The 2023 MDPI Annual Report has
been released!
 
14 pages, 342 KiB  
Article
Impact of Physical Interventions, Phosphorus Fertilization, and the Utilization of Soil Amendments on the Absorption of Cadmium by Lettuce Grown in a Solar-Powered Greenhouse
by Jun’an Zhang, Yingjun Hao, Guangsen Xiong, Quanzhong Tang and Xiwang Tang
Biology 2024, 13(5), 332; https://doi.org/10.3390/biology13050332 (registering DOI) - 10 May 2024
Abstract
This study aimed to evaluate the effects of physical measures and the applications of phosphorus fertilizer and soil conditioner on the growth of lettuce (Lactuca sativa) and its uptake of cadmium (Cd). In a solar greenhouse that contained soil enriched with cadmium (Cd) [...] Read more.
This study aimed to evaluate the effects of physical measures and the applications of phosphorus fertilizer and soil conditioner on the growth of lettuce (Lactuca sativa) and its uptake of cadmium (Cd). In a solar greenhouse that contained soil enriched with cadmium (Cd) (1.75 ± 0.41 mg/kg) with lettuce used as a test plant, field experimental methods were utilized to explore the influence of physical measures, such as deep plowing and soil covering, and the applications of phosphorus fertilizer, including diammonium phosphate (DAP), calcium magnesium phosphate (CMP), and calcium superphosphate (SSP), and soil conditioners, such as biochar, attapulgite clay, and nano-hydroxyapatite, on the uptake of Cd in lettuce. The results indicated that the concentrations of Cd in the aboveground parts of lettuce were 1.49 ± 0.45, 1.26 ± 0.02, 1.00 ± 0.21, and 0.24 ± 0.13 mg/kg when the soil was plowed 30, 40, and 50 cm deep, respectively, and when the soil was covered with 15 cm, this resulted in reductions of 27.5%, 38.3%, 51.4%, and 88.4%, respectively, compared with the control treatment that entailed plowing to 15 cm. When 75, 150, and 225 kg/ha of phosphorus pentoxide (P2O5) were applied compared with the lack of application, the contents of Cd in the aboveground parts of lettuce increased by 2.0%, 54.5%, and 73.7%, respectively, when DAP was applied; by 52.5%, 48.5%, and 8.1%, respectively, when CMP was applied; and by 13.1%, 61.6%, and 90.9%, respectively, when SSP was applied. When the amounts of biochar applied were 0, 2, 4, 6, 8, 10, and 12 t/ha, the contents of Cd in the aboveground parts of lettuce were 1.36 ± 0.27, 1.47 ± 0.56, 1.80 ± 0.73, 1.96 ± 0.12, 1.89 ± 0.52, 1.44 ± 0.30, and 1.10 ± 0.27 mg/kg, respectively. Under concentrations of 0, 40, 80, 120, 160, and 200 kg/ha, the application of nano-hydroxyapatite resulted in Cd contents of 1.34 ± 0.56, 1.47 ± 0.10, 1.60 ± 0.44, 1.70 ± 0.21, 1.31 ± 0.09, and 1.51 ± 0.34 mg/kg, respectively. The concentrations of Cd in the aboveground parts of lettuce treated with attapulgite clay were 1.44 ± 0.48, 1.88 ± 0.67, 2.10 ± 0.80, 2.24 ± 0.75, 1.78 ± 0.41, and 1.88 ± 0.48 mg/kg, respectively. In summary, under the conditions in this study, deep plowing and soil covering measures can reduce the concentration of Cd in the aboveground parts of lettuce. The application of phosphorus fertilizer increased the concentration of Cd in the aboveground parts of lettuce. The application of higher amounts of DAP and SSP led to greater concentrations of Cd in the aboveground parts of lettuce. The application of higher amounts of CMP caused a lower concentration of Cd in the aboveground parts of lettuce. When biochar, attapulgite clay, and nano-hydroxyapatite were applied, the concentration of Cd in the aboveground parts of lettuce increased in parallel with the increase in the concentration of application when low amounts were applied. In contrast, when high amounts were applied, the concentration of Cd in the aboveground parts of lettuce began to decrease. Full article
(This article belongs to the Section Ecology)
19 pages, 1113 KiB  
Article
Surveillance of Antimicrobial Resistance of Escherichia coli Isolates from Intestinal Contents of Dairy and Veal Calves in the Veneto Region, Northeaster Italy
by Laura Bortolami, Antonio Barberio, Eliana Schiavon, Federico Martignago, Erica Littamè, Anna Sturaro, Laura Gagliazzo, Alessia De Lucia and Fabio Ostanello
Animals 2024, 14(10), 1429; https://doi.org/10.3390/ani14101429 (registering DOI) - 10 May 2024
Abstract
This surveillance study aimed to estimate the proportion of antimicrobial resistant strains and antimicrobial resistance (AMR) profiles of E. coli isolates detected from the intestinal contents of veal and dairy calves in the Veneto Region, Northeaster Italy. Additionally, we investigated the differences in [...] Read more.
This surveillance study aimed to estimate the proportion of antimicrobial resistant strains and antimicrobial resistance (AMR) profiles of E. coli isolates detected from the intestinal contents of veal and dairy calves in the Veneto Region, Northeaster Italy. Additionally, we investigated the differences in AMR profiles between dairy and veal calves over the period 2017–2022. Overall 1150 E. coli isolates were tested from calves exhibiting enteric disease, with 868 from dairy and 282 from veal calves. The percentage of resistant isolates to nine antimicrobials was notably higher in veal calves compared to dairy calves, except for ampicillin. Throughout the study period, we observed a significant increase in the proportion of resistant isolates to florfenicol, gentamycin, paromomycin, tetracycline and trimethoprim/sulfamethoxazole in dairy calves, while we did not detect any significant increase in the proportion of resistant isolates among veal calves. A substantial proportion (75.9%) of the isolated E. coli exhibited multi-drug resistance (MDR). The proportion of multi-drug resistant isolates was significantly higher in veal calves (91.7%) compared to dairy calves (74.3%) all through the surveillance period (2017–2022), with no significant variation in MDR proportion among veal calves between 2017 and 2022 but a significant increase among dairy calves. Full article
(This article belongs to the Section Cattle)
13 pages, 4112 KiB  
Article
A Comparative Study on Coupled Fluid–Thermal Field of a Large Nuclear Turbine Generator with Radial and Composited Radial–Axial–Radial Ventilation Systems
by Shukuan Zhang, Fachen Wang, Yusen Zhang, Weijie Gao and Chuan Xiang
Machines 2024, 12(5), 326; https://doi.org/10.3390/machines12050326 (registering DOI) - 10 May 2024
Abstract
With the continuous growth of energy demand, the advantages of nuclear power, such as high energy density, low emissions, and cleanliness, are gradually highlighted. However, the increasing capacity of the turbine generator in nuclear power plants has led to greater losses and critical [...] Read more.
With the continuous growth of energy demand, the advantages of nuclear power, such as high energy density, low emissions, and cleanliness, are gradually highlighted. However, the increasing capacity of the turbine generator in nuclear power plants has led to greater losses and critical heating issues. Designing an effective cooling system plays an important role in improving the rotor’s heat dissipation ability, especially under the condition of limited rotor space. In this study, the cooling effects of the rotor using a radial straight-type cooling structure and a composited radial–axial–radial cooling structure are compared and analyzed for a 1555 MVA hydrogen-cooled nuclear turbine generator. Three-dimensional fluid thermal coupled models of the rotor with both cooling structures are established, and corresponding boundary conditions are provided. The models are solved using the finite volume method. The flow law of cooling hydrogen gas inside the rotor and the temperature distribution of various parts of the rotor are studied in detail. Compared with the radial straight-type cooling structure, adopting the composited radial–axial–radial cooling structure can reduce the average temperature of the rotor field windings by 4.5 °C. The research results provide a reference for the design and optimization of the rotor cooling system for large-capacity nuclear turbine generators. Full article
Show Figures

Figure 1

21 pages, 1043 KiB  
Review
Vitamin D: A Bridge between Kidney and Heart
by Carmine Secondulfo, Valeria Visco, Nicola Virtuoso, Martino Fortunato, Serena Migliarino, Antonella Rispoli, Lucia La Mura, Adolfo Stellato, Giuseppe Caliendo, Emanuela Settembre, Fabiana Galluccio, Sarah Hamzeh and Giancarlo Bilancio
Life 2024, 14(5), 617; https://doi.org/10.3390/life14050617 (registering DOI) - 10 May 2024
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent conditions, each significantly contributing to the global burden of morbidity and mortality. CVD and CKD share a great number of common risk factors, such as hypertension, diabetes, obesity, and smoking, among others. [...] Read more.
Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent conditions, each significantly contributing to the global burden of morbidity and mortality. CVD and CKD share a great number of common risk factors, such as hypertension, diabetes, obesity, and smoking, among others. Their relationship extends beyond these factors, encompassing intricate interplay between the two systems. Within this complex network of pathophysiological processes, vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological pathways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a close connection between these two prevalent conditions and vitamin D, a crucial hormone traditionally recognized for its role in bone health. This article aims to provide an extensive review of vitamin D’s multifaceted and expanding actions concerning its involvement in CKD and CVD. Full article
26 pages, 1295 KiB  
Review
Review and Assessment of Material, Method, and Predictive Modeling for Fiber-Reinforced Polymer (FRP) Partially Confined Concrete Columns
by Muhammad Usman Ghani, Nauman Ahmad, Kahsay Gebresilassie Abraha, Rana Zafar Abbas Manj, Muhammad Haroon Sharif and Li Wei
Polymers 2024, 16(10), 1367; https://doi.org/10.3390/polym16101367 (registering DOI) - 10 May 2024
Abstract
The repairing and strengthening of concrete structures using external and internal partial confinements are inevitable in the construction industry due to the new standards and rapid developments. The conventional materials and methods of confinement are unable to meet modern safety and functional standards. [...] Read more.
The repairing and strengthening of concrete structures using external and internal partial confinements are inevitable in the construction industry due to the new standards and rapid developments. The conventional materials and methods of confinement are unable to meet modern safety and functional standards. The fiber-reinforced polymer (FRP) enhances the strength and ductility of deteriorating and new concrete columns by reducing lateral confinement pressure and resistance against seismic shocks. The precise methods of partial confinement are inevitable for effective FRP-concrete bonding, durability, and cost-effectiveness under different loading conditions and to cope with external environmental factors. Predictive modeling and simulation techniques are pivotal for the optimization of confinement materials and methods by investigating the FRP-concrete novel confinement configurations, stress–strain responses, and failure modes. The novel materials and methods for concrete columns’ partial confinement lack high compressive strength, ductility, chemical attack resistivity, and different fiber orientation impacts. This review provides an overview of recent confinement materials, novel methods, and advanced modeling and simulation techniques with a critical analysis of the research gaps for partial FRP confinement of concrete columns. The current challenges and future prospects are also presented. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
13 pages, 9668 KiB  
Article
Highly Mechanical Strength, Flexible and Stretchable Wood-Based Elastomers without Chemical Cross-Linking
by Yongyue Zhang, Jiayao Li, Yun Lu and Jiangtao Shi
Forests 2024, 15(5), 836; https://doi.org/10.3390/f15050836 (registering DOI) - 10 May 2024
Abstract
Wood exhibits a limited elastic deformation capacity under external forces due to its small range of elastic limit, which restricts its widespread use as an elastic material. This study presents the development of a stretchable wood-based elastomer (SWE) that is highly mechanical and [...] Read more.
Wood exhibits a limited elastic deformation capacity under external forces due to its small range of elastic limit, which restricts its widespread use as an elastic material. This study presents the development of a stretchable wood-based elastomer (SWE) that is highly mechanical and flexible, achieved without the use of chemical cross-linking. Balsa wood was utilized as a raw material, which was chemically pretreated to remove the majority of the lignin and create a more abundant pore structure, while exposing the active hydroxyl groups on the cellulose surface. The polyvinyl alcohol (PVA) solution was impregnated into delignified wood, resulting in the formation of a cross-linked structure through multiple freeze–thaw cycles. After eight cycles, the tensile strength in the longitudinal direction reached up to 25.68 MPa with a strain of ~463%. This excellent mechanical strength is superior to that of most wood-based elastomers reported to date. The SWE can also perform complex deformations such as winding and knotting, and SWE soaked in salt solution exhibits excellent sensing characteristics and can be used to detect human finger bending. Stretchable wood-based elastomers with high mechanical strength and toughness have potential future applications in biomedicine, flexible electronics, and other fields. Full article
Show Figures

Figure 1

16 pages, 8168 KiB  
Article
Unveiling Transportation Socio-Economic Adaptability Using a Node–Place Model: A Case from Zhejiang Province, China
by Jianwei Shi, Shuwei Wang, Siyang Liu and Chenjing Zhou
Sustainability 2024, 16(10), 4009; https://doi.org/10.3390/su16104009 (registering DOI) - 10 May 2024
Abstract
Effective investment in transportation infrastructure ensures sustainable urban development and high-quality economic development. Understanding transportation and socioeconomic relationships is crucial for developing investment strategies. Existing research focuses on analyzing the contribution of transportation to the economy or the contribution of economic development to [...] Read more.
Effective investment in transportation infrastructure ensures sustainable urban development and high-quality economic development. Understanding transportation and socioeconomic relationships is crucial for developing investment strategies. Existing research focuses on analyzing the contribution of transportation to the economy or the contribution of economic development to transportation, neglecting the identification of transportation infrastructure weaknesses to initiate targeted investment and construction. In this study, we propose an assessment framework based on the node–place model to identify the shortcomings in transportation infrastructure. The framework encompasses the adaptability of the current transportation infrastructure and the stage of economic development, evaluating whether the current transportation infrastructure is ahead of or lagging behind the level of economic development. We conduct a case study on three kinds of transportation infrastructure, including railways, highways, and civil aviation, in Zhejiang Province, China. The results show that Zhejiang Province’s transportation infrastructure generally meets economic development requirements, and most cities have relatively advanced transportation systems. However, significant gaps in transportation facilities in certain areas still need to be targeted and supplemented. These findings help to explore the theoretical relationship between transportation and socioeconomics, providing a basis for economic investment decisions on transportation infrastructure. Full article
(This article belongs to the Special Issue Urban Economic Development and Planning: Sustainable Development)
Show Figures

Figure 1

18 pages, 2971 KiB  
Article
Feature Maps Need More Attention: A Spatial-Channel Mutual Attention-Guided Transformer Network for Face Super-Resolution
by Zhe Zhang and Chun Qi
Appl. Sci. 2024, 14(10), 4066; https://doi.org/10.3390/app14104066 (registering DOI) - 10 May 2024
Abstract
Recently, transformer-based face super-resolution (FSR) approaches have achieved promising success in restoring degraded facial details due to their high capability for capturing both local and global dependencies. However, while existing methods focus on introducing sophisticated structures, they neglect the potential feature map information, [...] Read more.
Recently, transformer-based face super-resolution (FSR) approaches have achieved promising success in restoring degraded facial details due to their high capability for capturing both local and global dependencies. However, while existing methods focus on introducing sophisticated structures, they neglect the potential feature map information, limiting FSR performance. To circumvent this problem, we carefully design a pair of guiding blocks to dig for possible feature map information to enhance features before feeding them to transformer blocks. Relying on the guiding blocks, we propose a spatial-channel mutual attention-guided transformer network for FSR, for which the backbone architecture is a multi-scale connected encoder–decoder. Specifically, we devise a novel Spatial-Channel Mutual Attention-guided Transformer Module (SCATM), which is composed of a Spatial-Channel Mutual Attention Guiding Block (SCAGB) and a Channel-wise Multi-head Transformer Block (CMTB). SCATM on the top layer (SCATM-T) aims to promote both local facial details and global facial structures, while SCATM on the bottom layer (SCATM-B) seeks to optimize the encoded features. Considering that different scale features are complementary, we further develop a Multi-scale Feature Fusion Module (MFFM), which fuses features from different scales for better restoration performance. Quantitative and qualitative experimental results on various datasets indicate that the proposed method outperforms other state-of-the-art FSR methods. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
15 pages, 494 KiB  
Article
Proposal and Validation of a Measurement Scale of the Acceptance of Ultra-Processed Food Products
by Cristina Calvo-Porral, Sergio Rivaroli and Javier Orosa-González
Foods 2024, 13(10), 1481; https://doi.org/10.3390/foods13101481 (registering DOI) - 10 May 2024
Abstract
Today, there is an increasing consumption of ultra-processed food products (UPFs), while more healthy options are available; however, there is no scale available that can adequately measure this phenomenon. In this context, the present study aims to develop and validate a measurement scale [...] Read more.
Today, there is an increasing consumption of ultra-processed food products (UPFs), while more healthy options are available; however, there is no scale available that can adequately measure this phenomenon. In this context, the present study aims to develop and validate a measurement scale of the consumers’ acceptance of ultra-processed food products. Research data (n = 478) were analyzed using Exploratory Factor Analysis (EFA), followed by a Confirmatory Factor Analysis (CFA). The results confirm the validity of the proposed measurement scale comprising nine factors: the quality of ultra-processed food products, ability to save time, low affordable price, effortless preparation, convenience, hedonic nature, marketing strategies, satisfaction and purchase intention. The present study makes a noticeable contribution to food marketing, and food companies could consider these factors to design and commercialize ultra-processed foods. Full article
(This article belongs to the Special Issue Consumer Behavior and Food Choice—Volume III)
17 pages, 862 KiB  
Article
Investigating the Influence of Non-Uniform Characteristics of Layered Foundation on Ground Vibration Using an Efficient 2.5D Random Finite Element Method
by Shaofeng Yao, Liang Yue, Wei Xie, Sen Zheng, Shuo Tang, Jinglong Liu and Wenkai Wang
Mathematics 2024, 12(10), 1488; https://doi.org/10.3390/math12101488 (registering DOI) - 10 May 2024
Abstract
High-speed train operation may cause vibration near track facilities and propagate far through the ground, affecting people’s lives, work, and normal use of precision instruments in an urban environment. An efficient numerical method is proposed to calculate the non-uniform ground vibration under a [...] Read more.
High-speed train operation may cause vibration near track facilities and propagate far through the ground, affecting people’s lives, work, and normal use of precision instruments in an urban environment. An efficient numerical method is proposed to calculate the non-uniform ground vibration under a moving high-speed railway load. The theory of stochastic variables is used to describe the soil spatial variability of the non-uniform layered elastic ground, and the coupled 2.5D random finite element method (FEM) is proposed to reduce the computational cost without losing accuracy. Vibration propagation and attenuation of the non-uniform layered ground are investigated and the effect of train speed and soil non-homogeneity are analyzed. Results show that (1) at cross speed and high speed, the homogeneity coefficient of the layered ground has the most important influence on the ground vibration amplitude; (2) the upward acceleration is much larger than the downward acceleration at most speeds, and at cross speed and high speed, the acceleration amplitude decreases with the increase in the homogeneity coefficient; (3) as train speed increases from 60 m/s to 130 m/s, the influencing range of the homogeneity coefficient increases to 10 m from 2 m; and (4) the phenomenon of an in increase in local rebound can be observed in the velocity and acceleration attenuation curve at cross speed when the ground soil has a weaker homogeneity. Full article
12 pages, 2287 KiB  
Article
Highly Sensitive Qualitative and Quantitative Identification of Cashmere and Wool Based on Terahertz Electromagnetically Induced Transparent Metasurface Biosensor
by Dongpeng Luo, Limin Xu, Lifeng Jia, Lianglun Cheng, Ping Tang and Jinyun Zhou
Biosensors 2024, 14(5), 240; https://doi.org/10.3390/bios14050240 (registering DOI) - 10 May 2024
Abstract
Cashmere and wool are both natural animal fibers used in the textile industry, but cashmere is of superior quality, is rarer, and more precious. It is therefore important to distinguish the two fibers accurately and effectively. However, challenges due to their similar appearance, [...] Read more.
Cashmere and wool are both natural animal fibers used in the textile industry, but cashmere is of superior quality, is rarer, and more precious. It is therefore important to distinguish the two fibers accurately and effectively. However, challenges due to their similar appearance, morphology, and physical and chemical properties remain. Herein, a terahertz electromagnetic inductive transparency (EIT) metasurface biosensor is introduced for qualitative and quantitative identification of cashmere and wool. The periodic unit structure of the metasurface consists of four rotationally symmetric resonators and two cross−arranged metal secants to form toroidal dipoles and electric dipoles, respectively, so that its effective sensing area can be greatly improved by 1075% compared to the traditional dipole mode, and the sensitivity will be up to 342 GHz/RIU. The amplitude and frequency shift changes of the terahertz transmission spectra caused by the different refractive indices of cashmere/wool can achieve highly sensitive label−free qualitative and quantitative identification of both. The experimental results show that the terahertz metasurface biosensor can work at a concentration of 0.02 mg/mL. It provides a new way to achieve high sensitivity, precision, and trace detection of cashmere/wool, and would be a valuable application for the cashmere industry. Full article
(This article belongs to the Special Issue Biomaterials for Biosensing Applications)
Show Figures

Figure 1

14 pages, 2544 KiB  
Article
Mechanical Properties and Microstructural Evolution of 6082 Aluminum Alloy with Different Heat Treatment Methods
by Erli Xia, Tuo Ye, Sawei Qiu, Jie Liu, Jiahao Luo, Longtao Sun and Yuanzhi Wu
Coatings 2024, 14(5), 602; https://doi.org/10.3390/coatings14050602 (registering DOI) - 10 May 2024
Abstract
The influence of solid solution treatment (SST), artificial aging treatment (AAT), and deep cryogenic-aging treatment (DCAT) on the mechanical properties and microstructure evolution of 6082 aluminum alloy was investigated. The tensile test was performed to obtain the true stress–strain curves through an electronic [...] Read more.
The influence of solid solution treatment (SST), artificial aging treatment (AAT), and deep cryogenic-aging treatment (DCAT) on the mechanical properties and microstructure evolution of 6082 aluminum alloy was investigated. The tensile test was performed to obtain the true stress–strain curves through an electronic universal testing machine. The results show that the yield strengths of the SST specimens in all three directions are the lowest, of less than 200 MPa. In addition, the maximum elongation of the SST specimen is over 16% and the value of in-plane anisotropy (IPA) is 5.40%. For the AAT specimen, the yield strengths of the AAT alloy in three directions have distinct improvements, which are beyond 340 MPa. However, the maximum elongation and the IPA were evidently reduced. The yield strength and elongation of the DCAT alloy exhibit a slight enhancement compared with those in the AAT condition, and the corresponding IPA is 0.61%. The studied alloy specimens in all conditions exhibit ductile fracture. The DCAT alloy has the highest density of precipitates with the smallest size. Therefore, the dislocation pinning effect of the DCAT specimens are the strongest, which exhibit the highest yield strength accordingly. In addition, the uniformly distributed precipitates in the matrix with a large ratio of long and short axes can suppress the anisotropy caused by elongated grains. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
20 pages, 5779 KiB  
Article
Experimental Study on the Hot Surface Ignition Characteristics and a Predictive Model of Marine Diesel in a Ship Engine Room
by Kan Wang, Rui Qiu, Yang Ming and Hang Xu
J. Mar. Sci. Eng. 2024, 12(5), 798; https://doi.org/10.3390/jmse12050798 (registering DOI) - 10 May 2024
Abstract
To ensure the safe protection of marine engine systems, it is necessary to explore the hot surface ignition (HSI) characteristics of marine diesel in ship environments. However, an accurate model describing these complex characteristics is still not available. In this work, a new [...] Read more.
To ensure the safe protection of marine engine systems, it is necessary to explore the hot surface ignition (HSI) characteristics of marine diesel in ship environments. However, an accurate model describing these complex characteristics is still not available. In this work, a new experimental method is proposed in order to enhance prediction performance by integrating testing data of the characteristics of HSI of marine diesel. The sensitivity of HSI is determined by various factors such as surface parameters, flow state, and the ship’s environment. According to variations in the HSI status of marine diesel in an engine room, the HSI probability is distributed in three phases. It is essential to determine whether the presence of marine diesel or surrounding items can intensify the risk of an initial fire beginning in the engine room. A vapor plume model was developed to describe the relationship between HSI height and initial specific buoyancy flux in vertical space. Further, field distribution revealed significant variation in the increase in temperature between 200 and 300 mm of vertical height, indicating a region of initial HSI. In addition, increasing surface temperature did not result in a significant change in ignition delay time. After reaching a temperature of 773 K, the ignition delay time remained around 0.48 s, regardless of how much the hot surface temperature increased. This study reveals the HSI evolution of marine diesel in a ship engine room and develops data-based predictive models for evaluating the safety of HSI parameters during initial accident assessments. The results show that the goodness of fit of the predictive models reached above 0.964. On the basis of the predicted results, the HSI characteristics of marine diesel in engine rooms could be gleaned by actively determining the parameters of risk. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

15 pages, 3678 KiB  
Article
Developing Guidelines to Increase Green Space in Communities in Thailand Based on the Integration of Green Space into Commercial and Waterfront Routes in Singapore and Hangzhou (China)
by Maneerat Pachankoo and Zhongwei Shen
Buildings 2024, 14(5), 1366; https://doi.org/10.3390/buildings14051366 (registering DOI) - 10 May 2024
Abstract
The objective of this study is to determine how to increase green space that can overlap with areas that are primarily used for transport in commercial areas and waterfront routes in communities in Thailand, where transportation is limited, in order to provide urban [...] Read more.
The objective of this study is to determine how to increase green space that can overlap with areas that are primarily used for transport in commercial areas and waterfront routes in communities in Thailand, where transportation is limited, in order to provide urban populations an opportunity to access green space in various forms. In this study, the following was found: (1) Commercial routes should be considered. Specifically, green spaces should be created in various forms by considering the sizes of footpaths as well as restrictions on planting; the plants should be native plants because they are easy to care for and help convey the boundaries of an area. A “landmark” that represents the identity of a community should be used to create a meeting point for people entering the commercial area, and designers should use the principles of universal design to make all groups of people feel confident and safe when accessing the area. Finally, vacant or abandoned areas between buildings may also be used. (2) Waterside travel routes should also be considered. Green spaces should be distributed into points, or some routes should be made wider to accommodate various activities; areas along canals or river banks or degraded waterways should be developed or improved to create a recreational area designed with the community’s unique identity in mind, which may develop into a destination for tourists. Importantly, agencies who are responsible for working with the people in the community need to continuously care for these green spaces to enhance sustainability. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
15 pages, 1649 KiB  
Article
Research on the Postural Stability of Underwater Bottom Platforms with Different Burial Depths
by Yong Wei, Nan Li, Ming Wu and Daming Zhou
Sensors 2024, 24(10), 3034; https://doi.org/10.3390/s24103034 (registering DOI) - 10 May 2024
Abstract
The bottom platform is an important underwater sensor that can be used in communications, early warning, monitoring, and other fields. It may be affected by earthquakes, winds, waves, and other loads in the working environment, causing changes in posture and affecting its sensing [...] Read more.
The bottom platform is an important underwater sensor that can be used in communications, early warning, monitoring, and other fields. It may be affected by earthquakes, winds, waves, and other loads in the working environment, causing changes in posture and affecting its sensing function. Therefore, it is of practical engineering significance to analyze the force conditions and posture changes in the bottom platform. In order to solve the problem of postural stability of the underwater bottom platform, this paper establishes a fluid and structural simulation model of the underwater bottom platform. First, computational fluid dynamics (CFD) technology is used to solve the velocity distribution and forces in the watershed around the bottom platform under a 3 kn ocean current, where the finite element method (FEM) numerical calculation method is used to solve the initial equilibrium state of the bottom platform after it is buried. On this basis, this paper calculates the forces on the bottom platform and the posture of the bottom platform at different burial depths under the action of ocean currents. Additionally, the effects of different burial depths on the maximum displacement, deflection angle, and postural stability of the bottom platform are studied. The calculation results show that when the burial depth is greater than 0.6 m, and the deflection angle of the bottom platform under the action of the 3 kn sea current is less than 5°, the bottom platform can maintain a stable posture. This paper could be used to characterize the postural stability of underwater bottom platforms at different burial depths for the application of underwater sensors in ocean engineering. Full article
(This article belongs to the Section Navigation and Positioning)
26 pages, 2276 KiB  
Review
COVID-19 Variants and Vaccine Development
by Ziyao Zhao, Sahra Bashiri, Zyta M. Ziora, Istvan Toth and Mariusz Skwarczynski
Viruses 2024, 16(5), 757; https://doi.org/10.3390/v16050757 (registering DOI) - 10 May 2024
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs [...] Read more.
Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants. Full article
(This article belongs to the Special Issue SARS-CoV-2: Vaccine Design and Host Immunity)
Show Figures

Figure 1

25 pages, 1736 KiB  
Article
Load-Bearing Performance of a Reinforced Fill Structure with Pile Penetration
by Qiang Ma, Hanlong Yu, Yicong Yang and Lei Xi
Appl. Sci. 2024, 14(10), 4065; https://doi.org/10.3390/app14104065 (registering DOI) - 10 May 2024
Abstract
Reinforcement soil slope with pile penetration is a new load bearing structure, which has a complex working mechanism, but few studies have been carried out. This paper aims to investigate the stability characteristics of this structure using model tests. The study investigates the [...] Read more.
Reinforcement soil slope with pile penetration is a new load bearing structure, which has a complex working mechanism, but few studies have been carried out. This paper aims to investigate the stability characteristics of this structure using model tests. The study investigates the lateral displacement and-pile bending moment caused by vertical loads and evaluates the influence of different factors, including the structure type (such as pile, cap of pile, and reinforcement material), number of reinforcing layers, spacing of reinforcement material, pile length, and slope rate on the load-carrying capacity of the pile penetration fill-reinforced load-bearing structure. The findings suggest that within a certain range, increasing the pile length and number of reinforcing layers, the limiting effect of the pile on the lateral displacement in the middle and at the bottom of the slope of the pile-penetrating reinforced structure is enhanced, which can reduce the extreme value of the bending moment and make the distribution of the bending moment of the pile more reasonable. The lateral limiting effect on the soil body can be maximized by appropriate reinforcement spacing. Within a certain range, the slope rate is reduced, which can reduce the extreme value of the bending moment, make the bending moment distribution of the pile more reasonable, and avoid the phenomenon of the localized force concentration of the pile. Full article
22 pages, 914 KiB  
Article
Enhancing Road Safety Decision-Making through Analysis of Youth Survey Data: A Descriptive Statistical Approach
by Zohra Bohdidi, El Khalil Cherif, Hamza El Azhari, Ayman Bnoussaad and Aziz Babounia
Safety 2024, 10(2), 45; https://doi.org/10.3390/safety10020045 (registering DOI) - 10 May 2024
Abstract
Unsafe roads have posed a significant threat to public health, economic stability, societal well-being, and national interests for numerous decades. Road traffic accidents constitute the primary cause of death among Morocco’s youth population. This study facilitates a comprehensive exploration of the opinions held [...] Read more.
Unsafe roads have posed a significant threat to public health, economic stability, societal well-being, and national interests for numerous decades. Road traffic accidents constitute the primary cause of death among Morocco’s youth population. This study facilitates a comprehensive exploration of the opinions held by youth in Morocco with regard to decision-making in road safety. Through a rigorous analysis of their perspectives, the research endeavors to scientifically categorize these opinions. 97.8% of the surveyed youth strongly agree that road safety holds national importance and 58% recognize road safety as a personal responsibility. The overarching aim is to provide decision-makers with valuable insights to enhance the implementation of effective strategies and actively involve youth in shaping future road safety initiatives. Full article
18 pages, 3160 KiB  
Article
A Comparative Analysis of the Effect of Orbital Geometry and Signal Frequency on the Ionospheric Scintillations over a Low Latitude Indian Station: First Results from the 25th Solar Cycle
by Ramkumar Vankadara, Nirvikar Dashora, Sampad Kumar Panda and Jyothi Ravi Kiran Kumar Dabbakuti
Remote Sens. 2024, 16(10), 1698; https://doi.org/10.3390/rs16101698 (registering DOI) - 10 May 2024
Abstract
The equatorial post-sunset ionospheric irregularities induce rapid fluctuations in the phase and amplitude of global navigation satellite system (GNSS) signals which may lead to the loss of lock and can potentially degrade the position accuracy. This study presents a new analysis of L-band [...] Read more.
The equatorial post-sunset ionospheric irregularities induce rapid fluctuations in the phase and amplitude of global navigation satellite system (GNSS) signals which may lead to the loss of lock and can potentially degrade the position accuracy. This study presents a new analysis of L-band scintillation from a low latitude station at Guntur (Geographic 16.44°N, 80.62°E, dip 22.18°), India, for the period of 18 months from August 2021 to January 2023. The observations are categorized either in the medium Earth-orbiting (MEO) or geosynchronous orbiting (GSO) satellites (GSO is considered as a set of the geostationary and inclined geosynchronous satellites) for L1, L2, and L5 signals. The results show a higher occurrence of moderate (0.5 < S4 ≤ 0.8) and strong (S4 > 0.8) scintillations on different signals from the MEO compared to the GSO satellites. Statistically, the average of peak S4 values provides a higher confidence in the severity of scintillations on a given night, which is found to be in-line with the scintillation occurrences. The percentage occurrence of scintillation-affected satellites is found to be higher on L1 compared to other signals, wherein a contrasting higher percentage of affected satellites over GSO than MEO is observed. While a clear demarcation between the L2/L5 signals and L1 is found over the MEO, in the case of GSO, the CCDF over L5 is found to match mostly with the L1 signal. This could possibly originate from the space diversity gain effect known to impact the closely spaced geostationary satellite links. Another major difference of higher slopes and less scatter of S4 values corresponding to L1 versus L2/L5 from the GSO satellite is found compared to mostly non-linear highly scattered relations from the MEO. The distribution of the percentage of scintillation-affected satellites on L1 shows a close match between MEO and GSO in a total number of minutes up to ~60%. However, such a number of minutes corresponding to higher than 60% is found to be larger for GSO. Thus, the results indicate the possibility of homogeneous spatial patterns in a scintillation distribution over a low latitude site, which could originate from the closely spaced GSO links and highlight the role of the number of available satellites with the geometry of the links, being the deciding factors. This helps the ionospheric community to develop inter-GNSS (MEO and GSO) operability models for achieving highly accurate positioning solutions during adverse ionospheric weather conditions. Full article
Show Figures

Figure 1

22 pages, 3115 KiB  
Article
Martian Regolith Simulant-Based Geopolymers with Lithium Hydroxide Alkaline Activator
by Jasper Vitse, Jiabin Li, Luc Boehme, Rudy Briers and Veerle Vandeginste
Buildings 2024, 14(5), 1365; https://doi.org/10.3390/buildings14051365 (registering DOI) - 10 May 2024
Abstract
As humanity envisions the possibility of inhabiting Mars in the future, the imperative for survival in the face of its challenging conditions necessitates the construction of protective shelters to mitigate the effects of radiation exposure and the absence of atmospheric pressure. The feasibility [...] Read more.
As humanity envisions the possibility of inhabiting Mars in the future, the imperative for survival in the face of its challenging conditions necessitates the construction of protective shelters to mitigate the effects of radiation exposure and the absence of atmospheric pressure. The feasibility of producing geopolymers using the Martian regolith simulant MGS-1 (as precursor) for potential building and infrastructure projects on Mars in the future is investigated in this paper. Various alkaline activators, such as sodium hydroxide (NaOH), lithium hydroxide (LiOH·H2O) and sodium silicate (Na2SiO3), are employed to investigate their efficiency in activating the precursor. The influence of alkali type and concentration on the mechanical performance of the synthesized geopolymers is examined. Geopolymer samples are oven-cured for 7 days at 70 °C before a compressive strength test. It is found that through the hybrid use of LiOH·H2O and NaOH with optimal concentrations, metakaolin and milled MGS-1 as precursors, geopolymer mixtures with a compressive strength of 30 ± 2 MPa can be developed. The present test results preliminarily demonstrate the potential of Martian regolith simulant-based geopolymers as suitable construction and building materials for use on Mars. Full article
25 pages, 1235 KiB  
Article
Network Pharmacology and Experimental Validation to Explore the Potential Mechanism of Nigella sativa for the Treatment of Breast Cancer
by Rawaba Arif, Shazia Anwer Bukhari, Ghulam Mustafa, Sibtain Ahmed and Mohammed Fahad Albeshr
Pharmaceuticals 2024, 17(5), 617; https://doi.org/10.3390/ph17050617 (registering DOI) - 10 May 2024
Abstract
Breast cancer is a prevalent and potentially life-threatening disease that affects women worldwide. Natural products have gained attention as potential anticancer agents due to their fewer side effects, low toxicity, and cost effectiveness compared to traditional chemotherapy drugs. In the current study, the [...] Read more.
Breast cancer is a prevalent and potentially life-threatening disease that affects women worldwide. Natural products have gained attention as potential anticancer agents due to their fewer side effects, low toxicity, and cost effectiveness compared to traditional chemotherapy drugs. In the current study, the network pharmacology approach was used following a molecular docking study to evaluate the therapeutic potential of N. sativa-derived phytochemicals against breast cancer. Specifically, the study aimed to identify potential anticancer agents targeting key proteins implicated in breast cancer progression. Five proteins (i.e., EGFR, MAPK3, ESR1, MAPK1, and PTGS2) associated with breast cancer were selected as receptor proteins. Fourteen phytochemicals from N. sativa were prioritized based on drug-likeness (DL) and oral bioavailability (OB) parameters (with criteria set at DL > 0.18 and OB > 30%, respectively). Subsequent analysis of gene targets identified 283 overlapping genes primarily related to breast cancer pathogenesis. Ten hub genes were identified through topological analysis based on their significance in the KEGG pathway and GO annotations. Molecular docking revealed strong binding affinities between folic acid, betulinic acid, stigmasterol, and selected receptor proteins. These phytochemicals also demonstrated druggability potential. In vitro experiments in the MDA-MB-231 breast cancer cell line revealed that betulinic acid and stigmasterol significantly reduced cell viability after 24 h of treatment, confirming their anticancer activity. Furthermore, in vivo evaluation using a DMBA-induced rat model showed that betulinic acid and stigmasterol contributed to the significant recovery of cancer markers. This study aimed to explore the mechanisms underlying the anticancer potential of N. sativa phytochemicals against breast cancer, with the ultimate goal of identifying novel therapeutic candidates for future drug development. Overall, these results highlight betulinic acid and stigmasterol as promising candidates to develop novel anticancer agents against breast cancer. The comprehensive approach of this study, which integrates network pharmacology and molecular docking study and its experimental validation, strengthens the evidence supporting the therapeutic benefits of N. sativa-derived phytochemicals in breast cancer treatment, making them promising candidates for the development of novel anticancer agents against breast cancer. Full article
(This article belongs to the Special Issue Computer-Aided Drug Design and Drug Discovery)
29 pages, 801 KiB  
Review
Broader Perspective on Atherosclerosis—Selected Risk Factors, Biomarkers, and Therapeutic Approach
by Piotr Fularski, Witold Czarnik, Bartłomiej Dąbek, Wiktoria Lisińska, Ewa Radzioch, Alicja Witkowska, Ewelina Młynarska, Jacek Rysz and Beata Franczyk
Int. J. Mol. Sci. 2024, 25(10), 5212; https://doi.org/10.3390/ijms25105212 (registering DOI) - 10 May 2024
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as [...] Read more.
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection. Full article
10 pages, 266 KiB  
Article
The Usefulness of Factor XIII Concentration Assessment in Patients in the Acute Phase of Ischaemic Stroke Treated with Thrombolysis
by Małgorzata Wiszniewska, Urszula Włodarczyk, Magdalena Sury, Artur Słomka, Natalia Piekuś-Słomka, Anna Żdanowicz and Ewa Żekanowska
Neurol. Int. 2024, 16(3), 551-560; https://doi.org/10.3390/neurolint16030041 (registering DOI) - 10 May 2024
Abstract
Background and Aims: In recent years, there has been a growing interest in factor XIII in ischaemic stroke. The study’s main aim was to assess the usefulness of factor XIII concentration determination in patients with acute ischaemic stroke (AIS) treated with thrombolysis with [...] Read more.
Background and Aims: In recent years, there has been a growing interest in factor XIII in ischaemic stroke. The study’s main aim was to assess the usefulness of factor XIII concentration determination in patients with acute ischaemic stroke (AIS) treated with thrombolysis with recombinant tissue plasminogen activator (t-PA). Methods: The study was conducted in two groups of 84 patients with AIS: group I—with thrombolytic therapy and group II—without thrombolysis. A physical examination, neurological status (using the National Institutes of Health Stroke Scale, NIHSS), daily patients’ activities measured with the Barthel Index and Modified Rankin Scale (mRS), and blood parameters were conducted on day 1 and day 7. The following parameters were assessed: highly sensitive C-reaction protein (CRP), fibrinogen, D-dimers (DD), neutrophil–lymphocyte ratio (NLR index), and the concentration of factor XIII-A. Results: In group I, the concentration of XIII-A decreased significantly between day 1 and 7 (p < 0.001). In group I, the concentration of XIII-A on day 7 in Total Anterior Circulation Infarct (TACI) was significantly lower than in non-TACI stroke. XIII-A concentration in group I was significantly lower in patients < 31 points with Acute Stroke Registry and Analysis of Lausanne (ASTRAL). A greater decrease in XIII-A between the first sampling on day 1 and the second sampling on day 7 was associated with a worse patient neurological state in group I. Conclusions: In patients with AIS treated with t-PA, factor XIII concentrations decrease in the acute phase of stroke, and the largest decrease occurs in the TACI stroke. Determination of factor XIII concentration in patients with AIS can be used in clinical practice as an additional parameter supporting the assessment of stroke severity and may play a role in the prognosis; lower factor XIII-A activity may be a predictor of a worse prognosis. Full article
(This article belongs to the Special Issue Treatment Strategy and Mechanism of Acute Ischemic Stroke)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop