications that entail long light penetration paths. Over the past decade, there has not been any competing candidate in terms of efficiency, despite a myriad of efforts in PC design. By theoretical evaluation, here we rationally introduce a peripheral benzo moiety on each of the pyrrole rings of ZnTPP, giving zinc tetraphenyl tetrabenzoporphyrin (ZnTPTBP). This modification not only enlarges the conjugation length of the system, but also alters the a1u occupied π molecular orbital energy level and breaks the accidental degeneracy between the a1u and a2u orbitals, which is responsible for the low absorption intensity of the Q-band. As a consequence, not only is there a pronounced hyperchromic and bathochromic effect (λmax = 655 nm and εmax = 5.2×104 L/(mol·cm)) of the Q-band, but the hyperchromic effect is achieved without increasing the intensity of the less useful, low wavelength absorption peaks of the PC. Remarkably, this strong 655 nm absorption takes advantage of deep-red (650–700 nm) light, a major component of solar light exhibiting good atmosphere penetration, exploited by the natural PC chlorophyll a as well. Compared with ZnTPP, ZnTPTBP displayed a 49% increase in PET-RAFT polymerization rate with good control, marking a significant leap in the area of photo-controlled polymerization. Full article
(This article belongs to the Special Issue Themed Issue Dedicated to Prof. Bernard Boutevin)
Show Figures

Figure 1

19 pages, 3716 KiB  
Article
Dissection of Common Rust Resistance in Tropical Maize Multiparent Population through GWAS and Linkage Studies
by Linzhuo Li, Fuyan Jiang, Yaqi Bi, Xingfu Yin, Yudong Zhang, Shaoxiong Li, Xingjie Zhang, Meichen Liu, Jinfeng Li, Ranjan K. Shaw, Babar Ijaz and Xingming Fan
Plants 2024, 13(10), 1410; https://doi.org/10.3390/plants13101410 (registering DOI) - 18 May 2024
Abstract
Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize, this study utilized the susceptible temperate inbred line Ye107 as [...] Read more.
Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize, this study utilized the susceptible temperate inbred line Ye107 as the male parent crossed with three resistant tropical maize inbred lines (CML312, D39, and Y32) to generate 627 F7 recombinant inbred lines (RILs), with the aim of identifying maize disease-resistant loci and candidate genes for common rust. Phenotypic data showed good segregation between resistance and susceptibility, with varying degrees of resistance observed across different subpopulations. Significant genotype effects and genotype × environment interactions were observed, with heritability ranging from 85.7% to 92.2%. Linkage and genome-wide association analyses across the three environments identified 20 QTLs and 62 significant SNPs. Among these, seven major QTLs explained 66% of the phenotypic variance. Comparison with six SNPs repeatedly identified across different environments revealed overlap between qRUST3-3 and Snp-203,116,453, and Snp-204,202,469. Haplotype analysis indicated two different haplotypes for CR resistance for both the SNPs. Based on LD decay plots, three co-located candidate genes, Zm00001d043536, Zm00001d043566, and Zm00001d043569, were identified within 20 kb upstream and downstream of these two SNPs. Zm00001d043536 regulates hormone regulation, Zm00001d043566 controls stomatal opening and closure, related to trichome, and Zm00001d043569 is associated with plant disease immune responses. Additionally, we performed candidate gene screening for five additional SNPs that were repeatedly detected across different environments, resulting in the identification of five candidate genes. These findings contribute to the development of genetic resources for common rust resistance in maize breeding programs. Full article
(This article belongs to the Special Issue Molecular Biology and Genomics of Plant-Pathogen Interactions)
Show Figures

Figure 1

14 pages, 4095 KiB  
Article
Balloon Valvuloplasty in Congenital Critical Aortic Valve Stenosis in Neonates and Infants: A Rescue Procedure for the Left Ventricle
by Jochen Pfeifer, Axel Rentzsch, Martin Poryo and Hashim Abdul-Khaliq
J. Cardiovasc. Dev. Dis. 2024, 11(5), 156; https://doi.org/10.3390/jcdd11050156 (registering DOI) - 18 May 2024
Abstract
Congenital critical aortic valve stenosis (CAVS) is a life-threatening disease requiring urgent treatment. First-line therapy is still controversial. The aim of our study was (1) to analyze retrospectively the patients of our institution who underwent balloon aortic valvuloplasty (BAV) due to CAVS and [...] Read more.
Congenital critical aortic valve stenosis (CAVS) is a life-threatening disease requiring urgent treatment. First-line therapy is still controversial. The aim of our study was (1) to analyze retrospectively the patients of our institution who underwent balloon aortic valvuloplasty (BAV) due to CAVS and (2) describe the techniques for improved feasibility of intervention using microcatheters and retrieval loops. Twelve patients underwent 23 BAVs: 1 BAV was performed in 3 patients, 2 BAVs were performed in 7 patients, and 3 BAVs were performed in 2 patients. The peak trans-valvular pressure gradient (Δp) and left ventricular shortening fraction (LVSF) improved significantly in the first two interventions. In the first BAV, Δp decreased from 73.7 ± 34.5 mmHg to 39.8 ± 11.9 mmHg (p = 0.003), and the LVSF improved from 22.3 ± 13.5% to 31.6 ± 10.2% (p = 0.001). In the second BAV, Δp decreased from 73.2 ± 33.3 mmHg to 35.0 ± 20.2 mmHg (p < 0.001), and the LVSF increased from 26.7 ± 9.6% to 33.3 ± 7.4% (p = 0.004). Cardiac surgery during the neonatal period was avoided for all children. The median time to valve surgery was 5.75 years. Few complications occurred, namely mild-to-moderate aortic regurgitation, one remediable air embolism, and one intimal injury to the ascending aorta. We conclude that BAV is a successful emergency treatment for CAVS, resulting in left ventricular relief, clinical stabilization, and a time gain until cardiac surgery. Full article
(This article belongs to the Special Issue Heart Diseases in Children)
Show Figures

Graphical abstract

26 pages, 10488 KiB  
Article
Towards an Effective Architectural Form: The Composition of Squareness and Roundness Based on Scale Proportion—Evidence from the Yingxian Wooden Pagoda
by Lu Shi, Xu Chen, Yuqian Xu, Xing Gao, Jialong Lai and Shusheng Wang
Buildings 2024, 14(5), 1472; https://doi.org/10.3390/buildings14051472 (registering DOI) - 18 May 2024
Abstract
Investigating the mathematical and geometric principles embedded in ancient classic architecture is a significant tradition in the history of architectural development. Drawing inspiration from the modular design and creative ideology based on the geometric proportions of squareness and roundness in ancient Chinese architecture, [...] Read more.
Investigating the mathematical and geometric principles embedded in ancient classic architecture is a significant tradition in the history of architectural development. Drawing inspiration from the modular design and creative ideology based on the geometric proportions of squareness and roundness in ancient Chinese architecture, we propose a new mode of squareness and roundness composition based on scale proportion specifically for the design of multi-story buildings. Taking Yingxian Wooden Pagoda as the case study, we not only re-evaluate the modular system and proportional rules followed in the design of the entire pagoda, but also reveal the technical approaches and geometric rules for effectively controlling the form of multi-story buildings. In particular, the mode of squareness and roundness composition based on scale proportion, utilizing a modular grid combined with squareness and roundness drawings as decision-making tools, can control the scale and proportion of buildings across different design dimensions and organically coordinate the design of multi-story buildings’ plans and elevations. Thus, it can achieve an effective balance of multi-story architectural forms. This study has potential applications in the creation of traditional multi-story buildings and heritage restoration projects, and offers valuable insights for future research on ancient multi-story buildings. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
12 pages, 6165 KiB  
Article
Seasonal Prevalence of Skin Lesions on Dolphins across a Natural Salinity Gradient
by Makayla A. Guinn, Christina N. Toms, Carrie Sinclair and Dara N. Orbach
Sustainability 2024, 16(10), 4260; https://doi.org/10.3390/su16104260 (registering DOI) - 18 May 2024
Abstract
Bottlenose dolphins (Tursiops truncatus) inhabit waters across a broad natural salinity gradient and exhibit changes in skin condition based on the quality of their environment. Prolonged exposure to low salinities (≤10–20 ppt) degenerates the epidermal barrier and causes cutaneous lesions in [...] Read more.
Bottlenose dolphins (Tursiops truncatus) inhabit waters across a broad natural salinity gradient and exhibit changes in skin condition based on the quality of their environment. Prolonged exposure to low salinities (≤10–20 ppt) degenerates the epidermal barrier and causes cutaneous lesions in dolphins, while the role of high salinity exposure (>35 ppt) in lesion development remains unknown. We assessed seasonal lesion prevalence in three free-ranging dolphin stocks inhabiting coastal Gulf of Mexico (GoM) waters of different salinities (0–30 ppt, 22–35 ppt, and 36+ ppt) using images of dolphin bodies. Lesions were documented on 44% of the dolphins photographed (n = 432), and lesion occurrence was significantly related to cold seasons and water temperatures but not salinity. Cold water temperatures may heighten dolphin susceptibility to infectious pathogens and disease and compound the effects of anthropogenic pollutants in the GoM. As dolphins are a bioindicator species of marine habitat welfare, natural studies assessing dolphin skin may reveal environmental degradation with potential impacts on marine ecosystems and human health. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

21 pages, 4905 KiB  
Article
Differential Transcription Profiling Reveals the MicroRNAs Involved in Alleviating Damage to Photosynthesis under Drought Stress during the Grain Filling Stage in Wheat
by Ruixiang Zhou, Yuhang Song, Xinyu Xue, Ruili Xue, Haifang Jiang, Yi Zhou, Xueli Qi and Yuexia Wang
Int. J. Mol. Sci. 2024, 25(10), 5518; https://doi.org/10.3390/ijms25105518 (registering DOI) - 18 May 2024
Abstract
To explore the possible novel microRNA (miRNA) regulatory pathways in Zhengmai 1860, a newly cultivated drought-tolerant wheat (Triticum aestivum L.) cultivar, miRNA transcriptome sequencing of the flag leaves of Zhengmai 1860, drought-sensitive variety Zhoumai 18, and drought-resistant variety Bainong 207 was performed [...] Read more.
To explore the possible novel microRNA (miRNA) regulatory pathways in Zhengmai 1860, a newly cultivated drought-tolerant wheat (Triticum aestivum L.) cultivar, miRNA transcriptome sequencing of the flag leaves of Zhengmai 1860, drought-sensitive variety Zhoumai 18, and drought-resistant variety Bainong 207 was performed during the grain filling stage. We also observed changes in the chloroplast ultrastructure, phytohormone levels, and antioxidant- and photosynthesis-related physiological indicators in three wheat varieties. The results showed that the flag leaves of the drought-tolerant variety Zhengmai 1860 had higher chlorophyll contents and net photosynthetic rates than those of Zhoumai 18 under drought stress during the grain filling stage; in addition, the chloroplast structure was more complete. However, there was no significant difference between Zhengmai 1860 and Bainong 207. MiRNA transcriptome analysis revealed that the differential expression of the miRNAs and mRNAs exhibited variable specificity. The KEGG pathway enrichment results indicated that most of the genes were enriched in the MAPK signaling pathway, plant hormone signal transduction, photosynthetic antennae protein, and amino acid and carbohydrate metabolism. In the drought-tolerant cultivar Zhengmai 1860, tae-miR408 was targeted to regulate the allene oxide synthase (AOS) gene, inhibit its expression, reduce the AOS content, and decrease the synthesis of jasmonic acid (JA) and abscisic acid (ABA). The results of this study suggest that Zhengmai 1860 could improve the photosynthetic performance of flag leaves by inhibiting the expression of genes involved in the JA pathway through miRNAs under drought conditions. Moreover, multiple miRNAs may target chlorophyll, antioxidant enzymes, phytohormone signal transduction, and other related pathways; thus, it is possible to provide a more theoretical basis for wheat molecular breeding. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

15 pages, 1506 KiB  
Article
HDL-Cholesterol Subfraction Dimensional Distribution Is Associated with Cardiovascular Disease Risk and Is Predicted by Visceral Adiposity and Dietary Lipid Intake in Women
by Domenico Sergi, Juana Maria Sanz, Alessandro Trentini, Gloria Bonaccorsi, Sharon Angelini, Fabiola Castaldo, Sara Morrone, Riccardo Spaggiari, Carlo Cervellati, Angelina Passaro and MEDIA HDL Research Group
Nutrients 2024, 16(10), 1525; https://doi.org/10.3390/nu16101525 (registering DOI) - 18 May 2024
Abstract
HDL-cholesterol quality, including cholesterol distribution in HDL subfractions, is emerging as a key discriminant in dictating the effects of these lipoproteins on cardiovascular health. This study aims at elucidating the relationship between cholesterol distribution in HDL subfractions and CVD risk factors as well [...] Read more.
HDL-cholesterol quality, including cholesterol distribution in HDL subfractions, is emerging as a key discriminant in dictating the effects of these lipoproteins on cardiovascular health. This study aims at elucidating the relationship between cholesterol distribution in HDL subfractions and CVD risk factors as well as diet quality and energy density in a population of pre- and postmenopausal women. Seventy-two women aged 52 ± 6 years were characterized metabolically and anthropometrically. Serum HDL-C subfractions were quantified using the Lipoprint HDL System. Cholesterol distribution in large HDL subfractions was lower in overweight individuals and study participants with moderate to high estimated CVD risk, hypertension, or insulin resistance. Cholesterol distribution in large, as opposed to small, HDL subfractions correlated negatively with insulin resistance, circulating triglycerides, and visceral adipose tissue (VAT). VAT was an independent positive and negative predictor of cholesterol distribution in large and small HDL subfractions, respectively. Furthermore, an increase in energy intake could predict a decrease in cholesterol levels in large HDL subfractions while lipid intake positively predicted cholesterol levels in small HDL subfractions. Cholesterol distribution in HDL subfractions may represent an additional player in shaping CVD risk and a novel potential mediator of the effect of diet on cardiovascular health. Full article
Show Figures

Figure 1

16 pages, 2517 KiB  
Article
Cytosine Deaminase-Overexpressing hTERT-Immortalized Human Adipose Stem Cells Enhance the Inhibitory Effects of Fluorocytosine on Tumor Growth in Castration Resistant Prostate Cancer
by Jae Heon Kim, Hee Jo Yang, Sang Hun Lee and Yun Seob Song
Int. J. Mol. Sci. 2024, 25(10), 5519; https://doi.org/10.3390/ijms25105519 (registering DOI) - 18 May 2024
Abstract
A promising de novo approach for the treatment of Castration-resistant prostate cancer (CRPC) exploits cell-mediated enzyme prodrug therapy comprising cytosine deaminase (CD) and fluorouracil (5-FC). The aim of this study was to determine the potential of bacterial CD-overexpressing hTERT-immortalized human adipose stem cells [...] Read more.
A promising de novo approach for the treatment of Castration-resistant prostate cancer (CRPC) exploits cell-mediated enzyme prodrug therapy comprising cytosine deaminase (CD) and fluorouracil (5-FC). The aim of this study was to determine the potential of bacterial CD-overexpressing hTERT-immortalized human adipose stem cells (hTERT-ADSC.CD) to suppress CRPC. A lentiviral vector encoding a bacterial CD gene was used to transfect and to generate the hTERT-ADSC.CD line. The ability of the cells to migrate selectively towards malignant cells was investigated in vitro. PC3 and hTERT-ADSC.CD cells were co-cultured in order to establish. hTERT-ADSC.CD and 1 × 106 PC3 cells were administered to nude mice via intracardiac and subcutaneous injections, respectively, and 5-FC was given for 14 days. hTERT-ADSC.CD were successfully engineered. Enhanced in vitro hTERT-ADSC.CD cytotoxicity and suicide effect were evident following administration of 5 μM 5-FC. hTERT-ADSC.CD, together with 5-FC, augmented the numbers of PC3 cells undergoing apoptosis. In comparison to controls administered hTERT-ADSC.CD monotherapy, hTERT-ADSC.CD in combination with 5-FC demonstrated a greater suppressive effect on tumor. In CPRC-bearing mice, tumor suppression was enhanced by the combination of CD-overexpressing ADSC and the prodrug 5-FC. Stem cells exhibiting CD gene expression are a potential novel approach to treatment for CRPC. Full article
(This article belongs to the Special Issue Cancer Suicide Gene Therapy)
11 pages, 672 KiB  
Review
Mapping the Neural Basis of Neuroeconomics with Functional Magnetic Resonance Imaging: A Narrative Literature Review
by Carlo A. Mallio, Andrea Buoso, Massimo Stiffi, Laura Cea, Daniele Vertulli, Caterina Bernetti, Gianfranco Di Gennaro, Martijn P. van den Heuvel and Bruno Beomonte Zobel
Brain Sci. 2024, 14(5), 511; https://doi.org/10.3390/brainsci14050511 (registering DOI) - 18 May 2024
Abstract
Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including [...] Read more.
Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including the ventro-medial prefrontal cortex, that are involved in subjective value representation. Collaborative interdisciplinary efforts are essential for advancing the field of neuroeconomics, with implications for clinical interventions and policy design. This review explores subjective value in neuroeconomics, highlighting brain regions identified through fMRI studies. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
18 pages, 9378 KiB  
Article
Waveform Optimization Control of an Active Neutral Point Clamped Three-Level Power Converter System
by Jinghua Zhou and Jin Li
Electronics 2024, 13(10), 1980; https://doi.org/10.3390/electronics13101980 (registering DOI) - 18 May 2024
Abstract
Currently, the escalating integration of renewable energy sources is causing a steady weakening of grid strength. When grid strength is weak, interactions between inverters or those between inverters and grid line impedance can provoke widespread oscillations in the power system. Additionally, the diverse [...] Read more.
Currently, the escalating integration of renewable energy sources is causing a steady weakening of grid strength. When grid strength is weak, interactions between inverters or those between inverters and grid line impedance can provoke widespread oscillations in the power system. Additionally, the diverse DC voltage application characteristics of power converter systems (PCS) may lead to over-modulation, generating narrow pulse issues that further impact control of the midpoint potential balance. Existing dead-time elimination methods are highly susceptible to current polarity judgments, rendering them ineffective in practical use. PCS, due to inherent dead-time effects, midpoint potential imbalances in three-level topologies, and narrow pulses, can elevate low-order harmonic content in the output voltage, ultimately distorting grid-connected currents. This is particularly susceptible to causing resonance in weak grids. To enhance the output voltage waveform of PCS, this article introduces a comprehensive compensation control strategy that combines dead-time elimination, midpoint potential balance, and narrow pulse suppression, all based on an active neutral point clamped (ANPC) three-level topology. This strategy gives precedence to dead-time elimination and calculates the upper and lower limits of the zero-sequence available for midpoint potential balance while fully compensating for narrow pulses. By prioritizing dead-time elimination, followed by narrow pulse suppression and finally midpoint potential balance, this method decouples the coupling between these three factors. The effectiveness of the proposed method is validated through semi-physical simulations. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

27 pages, 1488 KiB  
Article
Strategic Queueing Behavior of Two Groups of Patients in a Healthcare System
by Youxin Liu, Liwei Liu, Tao Jiang and Xudong Chai
Mathematics 2024, 12(10), 1579; https://doi.org/10.3390/math12101579 (registering DOI) - 18 May 2024
Abstract
Long waiting times and crowded services are the current medical situation in China. Especially in hierarchic healthcare systems, as high-quality medical resources are mainly concentrated in comprehensive hospitals, patients are too concentrated in these hospitals, which leads to overcrowding. This paper constructs a [...] Read more.
Long waiting times and crowded services are the current medical situation in China. Especially in hierarchic healthcare systems, as high-quality medical resources are mainly concentrated in comprehensive hospitals, patients are too concentrated in these hospitals, which leads to overcrowding. This paper constructs a game-theoretical queueing model to analyze the strategic queueing behavior of patients. In such hospitals, patients are divided into first-visit and referred patients, and the hospitals provide patients with two service phases of “diagnosis” and “treatment”. We first obtain the expected sojourn time. By defining the patience level of patients, the queueing behavior of patients in equilibrium is studied. The results suggest that as long as the patients with low patience levels join the queue, the patients with high patience levels also join the queue. As more patients arrive at the hospitals, the queueing behavior of patients with high patience levels may have a negative effect on that of patients with low patience levels. The numerical results also show that the equilibrium behavior deviates from a socially optimal solution; therefore, to reach maximal social welfare, the social planner should adopt some regulatory policies to control the arrival rates of patients. Full article
(This article belongs to the Special Issue Queueing Systems Models and Their Applications)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop